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ARTICLE

Scalable mixed model methods for set-based association
studies on large-scale categorical data analysis and
its application to exome-sequencing data in UK Biobank

Wenjian Bi,1,2,3,14,* Wei Zhou,4,5,6,14 Peipei Zhang,7,8 Yaoyao Sun,9,10 Weihua Yue,9,10,11,12

and Seunggeun Lee13,*
Summary
The ongoing release of large-scale sequencing data in the UK Biobank allows for the identification of associations between rare var-

iants and complex traits. SAIGE-GENEþ is a valid approach to conducting set-based association tests for quantitative and binary

traits. However, for ordinal categorical phenotypes, applying SAIGE-GENEþ with treating the trait as quantitative or binarizing

the trait can cause inflated type I error rates or power loss. In this study, we propose a scalable and accurate method for rare-variant

association tests, POLMM-GENE, in which we used a proportional odds logistic mixed model to characterize ordinal categorical phe-

notypes while adjusting for sample relatedness. POLMM-GENE fully utilizes the categorical nature of phenotypes and thus can well

control type I error rates while remaining powerful. In the analyses of UK Biobank 450k whole-exome-sequencing data for five

ordinal categorical traits, POLMM-GENE identified 54 gene-phenotype associations.
Introduction

Whole-exome- and whole-genome-sequencing data in

large cohorts and biobanks enable detection of rare and

ultra-rare variants, which can help explain missing trait

heritability that common variant-based genome-wide as-

sociation studies (GWASs) cannot account for.1 For rare

variants (minor allele frequency [MAF] < 1%), set-based

tests such as the burden test, sequencing kernel associa-

tion test (SKAT), and SKAT-O are more powerful than sin-

gle-variant tests. Recently, big biobanks have started to

generate large-scale sequencing data. For example, UK

Biobank (UKBB) has released whole-exome sequencing

data for most of the participants in public. Linked to

extensively collected electronic health records and self-re-

ported questionnaires, the resource enables genetic associ-

ation studies of common and rare variants for thousands

of human diseases and traits.2

Ordinal categorical data are widely collected in surveys

and questionnaires to characterize human behavior, satis-

faction, and psychiatric status. One strategy for analyzing

an ordinal categorical phenotype is transforming it into a

quantitative or binary trait and then using well-developed

association test methods, such as SAIGE and SAIGE-
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GENEþ.2 However, since these strategies either ignore

the categorical nature of the phenotype or lose parts of

the phenotypic information, they can have either inflated

type I error rates or power loss.3 To address this issue, Bi

et al. developed (proportional odds logistic mixed model)

POLMM, a single-variant test method based on propor-

tional odds logistic mixed model.3 Using efficient mixed

model approach and saddlepoint approximation (SPA),

POLMM can analyze large-scale biobank data while con-

trolling for sample relatedness and unbalanced phenotypic

distribution.3

As the ongoing release of large-scale whole-exome- and

genome-sequencing data continues, scalable set-based ap-

proaches are needed for ordinal categorical data analysis

to study rare variant associations. In this paper, we extend

POLMM to POLMM-GENE for set-based tests. POLMM-

GENE consists of the following important features: (1) it

utilizes a proportional odds logistic mixed model to accu-

rately model ordinal categorical phenotypes while con-

trolling for sample relatedness; (2) it supports the burden

test, SKAT, and SKAT-O and thus is powerful in a wide

range of scenarios of different proportions of causal vari-

ants and effect directions; (3) it can incorporate multiple

maximal MAF cutoffs and multiple annotations to
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improve power; (4) it uses saddlepoint approximation and

ultra-rare variants collapsing to control type I error rates,

which is essential, especially if the phenotypic distribu-

tion is unbalanced; (5) the core algorithm is written in

Cþþ to increase computational efficiency while strictly

controlling for memory usage regardless of the set size,

both of which are important for cloud computation,

e.g., in the UK Biobank Research Analysis Platform

(RAP). With all of these features, POLMM-GENE is a valid

approach for testing associations between rare variants

and ordinal categorical data in large-scale cohorts and bio-

banks, such as in UK Biobank.
Material and methods

Proportional odds logistic mixed model and test

statistics
We consider a proportional odds logistic mixed model (POLMM)

to relate ordinal categorical phenotypes to covariates and geno-

types while adjusting for sample relatedness.3 We let n denote

the sample size and J the number of category levels of the pheno-

type. For the i-th subject, where i%n, we let yi ¼ 1;2;.; J denote

the ordinal categorical phenotype and let Gi ¼ ðgi1; gi2;.; giM Þ
denote the genotype or dosage values of the M genetic variants

in a target set (e.g., a gene).

Logit
�
nij
� ¼ ej � hi ¼ ej � XT

i b � GT
i g � bi;1 % i % n;1 % j% J

(Equation 1)

where nij ¼ Prðyi % j
��Xi;Gi; biÞ is the cumulative probability of the

ordinal phenotype yi % j conditional on a p-dimensional vector of

covariates Xi and an M-dimensional vector of genotype Gi. We

used the cutpoints e: e1 < . < eJ ¼ N to categorize the data,

and coefficients b and g are fixed effect sizes of the covariates

and genotype, respectively. To adjust for sample relatedness,

we incorporate an n-dimensional random effect vector b ¼
ðb1;/; bnÞT following a multivariate normal distribution

Nð0; tVÞ; where t is a variance component parameter and V is

an n3n dimensional genetic relationship matrix (GRM). If J ¼
2, the phenotype is binary and the Equation 1 is a logistic mixed

model as in SAIGE and GMMAT.4–6 Although POLMM is based on

the proportional odds assumption, previous studies indicate that

it is still valid with respect to single-variant tests when the assump-

tion is violated.3,7 Assessing the model residuals can be useful for

evaluating the null model fitting.

POLMM-GENE contains two steps. In step 1, we used the

average information restricted maximum likelihood (AI-REML) al-

gorithm3 to fit the null model with g ¼ 0. Both dense GRM and

sparse GRM are supported. As demonstrated in previous studies,

we recommend using a sparse GRM because of its high computa-

tional efficiency and no loss of power in most scenarios.3 In step

2, we calculate test statistics of the burden test, SKAT, and

SKAT-O on the basis of which p values are estimated for each set.

For subject i, we define a J31 vector ~yi ¼ ðyi1;/; yiJÞT as an

equivalent representation of the ordinal categorical phenotype

yi ¼ 1;2;.; J: if yi ¼ j, then yij ¼ 1 and the other elements in ~yi
are0.We letmij denote themeanof yij and bmij thefittedvaluemij under

the null hypothesis. Suppose ~Z ¼ ðe1;/; e1; e2;/; e2/; en;/; enÞT ;
where ei is an n31 vector with unity in the i-th coordinate and 0’s

elsewhere. We let an nðJ �1Þ3nðJ �1Þ block diagonal matrixJ be

the covariance matrix of ~y as follows.
The Ame
J ¼

264J1 0 0

0 1 0

0 0 Jn

375;Ji ¼

264mi1 0 0

0 1 0

0 0 miðJ �1Þ

375
� mim

T
i ;mi ¼

�
mi1;/;miðJ �1Þ

�T
:

We define an nðJ �1Þ3nðJ �1Þ diagonal matrix

R ¼ diag
�
R11;R12;/;R1ðJ �1Þ;R21;R22;/;R2ðJ �1Þ;/;

Rn1;Rn2;/;RnðJ �1Þ
�
;

where Rij ¼ 1=mij$vmij=vhi � 1=miJ$vmiJ=vhi. The score statistics for

the variant m is

Sm ¼
Xn

i¼1

XJ �1

j¼1

h
gimRij $

�
yij � bmij

�i
The variance-covariance matrix of S can be obtained by

extending a single variance estimation procedure in POLMM.3

We define ~V ¼ ~ZV ~Z
T
, S ¼ R�1J�1R�1 þ t ~V, and P ¼ S�1 �

S�1~ZXðXT ~Z
T
S�1~ZXÞ�1XT ~Z

T
S�1. Suppose that the genotype ma-

trix of the M variants in the set is G ¼ ðG1; G2; /; GMÞ, then,
following the similar derivation as in POLMM, the variance-

covariance matrix of the score vector S ¼ ðS;.; SMÞT is

G
T ~Z

T
P~ZG; where

G ¼ G � X
�
XT ~Z

T
RJR~ZX

��1

XT ~Z
T
RJR~ZG:

The Burden test and SKAT statistics can be written as

QB ¼
 Xm

j¼1
ujSj

!2

;QS ¼
Xm

j¼1
u2

j S
2
j ;

where uj is the weight for each variant. In simulation studies and

real data analysis, we used beta(MAF, 1, 25) distribution to up-

weight rarer variants.5 The SKAT-O method combined the burden

test and SKAT using the following framework:

Qr ¼ ð1 � rÞQB þ rQS;

where r is a tuning parameter with a range of [0, 1]. Since the

optimal r is unknown, SKAT-O applies the minimal p values

over a grid of r as a test statistic.8

Robust burden test, robust SKAT, and robust SKAT-O
We propose a robust set-based testing approach, POLMM-GENE,

which includes the burden test, SKAT, and SKAT-O. Under the

null hypothesis, the vector S ¼ ðS1;.; SMÞT asymptotically fol-

lows amultivariate normal distributionwith a variance-covariance

matrixJ ¼ G
T ~Z

T
P~ZG. Given the variance-covariancematrix, the

R package SKAT can be used to calculate set-based p values of the

burden test, SKAT, and SKAT-O.

If the phenotypic distribution is unbalanced, the score statistics

distribution for rare variants is highly skewed, which could cause

inflated type I error rates. Zhao et al.8 and Zhou et al.5 have

demonstrated that using SPA to adjust the variance-covariance

matrix can address this issue for binary traits. POLMM-GENE ex-

tends this framework to account for phenotype imbalance of

ordinal categorical traits.

For each variantm, if the score statistics Sm lies within two stan-

dard deviations of the mean, the normal approximation with a

variance of Jmm generally performs well and no adjustment is

needed.3 If the score statistics Sm is beyond two standard devia-

tions of the mean, we use SPA to calculate single-variant p value

pspa;m; which we will use to calibrate the variance of Sm. The
rican Journal of Human Genetics 110, 762–773, May 4, 2023 763



detailed derivation of SPA for single-variant analysis can be seen in

previous work.3 Suppose that score statistics Sm follows a normal

distribution and the estimated variance of Sm is Vm, then S2m=Vm

follows the chi-square distribution with one degree of freedom.

We adjust the variance so that the p value is the same as pspa;m,

in which the adjusted variance is

Vspa;m ¼ S2m

c2
quantile

�
1 � pspa;m

� ;
where c2

quantile is the quantile function of the chi-square distribu-

tion with one degree of freedom. Then, we update the

variance-covariance matrix Jspa ¼ D$J$D, where D is a diagonal

matrix whose m-th diagonal element is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vm=Jmm

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðVspa;m;JmmÞ=Jmm

p
. We calculate region-based p value on

the basis of the assumption that S � MVNð0;JspaÞ. On the other

side, if we standardize the score statistics as ~Sm ¼ Sm=
ffiffiffiffiffiffiffi
Vm

p
, then

S � MVNð0;JspaÞ is equivalent to the assumption that

~S ¼ ð~S1;.; ~SMÞT � MVN
�
0; ~Jspa

�
;

where ~Jspa ¼ ~D$J$~D and matrix ~D is diagonal in which the m-th

diagonal element is 1=
ffiffiffiffiffiffiffiffiffiffiffi
Jmm

p
.

As the sample size in sequencing data increases, the number of

rare and ultra-rare variants increases substantially. SAIGE-GENEþ
collapses ultra-rare variants whose minor allele counts (MACs)

are less than a pre-defined cutoff (e.g., %10) to a single marker.9

The collapsing process reduces the number of variants in a set to

test and thus increases the computational efficiency. Meanwhile,

the collapsing approach helps to better control the type I error

rate while remaining powerful. POLMM-GENE also adopts this

strategy to collapse ultra-rare variants.9

A common practice for set-based associations is to test all rare

(MAF % 1%) protein-altering variants. However, this approach

can lose power if association signals are enriched in ultra-rare var-

iants or certain functional annotation classes. Previous studies

have demonstrated that incorporating multiple MAF cutoffs and

functional annotations in the exome-wide set-based association

tests can increase power and thus help identify novel gene-pheno-

type associations.9,10 POLMM-GENE supports incorporating mul-

tiple MAF cutoffs and functional annotations to calculate p values

with a computationally efficient approach. Then, we can use the

Cauchy combination or minimump value approaches to combine

these p values.11,12
Numeric simulations
We conducted extensive simulation studies to evaluate the perfor-

mance of POLMM-GENE in terms of type I error rates and powers

for ordinal categorical trait analysis. We simulated 100,000 sam-

ples with 50,000 unrelated samples and 12,500 families. Each

family has two parents and two full siblings.3 To mimic the allele

frequency distribution and linkage disequilibrium (LD) structure

in real data, we simulated sequencing data by using the WES

data with 100,000 unrelatedWhite British samples in UK Biobank

(Field ID: 23155). We used ANNOVAR for gene annotation and

defined loss-of-function (LoF) variants as those annotated as

frameshift deletion, frameshift insertion, non-frameshift deletion,

non-frameshift insertion, splicing, stop gain, and stop loss. We

randomly selected 1,000 genes, and the distribution of MAC of

all variants in the selected 1,000 genes is shown in Figure S1. For

each gene, we used three maximal MAF cutoffs of 1%, 0.1%, and

0.05% and two annotation groups of LoF and LoFþmissense to

define six sets of rare variants. We used Cauchy combination to
764 The American Journal of Human Genetics 110, 762–773, May 4,
calculate a combined p value.9,11 In simulation studies, ultra-rare

variants with MAC % 10 were collapsed to a single marker.

Ordinal categorical phenotypes were simulated following Equa-

tion 1. We simulated two covariates, one of which follows a stan-

dard normal distribution and the other one follows a Bernoulli dis-

tribution with a probability of 0.5. The effect sizes b of the two

covariates are 0.5 and the variance component parameter t ¼ 1.

To evaluate type I error rates, we set g ¼ 0, that is, the effect sizes

of all genetic variants are 0. We selected the cutpoint vector e to

simulate ordinal phenotypes with three category levels. We

considered balanced phenotypic distribution of 1:1:1, unbalanced

phenotypic distribution of 10:1:1, and extremely unbalanced

phenotypic distribution of 30:1:1. For each sample size distribu-

tion, we simulated 4,000 datasets of phenotypes and conducted

a total of 43106 gene-level tests (i.e., 4,000 phenotypes 3 1,000

genes). To evaluate power, we set effect sizes of the causal

variants as �log10(MAF) 3 0.5 and simulated g by using nine

scenarios including three different settings of causal variants

proportions and three different settings of effect size directions.

For each scenario, we simulated ten datasets of phenotypes and

conducted a total of 10,000 tests (i.e., 10 phenotypes 3 1,000

genes). In addition to the proposed POLMM-GENE, we also evalu-

ated SAIGE-GENEþ (RAW), SAIGE-GENEþ (INT), and SAIGE-

GENEþ (BINA). SAIGE-GENEþ (RAW) used the raw categorical

trait as a quantitative phenotype and SAIGE-GENEþ (INT) addi-

tionally performed an inverse normalization prior to analysis.

SAIGE-GENEþ (BINA) transformed the categorical trait into a bi-

nary phenotype (see legend of Figure 1).
Application to UK Biobank data
We used POLMM-GENE to conduct exome-wide analyses for the

following five ordinal categorical phenotypes:

A alcohol intake frequency (Field ID: 1558; 380,046 White

British subjects),

A comparable height size at age 10 (Field ID: 1697; 374,448

White British subjects),

A comparable body size at age 10 (Field ID: 1687; 374,133

White British subjects),

A morning/evening person chronotype (Field ID: 1180;

339,879 White British subjects),

A cognitive symptoms severity (Field ID: 120042; 130,449

White British subjects).

The sample size distribution in each category level is shown in

Figure S2. We made a sparse GRM for White British subjects by us-

ing hard-called genotype data (Field ID: 22418). In step 1, we

incorporated gender, birth year, top ten PCs, and batch data (Field

ID: 23160) as covariates and then fitted a null mixed model. In

step 2, we used population-level exome OQFE variants, 450k

release (Field ID: 23149), to conduct gene-level analyses on the

UK Biobank RAP.

We collapsed ultra-rare variants whose MAC % 10 to a single

marker in the analysis of alcohol intake frequency, comparable

height at age of 10, and morning/evening person chronotype.

For cognitive symptoms severity, because of its smaller sample

size, we set the MAC cutoff at 5. We used three maximal MAF cut-

offs of 1%, 0.1%, and 0.01% and two annotation groups of LoF

and LoFþMissense to group variants in each gene. Gene annota-

tions were conducted with ANNOVAR.
2023



Figure 1. Empirical type I error rates of POLMM-GENE, SAIGE-GENEþ (BINA), SAIGE-GENEþ (RAW), and SAIGE-GENEþ (INT) under
sample size distributions of 1:1:1, 10:1:1, and 30:1:1
(A–C) Empirical type I error rates at (A) significance level of 5e�6, (B) significance levels of 5e�4, and (C) significance levels of 0.05.
SAIGE-GENEþ (RAW) considered the raw categorical trait as a quantitative phenotype; SAIGE-GENEþ (INT) additionally performed
an inverse normalization prior to analysis; SAIGE-GENEþ (BINA) considered the categorical data as a binary phenotype by grouping in-
dividuals in the last two categories.
Results

False positive rate and statistical power

Simulation studies showed the empirical type I error rates

of POLMM-GENE, SAIGE-GENEþ (BINA), SAIGE-GENEþ
(RAW), and SAIGE-GENEþ (INT) at three significance

levels of 5e�6, 5e�4, and 0.05 (Figure 1). For POLMM-

GENE and SAIGE-GENEþ (BINA) approaches, the burden

test, SKAT, and SKAT-O all reasonably controlled type I er-

ror rates regardless of the sample size distributions and
The Ame
significance levels. Meanwhile, SAIGE-GENEþ (RAW)

and SAIGE-GENEþ (INT) could not control type I error

rates when the sample size distribution was unbalanced

or extremely unbalanced. For example, if the sample

size distributions were 10:1:1 and 30:1:1, the empirical

type I error rates of SAIGE-GENEþ (RAW) at the signifi-

cance level a ¼ 5310�6 were greater than 7.1e�5 (i.e.,

14:23 a) and 6.4e�4 (i.e., 1283 a), respectively. Even

with the inverse normalization transformation (INT),

SAIGE-GENEþ (INT) was still not reliable if the sample
rican Journal of Human Genetics 110, 762–773, May 4, 2023 765



Figure 2. Distribution of chi-square statistics of POLMM-GENE and SAIGE-GENEþ (BINA)
The sample size distribution of the three categorical levels was n1:n2:n3¼ 1:1:1. SAIGE-GENEþ (BINA) considered the categorical data as
a binary phenotype (n1:n2þn3 ¼ 1:2). A total of nine scenarios include three settings of causal variants proportional and three settings
of the effect directions. For high proportion of causal variants, we simulated 80% of LoF and 50% of missense variants as causal variants;
for moderate proportion of causal variants, we simulated 50% of LoF and 20% of missense variants as causal variants; for low proportion
of causal variants, we simulated 20% of LoF and 10% of missense variants as causal variants.
size distribution was unbalanced or extremely unbal-

anced, in which the empirical type I error rates were

greater than 3.8e�5 (i.e., 7:63 a) and 4.0e�4 (i.e. 803

a), respectively.

To evaluate the empirical power of POLMM-GENE and

SAIGE-GENEþ approaches, we demonstrate the empirical

distribution of the chi-square statistics derived from p

values in Figures 2 and S3–S6. The chi-square statistics R

20 (the corresponding p value ¼ 7.7e�6) were collapsed.

The p value comparison for POLMM-GENE and SAIGE-

GENEþ (BINA) is shown in Figure S7. Compared to

SAIGE-GENEþ (BINA), the median chi-square statistics of

POLMM-GENE were increased by 1.43–2.13 times, 1.17–

1.54 times, and 1.10–1.39 times if the sample size distribu-

tions were 1:1:1, 10:1:1, and 30:1:1, respectively. This

result suggests that POLMM-GENE is more powerful than

SAIGE-GENEþ (BINA). This is expected as SAIGE-GENEþ
(BINA) combined two levels of categories, which can cause

the loss of phenotypic information. For POLMM-GENE, in

line with previously reported for binary and quantitative

traits,13 the burden test was more powerful than SKAT if
766 The American Journal of Human Genetics 110, 762–773, May 4,
the proportion of causal variants was high and most of

the causal variants were of the same effect direction. Other-

wise, SKAT was more powerful than the burden test. As a

combination of the burden test and SKAT, SKAT-O always

performed the best or close to the best. The simulation re-

sults are expected and consistent with previous studies,14

all of which suggest that SKAT-O is an optimal approach

for set-based testing.

Figure S8 demonstrated the empirical power comparison

at significance level of 2:53 10�6, which also showed that

POLMM-GENE was more powerful than SAIGE-GENEþ
(BINA). When the sample size distribution was unbalanced

or extremely unbalanced, SAIGE-GENEþ (RAW) and

SAIGE-GENEþ (INT) identified more significant findings.

This was consistent with the simulation results that these

two approaches cannot control type I error rates well in

these scenarios.

Application to UK Biobank data

The computation time and cost in UK Biobank RAP to

analyze 450k whole-exome-sequencing data are shown in
2023



Table S1. In general, analyzing one chromosome requires

less than 8 h, and the total cost for one phenotype is less

than 5 Great British pounds. Fifty-four genes were identified

for the five phenotypes (Table 1 and Figure 3) at the exome-

wide significant threshold p value < 2.5e�6, Most of these

genes (45/54) were associated with comparative height size

at age 10. The below gives more details of the identified as-

sociations, including both previously reported associations,

such as an association between gene PER2 (MIM: 603426)/

PER3 (MIM: 603427) and chronotype, and potentially novel

associations, such as an association between gene GIGYF1

(MIM: 612064) and alcohol intake frequency.

ADH1C (MIM: 103730) and GIGYF1 (MIM: 612064)

were identified to be associated with alcohol intake fre-

quency, in which p values are 1.11e�15 and 1.06e�6,

respectively. Gene ADH1C encodes class I alcohol dehydro-

genase (ADH), gamma subunit. The associations between

ADH1C and alcohol dependence15 and alcohol-associated

diseases (i.e., alcoholic liver cirrhosis [MIM: 215600],16 up-

per aerodigestive tract cancer [MIM: 133239]17) have been

widely reported in previous studies. ADH enzyme is

involved in alcohol metabolism and affects the response

to alcohol. Genetic variation in ADH1C was relevant to

the ethanol elimination rate inWhites individuals.18 In vitro

kinetic studies suggested that the ADH enzyme encoded by

the ADH1C*1 allele metabolizes ethanol to acetaldehyde

(AA) 2.5 times faster than that encoded by the ADH1C*2

allele.19

GIGYF1 encodes a member of the GYF family of adaptor

proteins. It links to activated insulin receptors and insulin-

like growth factor-1 (IGF-1) by the growth factor receptor-

bound 10 (GRB10) and negatively regulates receptor

signaling, metabolic responses, and IGF1-induced mito-

genesis.20,21 In a study conducted on participants in the

UK Biobank and an independent validation cohort from

the Geisinger Health System, GIGYF1 predicted LoF vari-

ants associated with increased levels of glucose and risk

of diabetes (MIM: 125853).22 A positive association be-

tween moderate alcohol consumption and insulin sensi-

tivity has been reported in a previous clinical study,23

which may explain the association of alcohol consump-

tion with GIGYF1 genetic variants.

Genes significantly associated with morning/evening

person (chronotype) include PER3 (p value ¼ 3.03e�18),

MTNR1B (MIM: 600804) (p value ¼ 3.9e�12), and PER2 (p

value ¼ 4.3e�10). PER2 and PER3 are core circadian clock

genes. A transcription/translation feedback loop (TTFL)

forms the core of the molecular circadian clock mechanism.

PER2 and PER3 are transcriptional repressors that form the

negative limb of the feedback loop and interact with a het-

erodimer to inhibit its activity and thereby negatively regu-

late their own expression. Genetic variants of PER2 and

PER3 are involved in many common sleep disorders24,25

and circadian phenotypes.26,27 The two genes may show

specific diurnal preference, while PER2 (rs934945) was

once reported associated with "morning alertness" and

PER3 (rs2640909) associated with "morningness."28
The Ame
MTNR1B, encoding a high-affinity receptor for mela-

tonin, is an inhibitory G-protein-coupled receptor and

may be involved in the neurobiological effects of mela-

tonin. Melatonin is naturally secreted by the pineal gland

during the biological night in humans. Its primary physio-

logical function is to convey information on the timing

and length of the night to the rest of the body.29 Lane

et al. suggested that rs10830963 variation in MTNR1B

may influence dim-light melatonin offset through changes

in sleep timing or that MTNR1B variation may influence

sleep timing through changes in the timing of the mela-

tonin profile.30 It is worth mentioning that the discovery

that genetic variation in MTNR1B is a risk factor for

impaired fasting glucose and diabetes aroused the interest

in circadian disruption on glucose metabolism.31 To deeply

explore the physiological function ofMTNR1B on circadian

disruption would contribute to the diabetes management.

MRGPRX1 (MIM: 607227) was identified to be associated

with cognitive symptoms severity (p value ¼ 1.89e�7).

MRGPRX1 is a protein-coding gene. Sensory neuron-

specific Mas-related G protein-coupled receptors-X1

(MRGPR-X1) are primate-specific proteins with a putative

role in nociception and pruritus.32,33 This receptor is selec-

tively enriched in dorsal root ganglion neurons and is acti-

vated by a variety of endogenous peptides. Previous studies

found that the naturally occurring mutations of this gene

can alter the pharmacology of MRGPR-X1,34 but limited

signaling pathways have been identified related to

MRGPR-X1 and cognition performance.

For the phenotype of ‘‘comparative body size at age 10,’’

we identified genes of MC4R (MIM: 155541) and CALCR

(MIM: 114131). MC4R encodes the melanocortin-4 recep-

tor, a key component of the leptin-melanocortin pathway,

which plays a central role in the regulation of energy ho-

meostasis and body weight.35–37 Genetic variants in

MC4R were identified among individuals with severe

obesity (MIM: 618408) from early childhood.38,39 The

importance of theMC4R in maintaining energy homeosta-

sis has made it a compelling target for the potential treat-

ment of obesity diseases. CALCR encodes a receptor of

calcitonin and amylin, which belongs to a subfamily of

seven transmembrane-spanning G protein-coupled recep-

tors.40 Amylin is a peptide hormone, which has been

shown to promote satiety, delayed gastric emptying, and

weight control in individuals with type 2 diabetes.41,42

Furthermore, fine-mapping analysis of 645,626 individuals

showed protein-truncating variants in CALCR were associ-

ated with higher BMI and obesity risk in humans.43 Abla-

tion of Calcr-expressing neurons in the nucleus tractus sol-

itarius has been recently shown to abrogate the long-term

suppression of food intake in mice models.44

The phenotype of ‘‘comparative height size at age 10’’

contributes to the most significant gene-level associations.

Using the same dataset in UK Biobank (subject selection

is slightly different), Backman et al.2 also conducted

genome-wide gene-based association studies on compara-

tive height size and body size at age 10. Backman et al.
rican Journal of Human Genetics 110, 762–773, May 4, 2023 767



Table 1. Genes identified by POLMM-GENE that reached the exome-wide significant threshold with p values < 2.5e�6

Genes

LoF: p value (number of variants) LoFþMissense: p value (number of variants)

Cauchy p valueUltra-rare variants (MAC %10) Rare variants (MAF < 1%) Ultra-rare variants (MAC %10) Rare variants (MAF < 1%)

Alcohol intake frequency

ADH1C (MIM: 103730) 4.64e�01 (n ¼ 18, MAC ¼ 40) 4.98e�16 (n ¼ 22) 8.49e�01 (n ¼ 155, MAC ¼ 405) 2.61e�16 (n ¼ 178) 1.11e�15

GIGYF1 (MIM: 612064) 3.02e�07 (n ¼ 98, MAC ¼ 164) 5.74e�06 (n ¼ 113) 2.05e�02 (n ¼ 626, MAC ¼ 1,604) 2.55e�02 (n ¼ 767) 1.06e�06

Morning/evening person (chronotype)

PER3 (MIM: 603427) 2.26e�02 (n ¼ 92, MAC ¼ 229) 2.45e�05 (n ¼ 105) 4.30e�02 (n ¼ 611, MAC ¼ 1,513) 5.05e�19 (n ¼ 759) 3.03e�18

MTNR1B (MIM: 600804) 1.39e�01 (n ¼ 24, MAC ¼ 52) 1.84e�01 (n ¼ 26) 1.05e�02 (n ¼ 180, MAC ¼ 511) 6.50e�13 (n ¼ 218) 3.90e�12

PER2 (MIM: 603426) 4.10e�10 (n ¼ 80, MAC ¼ 148) 2.15e�10 (n ¼ 85) 1.66e�01 (n ¼ 568, MAC ¼ 1,373) 5.88e�05 (n ¼ 675) 4.30e�10

Cognitive symptoms severity (ultra-rare variants are defined as MAC %5)

MRGPRX1 (MIM: 607227) 4.77e�02 (n ¼ 7, MAC ¼ 10) 6.31e�08 (n ¼ 9) 8.43e�01 (n ¼ 86, MAC ¼ 182) 7.15e�01 (n ¼ 122) 1.89e�07

Comparative body size at age 10

MC4R (MIM: 155541) 3.35e�07 (n ¼ 11, MAC ¼ 27) 1.11e�23 (n ¼ 17) 2.04e�05 (n ¼ 122, MAC ¼ 280) 1.03e�22 (n ¼ 168) 1.98e�33

EPHB2 (MIM: 600997) 2.50e�01 (n ¼ 24, MAC ¼ 55) 3.10e�01 (n ¼ 28) 5.28e�02 (n ¼ 416, MAC ¼ 1,160) 2.58e�07 (n ¼ 504) 1.55e�06

CALCR (MIM: 114131) 3.02e�06 (n ¼ 44, MAC ¼ 138) 1.03e�05 (n ¼ 56) 6.45e�04 (n ¼ 234, MAC ¼ 616) 1.59e�04 (n ¼ 289) 1.59e�06

Comparative height size at age 10

ZFAT (MIM: 610391) 4.56e�10 (n ¼ 46, MAC ¼ 89) 2.58e�10 (n ¼ 48) 9.83e�10 (n ¼ 505, MAC ¼ 1,339) 7.77e�30 (n ¼ 628) 4.66e�29

ACAN (MIM: 155760) 1.96e�06 (n ¼ 43, MAC ¼ 75) 1.37e�06 (n ¼ 47) 5.23e�03 (n ¼ 934, MAC ¼ 2,519) 1.04e�27 (n ¼ 1,208) 6.26e�27

SCMH1 (MIM: 616396) 9.98e�06 (n ¼ 34, MAC ¼ 69) 1.04e�05 (n ¼ 35) 6.94e�02 (n ¼ 274, MAC ¼ 650) 2.18e�26 (n ¼ 328) 1.31e�25

ADAMTS17 (MIM: 607511) 3.36e�04 (n ¼ 75, MAC ¼ 186) 1.00e�09 (n ¼ 86) 3.48e�06 (n ¼ 649, MAC ¼ 1,798) 1.41e�13 (n ¼ 832) 5.41e�22

NPR3 (MIM: 108962) 6.55e�02 (n ¼ 30, MAC ¼ 71) 7.82e�03 (n ¼ 34) 5.76e�02 (n ¼ 273, MAC ¼ 674) 7.00e�22 (n ¼ 312) 4.20e�21

NPR2 (MIM: 607072) 1.70e�11 (n ¼ 30, MAC ¼ 80) 9.74e�11 (n ¼ 30) 1.43e�13 (n ¼ 358, MAC ¼ 894) 3.34e�18 (n ¼ 437) 8.28e�18

GH1 (MIM: 139250) 2.60e�01 (n ¼ 11, MAC ¼ 13) 2.60e�01 (n ¼ 11) 1.64e�02 (n ¼ 118, MAC ¼ 311) 3.84e�06 (n ¼ 157) 1.06e�17

STC2 (MIM: 603665) 4.23e�01 (n ¼ 5, MAC ¼ 12) 4.23e�01 (n ¼ 5) 3.40e�02 (n ¼ 119, MAC ¼ 357) 9.65e�17 (n ¼ 144) 2.89e�16

FBN2 (MIM: 612570) 5.49e�02 (n ¼ 73, MAC ¼ 119) 8.57e�02 (n ¼ 77) 5.97e�02 (n ¼ 1195, MAC ¼ 2,893) 1.83e�14 (n ¼ 1406) 1.10e�13

ADAMTS10 (MIM: 608990) 5.47e�05 (n ¼ 32, MAC ¼ 48) 1.25e�04 (n ¼ 33) 1.45e�10 (n ¼ 460, MAC ¼ 1,106) 2.17e�04 (n ¼ 565) 4.80e�13

PDE3B (MIM: 602047) 2.83e�03 (n ¼ 63, MAC ¼ 139) 9.02e�12 (n ¼ 78) 4.92e�02 (n ¼ 472, MAC ¼ 1,147) 5.82e�10 (n ¼ 584) 5.33e�11

PIEZO1 (MIM: 611184) 2.03e�06 (n ¼ 229, MAC ¼ 509) 1.52e�04 (n ¼ 266) 9.62e�06 (n ¼ 2047, MAC ¼ 5,529) 9.09e�08 (n ¼ 2,646) 1.64e�10

MC3R (MIM: 155540) 5.68e�02 (n ¼ 12, MAC ¼ 24) 1.62e�02 (n ¼ 14) 3.68e�01 (n ¼ 156, MAC ¼ 441) 2.93e�11 (n ¼ 183) 1.76e�10

(Continued on next page)
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Table 1. Continued

Genes

LoF: p value (number of variants) LoFþMissense: p value (number of variants)

Cauchy p valueUltra-rare variants (MAC %10) Rare variants (MAF < 1%) Ultra-rare variants (MAC %10) Rare variants (MAF < 1%)

DDR2 (MIM: 191311) 5.31e�02 (n ¼ 22, MAC ¼ 46) 5.31e�02 (n ¼ 22) 3.74e�04 (n ¼ 284, MAC ¼ 693) 2.44e�10 (n ¼ 339) 3.65e�10

GHSR (MIM: 601898) 6.07e�04 (n ¼ 21, MAC ¼ 56) 7.30e�07 (n ¼ 25) 6.52e�04 (n ¼ 189, MAC ¼ 468) 2.69e�10 (n ¼ 234) 8.08e�10

SMIM29 (MIM: 611419) 6.43e�02 (n ¼ 7, MAC ¼ 15) 5.65e�01 (n ¼ 12) 4.02e�01 (n ¼ 69, MAC ¼ 186) 1.86e�10 (n ¼ 93) 1.12e�09

GRAMD2A (MIM: 620181) 6.75e�01 (n ¼ 24, MAC ¼ 61) 3.14e�06 (n ¼ 28) 1.47e�01 (n ¼ 125, MAC ¼ 326) 2.16e�10 (n ¼ 159) 1.29e�09

HSD11B2 (MIM: 614232) 8.21e�01 (n ¼ 23, MAC ¼ 39) 6.11e�01 (n ¼ 28) 1.47e�02 (n ¼ 189, MAC ¼ 480) 2.19e�10 (n ¼ 233) 1.31e�09

FGFR3 (MIM: 134934) 9.59e�01 (n ¼ 27, MAC ¼ 61) 1.15e�01 (n ¼ 31) 1.08e�03 (n ¼ 421, MAC ¼ 1,135) 2.36e�10 (n ¼ 533) 1.41e�09

PDE11A (MIM: 604961) 1.49e�01 (n ¼ 68, MAC ¼ 182) 4.31e�06 (n ¼ 87) 4.86e�02 (n ¼ 452, MAC ¼ 1,201) 5.65e�10 (n ¼ 562) 3.39e�09

IHH (MIM: 600726) 4.93e�05 (n ¼ 10, MAC ¼ 14) 4.93e�05 (n ¼ 10) 2.68e�05 (n ¼ 186, MAC ¼ 443) 2.53e�09 (n ¼ 225) 3.75e�09

MICA (MIM: 600169) 9.89e�01 (n ¼ 11, MAC ¼ 37) 4.02e�04 (n ¼ 18) 6.96e�01 (n ¼ 144, MAC ¼ 352) 9.78e�10 (n ¼ 193) 5.87e�09

NPAS4 (MIM: 608554) 1.84e�02 (n ¼ 9, MAC ¼ 11) 1.21e�01 (n ¼ 12) 9.99e�01 (n ¼ 297, MAC ¼ 670) 1.62e�09 (n ¼ 354) 9.72e�09

SCUBE3 (MIM: 614708) 3.66e�06 (n ¼ 47, MAC ¼ 82) 3.66e�06 (n ¼ 47) 1.52e�05 (n ¼ 396, MAC ¼ 966) 4.42e�03 (n ¼ 476) 9.79e�09

For the phenotype of ‘‘comparative height size at age 10,’’ the significance level is 1e�8. LoF ultra-rare variants (URVs) and LoFþMissense URVs are the marker of the collapsed ultra-rare variants in the annotation of LoF and
LoFþMissense, respectively. Genome position is based on the GRCh38 reference. LoF rare variants and LoFþMissense rare variants are SKAT-O test p values with MAF cutoffs 1%. Cauchy p values are calculated to combine six
SKAT-O p values with three MAF cutoffs, including 0.01%, 0.1%, and 1%, and two annotation groups, including LoF and LoFþMissense.
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Figure 3. QQ plot of Cauchy combination SKAT-O p values for five ordinal categorical phenotype analyses
For comparative height size at age 10, genes with p values < 5e�9 were labeled.
tested for association between 3,994 traits and individual

variants in 18,811 genes, as well as with aggregations of

variants in each gene, considering either putative loss-of-

function (pLoF) or pLoF and deleterious missense variants

jointly, all of which sum up to 2.3 billion association tests.

At a significance level of 2.18e�11 (0.05/2.3 billion), ZFAT

(MIM: 610391), SCUBE3 (MIM: 614708), NPR3 (MIM:

108962), STC2 (MIM: 603665), NPR2 (MIM: 607072),

PDE3B (MIM: 602047), ACAN (MIM: 155760), ADAMTS17

(MIM: 607511), and ADAMTS10 (MIM: 608990) were iden-

tified. Backman et al. transformed the original categorical

phenotypes into binary traits (taller/average versus shorter

and taller versus average/shorter) and then used the

burden test for analysis.2 Via POLMM-GENE, seven of

the nine genes (NPR3, STC2, ZFAT, NPR2, ACAN,

ADAMTS17, ADAMTS10) identified by Backman et al.

reached the same significance level. The p values of the

other two genes SCUBE3 and PDE3B were 9.79e�9 and

5.33e�11, respectively, which also reached the genome-

wide significance level. In addition to the nine genes, we

also identified 36 genes at a significance level of 2.5e�6,

three of which reached the significance level of 2.18e�11

(SCMH1 [MIM: 616396], p value ¼ 1.31e�25; FBN2

[MIM: 612570], p value ¼ 1.1e�13; GH1 [MIM: 139250],

p value ¼ 1.06e�17). The associations between these three

genes and height have been previously reported.45,46 With

Cauchy combination, POLMM-GENE gives an optimal
770 The American Journal of Human Genetics 110, 762–773, May 4,
unified p value by combining p values from multiple

MAF cutoffs and multiple annotations, which reduces

the number of tests and thus reduces false negative results

caused by the multiple comparison problem.

In addition to the proposed POLMM-GENE, we also eval-

uated SAIGE-GENEþ (RAW), SAIGE-GENEþ (INT), and

SAIGE-GENEþ (BINA). More details and results can be

seen in Figures S9–S12. The real data analysis was consis-

tent with the simulation results. SAIGE-GENEþ (BINA)

was less powerful than POLMM-GENE as a result of the in-

formation lost when transforming a categorical trait to a

binary trait (see Figure S12). The p values of SAIGE-GENEþ
(RAW) and SAIGE-GENEþ (INT) showed a slight inflation.

For example, when analyzing categorical trait of ‘‘alcohol

intake frequency,’’ the genome control (gc) lambda for

these two approaches were 1.157 and 1.154, respectively.
Discussion

In this study, we develop POLMM-GENE, a set-based testing

approach to associating an ordinal categorical phenotype to

a set of multiple rare and ultra-rare variants. POLMM-GENE

is scalable to analyze large-scale biobank datawith hundreds

of thousands of samples and can adjust for sample related-

ness. Simulation studies demonstrated that POLMM-GENE

could better control type I error rates while gaining higher
2023



power than set-basedmethods that treat rawordinal categor-

ical phenotypes as quantitative or binary traits. We applied

POLMM-GENE to analyze ordinal categorical phenotypes

by using UK Biobank 450k whole-exome-sequencing

data. The real data analyses identified several well-known

gene-trait associations, including alcohol consumption

and ADH1C, chronotype and PER3, etc. In addition, we

also identified several promising findings, such as the

association between cognitive symptoms severity and

MRGPRX1.

It is expected that more and more biobank-scale whole-

exome- and whole-genome-sequencing data will be acces-

sible in the next decade. SKAT-O is an optimal unified

approach by incorporating both SKAT and the burden test.

Simulation studies demonstrate that SKAT-O is always the

best or close to the best in all scenarios, which suggests the

superior performance of SKAT-O. As the increase of sample

size in sequencing data analysis, the number of rare and ul-

tra-rare variants increases significantly, which could result

in inflated type I error rates for SKAT and SKAT-O. POLMM-

GENE uses SPA and ultra-rare variant-collapsing methods

and thus is robust even if the MAF cutoff is small and

phenotypic distribution is highly skewed. In addition,

POLMM-GENE uses the Cauchy combination to efficiently

combine p values calculated withmultiple functional anno-

tations, which reduces the multiple comparison burden

while remaining powerful to fully utilize annotation

information.

In summary, we have proposed POLMM-GENE, a robust

set-based method for ordinal categorical data analysis. The

method is scalable for biobank data analysis, can adjust for

sample relatedness, and is accurate even if the phenotypic

distribution is unbalanced. With all of these features,

POLMM-GENE is a validmethod developed for conducting

robust and powerful set-based tests for the ordinal categor-

ical phenotypes in large-scale biobank data and will

contribute to the identification of genetic components of

complex traits. POLMM-GENE is implemented in an R

package, GRAB, and the UK Biobank analysis results are

publicly available (see web resources).
Data and code availability

The POLMM-GENE approach is available in an R package,

GRAB, from https://wenjianbi.github.io/grab.github.io/.

The UK Biobank data analyses were accessed under the

accession number 78795.
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Figure S1. Minor allele counts distribution of the randomly selected 1,000 genes. 

  
  



 

Figure S2. Sample size distribution for the four phenotypes in UK Biobank data analysis 

 

  



 

Figure S3. Distribution of chi-square statistics of POLMM-GENE and SAIGE-GENE+ (BINA). 

The sample size distribution of the three categorical levels is n1:n2:n3=10:1:1. SAIGE-GENE+ 

considered the categorical data as a binary phenotype (n1:n2+n3=10:2=5:1). A total of 9 scenarios 

include 3 settings of causal variants proportional and three settings of the effect directions. For 

high proportion of causal variants, we simulated 80% of LoF and 50% of missense variants as 

causal variants; for moderate proportion of causal variants, we simulated 50% of LoF and 20% of 

missense variants as causal variants; for low proportion of causal variants, we simulated 20% of 

LoF and 10% of missense variants as causal variants. 

 

 

  



 

Figure S4. Distribution of chi-square statistics of POLMM-GENE and SAIGE-GENE+ (BINA). 

The sample size distribution of the three categorical levels is n1:n2:n3=30:1:1. SAIGE-GENE+ 

considered the categorical data as a binary phenotype (n1:n2+n3=30:2=15:1). A total of 9 

scenarios include 3 settings of causal variants proportional and three settings of the effect 

directions. For high proportion of causal variants, we simulated 80% of LoF and 50% of missense 

variants as causal variants; for moderate proportion of causal variants, we simulated 50% of LoF 

and 20% of missense variants as causal variants; for low proportion of causal variants, we 

simulated 20% of LoF and 10% of missense variants as causal variants. 



 

Figure S5. Distribution of chi-square statistics of POLMM-GENE and SAIGE-GENE+ (RAW). 

SAIGE-GENE+ (RAW) considered the categorical data as a raw quantitative phenotype of 1, 2, 

and 3. A total of 9 scenarios include 3 settings of causal variants proportional and three settings of 

the effect directions. For high proportion of causal variants, we simulated 80% of LoF and 50% of 

missense variants as causal variants; for moderate proportion of causal variants, we simulated 50% 

of LoF and 20% of missense variants as causal variants; for low proportion of causal variants, we 

simulated 20% of LoF and 10% of missense variants as causal variants. 

 
 



 

Figure S6. Distribution of chi-square statistics of POLMM-GENE and SAIGE-GENE+ (INT). 

SAIGE-GENE+ (INT) considered the categorical data as a quantitative phenotype of 1, 2, and 3. 

Inverse normalization transformation is conducted for phenotype prior to analysis. A total of 9 

scenarios include 3 settings of causal variants proportional and three settings of the effect 

directions. For high proportion of causal variants, we simulated 80% of LoF and 50% of missense 

variants as causal variants; for moderate proportion of causal variants, we simulated 50% of LoF 

and 20% of missense variants as causal variants; for low proportion of causal variants, we 

simulated 20% of LoF and 10% of missense variants as causal variants. 

 



 

Figure S7. Comparison of p-values using POLMM-GENE and SAIGE-GENE+ (BINA). The 

sample size distribution of the three categorical levels is n1:n2:n3=1:1:1. SAIGE-GENE+ 

considered the categorical data as a binary phenotype (n1:n2+n3=1:2). A total of 9 scenarios 

include 3 settings of causal variants proportional and three settings of the effect directions. For 

high proportion of causal variants, we simulated 80% of LoF and 50% of missense variants as 

causal variants; for moderate proportion of causal variants, we simulated 50% of LoF and 20% 

of missense variants as causal variants; for low proportion of causal variants, we simulated 20% 

of LoF and 10% of missense variants as causal variants. 

 



 

Figure S8. Empirical power of POLMM-GENE, SAIGE-GENE+ (BINA), SAIGE-GENE+ 

(RAW), and SAIGE-GENE+ (INT) at a significance level of 2.5e-6. 

 



 

Figure S9. SAIGE-GENE+ (BINA): QQ plot of Cauchy combination SKAT-O p-values for five 

ordinal categorical phenotype analyses. For comparative height size at age 10, genes with p-values 

< 5e-9 were labeled. The categorical traits were transformed to a binary trait prior to analysis. For 

trait of “alcohol intake frequency”, categories “daily or almost daily” and “three or four times a 

week” were grouped, and other categories were grouped. For trait of “cognitive symptoms 

severity”, categories “slight or mild problems”, “moderate”, and “severe” were grouped. For trait 

of “comparative body size at age 10”, categories “about average” and “plumper” were grouped. 

For trait of “comparative height size at age 10”, categories “shorted” and “about average” were 

grouped. For trait of “morning/evening person”, categories “definitely a morning person” and 

“more a morning than a evening” were grouped, and the other categories were grouped. 

 

 

  



 

Figure S10. SAIGE-GENE+ (RAW): QQ plot of Cauchy combination SKAT-O p-values for five 

ordinal categorical phenotype analyses. For comparative height size at age 10, genes with p-

values < 5e-9 were labeled. The traits were recorded as 1,2, … ,𝑚 where 𝑚 is the number of 

categories.  

 

  



 

Figure S11. SAIGE-GENE+ (INT): QQ plot of Cauchy combination SKAT-O p-values for five 

ordinal categorical phenotype analyses. For comparative height size at age 10, genes with p-

values < 5e-9 were labeled. The traits were recorded as 1,2, … ,𝑚 where 𝑚 is the number of 

categories. 

 

 

  



 

Figure S12. Comparison of POLMM-GENE and SAIGE-GENE+ approaches when analyzing 

“Comparative height size at age 10” 

 



 

Table S1. Computation time and cost of the 5 ordinal categorical phenotypes analysis in UK Biobank RAP. 

  Alcohol 

intake 

frequency 

 Morning/evening 

person 

(chronotype) 

 Comparative 

height size 

at age 10 

 Cognitive 

symptoms 

severity 

 Comparative 

body size at 

age 10 

 

chrom instance type Computation 

time 

Cost Computation 

time 

Cost Computation 

time 

Cost Computation 

time 

Cost Computation 

time 

Cost 

chr1 mem1_ssd2_v2_x4 14:05:53  £0.94  7:46:13  £0.52  7:45:53  £0.51  3:37:38  £0.24  7:58:04  £0.53  

chr2 mem1_ssd2_v2_x5 9:35:13  £0.64  5:25:19  £0.36  5:26:52  £0.36  2:22:11  £0.16  6:16:15  £0.42  

chr3 mem1_ssd2_v2_x4 8:05:40  £0.54  4:18:55  £0.28  4:14:07  £0.28  2:00:11  £0.13  4:29:32  £0.30  

chr4 mem2_ssd2_v2_x2 12:24:50  £0.66  3:44:32  £0.12  3:51:08  £0.13  1:46:22  £0.06  3:55:12  £0.13  

chr5 mem2_ssd2_v2_x2 7:51:12  £0.26  4:17:44  £0.14  4:08:02  £0.14  2:01:42  £0.07  4:10:49  £0.14  

chr6 mem1_ssd2_v2_x4 7:13:12  £0.48  3:52:57  £0.26  3:42:33  £0.24  1:44:56  £0.11  3:44:54  £0.25  

chr7 mem1_ssd2_v2_x4 6:44:47  £0.45  3:39:05  £0.24  3:46:44  £0.25  1:36:48  £0.10  3:42:59  £0.24  

chr8 mem2_ssd2_v2_x2 6:30:03  £0.22  3:28:35  £0.11  3:27:20  £0.11  1:34:19  £0.05  3:23:22  £0.11  

chr9 mem2_ssd2_v2_x2 7:48:58  £0.26  4:08:28  £0.14  4:19:22  £0.14  2:00:00  £0.07  4:19:49  £0.14  

chr10 mem2_ssd2_v2_x2 6:48:18  £0.23  3:51:18  £0.13  3:45:04  £0.12  1:51:24  £0.06  3:54:31  £0.13  

chr11 mem1_ssd2_v2_x4 9:20:37  £0.62  4:46:54  £0.32  4:54:08  £0.32  2:10:05  £0.14  4:51:50  £0.32  

chr12 mem1_ssd2_v2_x4 7:45:54  £0.52  4:00:31  £0.26  3:52:35  £0.26  1:43:22  £0.11  3:47:06  £0.25  

chr13 mem2_ssd2_v2_x2 3:27:18  £0.11  1:45:17  £0.06  1:42:03  £0.06  0:51:32  £0.03  1:43:48  £0.06  

chr14 mem2_ssd2_v2_x2 6:04:14  £0.20  3:00:39  £0.10  3:02:43  £0.10  1:26:58  £0.05  3:00:47  £0.10  

chr15 mem2_ssd2_v2_x2 6:18:19  £0.21  3:28:58  £0.11  3:21:35  £0.11  1:34:35  £0.05  3:14:50  £0.11  

chr16 mem1_ssd2_v2_x4 7:14:18  £0.48  3:46:29  £0.25  3:47:20  £0.25  1:42:28  £0.11  3:41:26  £0.24  

chr17 mem1_ssd2_v2_x4 8:30:11  £0.56  4:26:48  £0.29  4:24:21  £0.29  2:01:29  £0.13  4:36:51  £0.30  

chr18 mem2_ssd2_v2_x2 2:54:58  £0.10  1:30:12  £0.05  1:33:30  £0.05  0:45:34  £0.02  1:39:17  £0.05  

chr19 mem1_ssd2_v2_x4 11:04:40  £0.74  5:53:23  £0.39  5:39:49  £0.37  2:30:19  £0.16  6:50:59  £0.45  

chr20 mem2_ssd2_v2_x2 4:51:36  £0.16  2:28:39  £0.08  2:26:22  £0.08  1:13:21  £0.04  2:30:49  £0.08  

chr21 mem2_ssd2_v2_x2 2:03:10  £0.07  1:08:40  £0.04  1:05:50  £0.04  0:35:45  £0.02  1:08:04  £0.04  

chr22 mem2_ssd2_v2_x2 4:30:42  £0.15  2:14:31  £0.07  2:17:47  £0.08  1:07:09  £0.04  2:18:44  £0.08  

Total    £8.60    £4.32    £4.29    £1.95    £4.47  

The allocated instance: "on-demand" for job of chr4 to analyze "Alcohol intake frequency", "spot" for the other jobs 
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