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Summary
Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding

variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an

important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown.

We performedGS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 fam-

ilies where the proband was a child with unexplainedmedical complexity. RNA-seq was an effective adjunct test when paired with GS. It

enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio

RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, al-

lowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic

benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiag-

nosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.
Genome sequencing (GS) is currently the most compre-

hensive genetic test for the diagnosis of rareMendelian dis-

orders.1 However, more than half of individuals with a sus-

pected genetic condition remain undiagnosed after GS.

One limitation of contemporary genome analysis is the

difficulty of filtering, prioritizing, and interpreting relevant

non-coding variants beyond those affecting canonical

splice sites. RNA sequencing (RNA-seq) has emerged as a

promising technology to help address this issue. Initial

studies applying RNA-seq in select cohorts of individuals

yielded promising results.2–12 By contrast, the yield of

RNA-seq as a direct complement to GS and with a family-

based design has received limited study.

In this study we performed GS and RNA-seq from blood

on 97 total individuals from 39 families: 2 quads, 22 trios, 8

duos, and 7 singletons. All probands were children with

medical complexity who had previously undergone GS,

and a subset of the GS results were reported previously.13,14

Expression outliers, novel or missing splicing junctions,

and putative splicing variants of uncertain significance

found by GS were evaluated via RNA-seq in each affected

individual. In addition, we utilized the paired GS and
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RNA-seq data to identify single-nucleotide variants

(SNVs) with allele imbalance.

Please see supplemental methods for details on cohort

recruitment, GS and RNA-seq methods, and filtering/anal-

ysis methods.7,13,15–22 Written consent was provided by

each proband’s parents and/or guardians as well as the pro-

band where appropriate. The study was approved by the

Research Ethics Board at the Hospital for Sick Children.

We identified gene-expression outliers and aberrant

splicing events using blood RNA-seq data of 97 individuals

from this cohort and an additional 145 individuals from

our internal cohorts (122 individuals with pediatric rare

disease and 23 healthy children).15,16 Our internal control

cohort was used instead of GTEx given multiple technical

differences (supplemental methods) and was expected to

result in a lower false-positive rate. For example, when us-

ing over 200 selected high-quality blood RNA-seq datasets

from GTEx, we identified a median of 3,096 genes with at

least one aberrant splicing event, compared to 1,276 using

our internal cohort.

Using OUTRIDER, we identified outlier genes with two

different cutoffs based on either p value or Z score.23
Toronto, ON, Canada; 2Program in Genetics and Genome Biology, SickKids

, The Hospital for Sick Children, Toronto, ON, Canada; 4Division of Genome

t of Laboratory Medicine and Pathobiology, University of Toronto, Toronto,

, University Health Network, Toronto, ON, Canada; 7Center for Human Ge-

; 8Department of Pediatrics, University of Wisconsin, Madison, WI, USA;

Canada; 10Department of Kinesiology, Faculty of Applied Health Sciences,

etics, University of Toronto, Toronto, ON, Canada; 12Division of Neurology,

rics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Can-

.ca (J.J.D.)

rican Journal of Human Genetics 110, 895–900, May 4, 2023 895

icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:gregory.costain@sickkids.ca
mailto:james.dowling@sickkids.ca
https://doi.org/10.1016/j.ajhg.2023.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2023.03.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Identification of gene-expres-
sion outliers and aberrant junctions in a
cohort of medically complex children
(A) Summary of gene-expression outliers us-
ing different cut-offs. Scatterplot showing
number of over-expressed (gray) or under-
expressed (purple) outlier genes, as
compared to our in-house control cohort,
at absolute Z score % 2, 3, or 4 or adjusted
p value (adjusting across all genes in all sam-
ples; adjusted p values [Padj]) < 0.05. Each
dot represents one sample. Violin and box-
plots summarize the distribution of values
in each group. In all boxplots the middle
line is the median, the box edges are the
25th and 75th percentiles, and the whiskers
represent 1.53 the interquartile range. y
axis, numbers of outlier genes (log10 scale).
Left panel, all genes; right panel, only genes
associated with relevant HPO terms.
(B) Summary of aberrant junctions. Scatter-
plot showing number of reported genes (yel-
low), genes after additional filters (red),
novel junctions (purple), reported outlier
junctions (gray), and reported outlier junc-
tions after additional filters (dark gray).
Each dot represents one sample. Violin and
boxplots summarize the distribution of
values in each group. y axis, numbers of
aberrant junctions or genes containing aber-
rant junctions. Left panel, all genes; right
panel, only genes associated with relevant
HPO terms.
(C) Sashimi plot of representative aberrant
junctions in CMC 46 revealing a predomi-
nance of transcripts that skipped exon 4 in
ATP6AP2. The skipping of exon 4 is evident
in the proband (red) compared to his
mother and to 10 randomly selected con-
trols from the cohort (blue). y axis, number
of aligned reads. The number of reads sup-
porting each junction is shown between
exons. The minimum number of reads to
be drawn was set to 5 for this plot, for better
visualization.
(D) Expression level of HDAC8 in CMC 6
(red dot) showing decreased expression
compared to the rest of the samples in the
cohort (gray dots). y axis, log2-normalized
counts.
With an adjusted p value < 0.05, we identified a median of

three under-expressed and two over-expressed outlier

genes per proband (Figure 1A). To increase the sensitivity

of our assay, we expanded our search to genes with an ab-

solute Z score R 3 without a p value cutoff, resulting in a

median of 86 under-expressed and 24 over-expressed out-

liers. Of these, only a median of six and three under- and

over-expressed outlier genes, respectively, were associated

with Human Phenotype Ontology (HPO) terms relevant

to each individual’s phenotypes (Figure 1A).

Using a set of relatively lenient cutoffs (see supplemental

methods for more details), our bioinformatics pipeline re-

ported a median of 1,276 genes per sample with novel or
896 The American Journal of Human Genetics 110, 895–900, May 4,
outlier junctions. This number was reduced to 856 (corre-

sponding to a median of 676 novel junctions and 150

outlier junctions) after applying additional filters to prior-

itize outlier junctions (supplemental methods). After se-

lecting genes associated with relevant HPO terms, we

were left with a median of 16 outlier junctions and 41

novel junctions in 56 genes (Figure 1B).

Using an RNA-first approach (i.e., blind to GS findings)

and filtering for splice junctions and expression outliers

as described above, we were able to identify putative diag-

nostic RNA-level aberrations in 3 of the 39 probands (8%).

In two individuals, aberrant splicing events were identi-

fied, whereas in the third individual, an expression outlier
2023



was detected. For the two aberrant splicing events, RNA-

seq provided functional supporting evidence facilitating

reclassification of the corresponding DNA variants as likely

pathogenic (supplemental note).

Several findings are of particular note. Proband CMC 27

had a history of global developmental delay, intellectual

disability, and epilepsy. In our initial unbiased filtering

approach, missing junctions were identified in SMS (MIM:

300105). Closer examination of the transcriptome revealed

multiple splicing abnormalities, including skipping of both

exon 4 alone and exons 3 and 4 as well as the inclusion of

intron 3 (Figure S1). None of these aberrant splicing events

were observed in the parents. GS had previously identified

adenovovariantupstreamofexon4 (c.265�5T>A[GenBank:

NM_004595.5]); however, there was no consensus between

three different in silico splicing prediction tools (MaxEnt,24

�57.6%; NNSPLICE,25 �10.1%; SSF [http://www.umd.be/

searchsplicesite.html], �100%), and the pathogenicity of

the variant was initially unclear.

Proband CMC 46 had a history of global developmental

delay, intellectual disability, epilepsy, and inflammatory

bowel disease. Missing/outlier junctions were identified in

ATP6AP2 (MIM: 300556), with analysis of the transcript

revealing a predominance of transcripts that skipped exon

4 (Figure 1C). A similar skew toward transcripts skipping

exon4was not seen in either parent.GShadpreviously iden-

tified a de novo intronic indel (c.301�11_301�10delTT [Gen-

Bank: NM_005765.3]). There was no consensus between

three different in silico splicing prediction tools (MaxEnt,

�6.4%; NNSPLICE, �79.9%; SSF, �7.1%), and thus the

variant was considered of unknown significance prior to

RNA-seq analysis.

Proband CMC 6 had a history of bilateral choanal steno-

sis, bilateral dysplastic kidneys, dysmorphic features,

microcephaly, global developmental delay, chronic lung

disease, and intermittent pancytopenia. Gene expression

analysis identified decreased HDAC8 (MIM: 300269)

expression with a fold change of 0.36, Z score of �10.15,

and adjusted p value of 5.82e�12 (Figure 1D). GS had pre-

viously identified a de novo frameshift variant,

c.134_137del (GenBank: NM_018486.3) (p.Ile45Lysfs*9).

Selected variants of uncertain diagnostic significance

(VUSs) from the cohort were previously described.13 These

included five putative splicing variants in a total of four

genes: MED23 (MIM: 605042), PLCB1 (MIM: 607120),

KIF1A (MIM: 601255), and JAM3 (MIM: 606871). MED23

exhibits measurable expression in blood, thus allowing for

the targeted analysis of a homozygous c.3939þ5G>A (Gen-

Bank: NM_004830.4) variant. This variant was classified as

‘‘likely pathogenic’’ when detected by clinical exome

sequencing in CMC 01 (ClinVar: SCV000681305.2). There

was no consensus between three different in silico splicing

prediction tools (MaxEnt, �55.9%; NNSPLICE, �40.7%;

SSF, �13.8%). No aberrant splicing was observed across

the transcript, nor any significant difference in overall or

allele-specific expression (ASE). Altogether, this down-

grades the variant to a VUS with conflicting evidence
The Ame
(Figure S2). JAM3 is not expressed in blood, and KIF1A and

PLCB1 are not expressed in any of the typical clinically

accessible tissues (lymphoblastoid cell lines, fibroblasts, or

blood),17,26 and thus the variants in these genes were not

able to be further classified using blood-based RNA-seq.

We sought to determine if a family-based RNA-seq design

would facilitate filtering and interpretation of results, as is

the case for trio genome-wide sequencing compared with

singleton testing.27 We performed this filtering based on a

de novo dominant model of inheritance where we wanted

to prioritize novel events for further study. When exam-

ining gene-expression outliers, we found 186 statistically

significant gene-expression outlier events (182 unique

genes) in the probands with RNA-seq data from at least

one parent. Of these, expression outlier events in 30 genes

(in17probands)were seen inat least oneother familymem-

ber, compared to 14 genes (in 7 probands) that were seen in

at least one other individual from the rest of the cohort, re-

sulting in the ability to exclude 16% vs. 7.5% of identified

outliers, respectively (Figures 2A and S3). This suggests

that the familial samples may be important for prioritizing

statistically significant expressionoutliers likelydue toboth

the genetic and environmental similarities between pro-

bands and their family members. Using OUTRIDER-

normalized read counts, the average Pearson correlationbe-

tween a proband and their family members (median ¼
0.981) was slightly but significantly higher than that be-

tween the proband and the rest of the cohort (median ¼
0.977, p ¼ 1.756e�06, one-sided paired Wilcoxon test)

(Figure 2B). Although different RNA-seq normalization

methods could have an impact on this analysis, our obser-

vation is consistent with a previous study suggesting famil-

ial similarity of the blood transcriptome.28 When using a

more lenient cut-off for expressionoutliers (absoluteZ score

R 3), trio analysis was no longer effective: only 1%–16% of

identified geneswere seen in at least one other familymem-

ber, whereas 24%–52%were seen in at least one other inter-

nal cohort member (Figure 2A).

We next sought to filter splice junctions using the

parental data, again based on a de novo dominant model

of inheritance. When examining all junction outliers,

parental data were not effective in filtering out non-diag-

nostic splicing events. A median of only 4% of aberrant

junctions were seen in at least one family member

compared to a median of 35% of aberrant junctions in at

least one other individual in the entire cohort (Figures 2C,

S4, and S5). This is partially because our pipeline was de-

signed to behighly sensitive at the cost of ahigher false-pos-

itive rate. In addition, the majority of these aberrant

splicing events likely do not have a clear genetic cause

and likely have limited biological significance. Indeed, a

median of only 10 outlier junctions have at least one rare

variant (gnomAD genome and exome allele frequency

[AF]< 0.01) nearby (within 10 bp of either end of the junc-

tion). We found that 125 of a total of 326 such junctions

identified were seen in at least one other family member,

compared to 83 seen in other individuals in the cohort
rican Journal of Human Genetics 110, 895–900, May 4, 2023 897
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Figure 2. Trio vs. cohort analysis for
expression outliers as well as aberrant junc-
tions and allele-specific expression analysis
in the cohort
(A) Proportions of gene-expression outliers
also detected in other samples showing
that trio analysis is effective in filtering out
statistically significant expression outliers,
but not when using a more lenient cut-off
(absolute Z score). Each dot represents a pro-
band with family data available. y axis, pro-
portion of gene-expression outlier defined
by statistical significance (adjusted p
value < 0.05) or Z scores (absolute Z score
R 3) that are also detected in family mem-
bers (orange) or the rest of the cohort (pur-
ple).
(B) Gene expression correlation is consis-
tently higher between probands and their
family members than between probands
and the rest of the cohort. y axis, average
Pearson correlation of gene expression.
Each dot represents a proband. Lines con-
nect the same proband in the two columns.
Purple, duos; black, trios.
(C) Proportions of total aberrant splicing
events also detected in other samples. Each
dot represents a proband with family data
available. y axis, proportions of genes con-
taining aberrant junctions detected in other
family members (orange) or the rest of the
cohort (purple).
(D) Proportions of aberrant splicing events
with at least one rare variant nearby also de-
tected in other samples. Each dot represents
a proband with family data available. y axis,
proportions of genes containing aberrant
junctions detected in other family members
(orange) or the rest of the cohort (purple).
(E) Bar plot of the number of reported SNVs
and ASE SNVs for all the affected individ-
uals. Red, total number of rare SNVs; blue,
number of ASE events.
(F) Violin plot of the distribution of ASE
SNVs after parental filter and HPO term
filter.
(Figures 2D and S6). Neither type of trio analysis resulted in

the identification of any additional diagnostic variants.

We used our combined GS and RNA-seq datasets to

assess each proband for ASE, where two alleles at the

same locus are expressed differently (i.e., skew toward

one of the alleles). To do this, we prioritized variants that

were rare (gnomAD genome AF < 0.01) and exhibited an

imbalanced expression between the two alleles. We

reasoned that dominant disorders caused by reduced

expression of one allele (i.e., haploinsufficiency) would

be detected by our expression outlier analysis above, but

wondered if we might be able to identify recessive disor-

ders caused by skewing of expression toward a single path-

ogenic allele.

ASE analysis was performed on 38 probands and 1

affected sibling. Through our analysis pipeline, a median
898 The American Journal of Human Genetics 110, 895–900, May 4,
of 38,308 heterozygous SNV sites were reported per

affected individual, and a median of 1,263 (mean of

3.4% of all heterozygous SNV sites) were identified as

ASE sites after the filters and QC measures (supplemental

methods; Figure 2E). Applying an additional parental filter

(for probands with parental samples) that removed sites

that were reported as having a significant imbalance in

either of the parents lowered the number by 27% to 944

ASE sites. In combination with the relevant HPO term fil-

ter, the number is reduced to an average of 50 ASE sites

per proband (Figure 2F). Manual review of all filtered ASE

sites did not yield any additional diagnoses in our cohort.

Altogether, we find that RNA-seq in blood can facilitate

the interpretation of GS data. RNA analysis allowed for

the confirmation of two putative diagnostic DNA variants

(not including one that was already classified as
2023



pathogenic at the DNA level) and the exclusion of one

other, thereby resulting in diagnostic utility in 8% (3/39)

of the families. Trio RNA-seq analysis did not increase the

yield of new diagnoses or candidate variants/genes. Alto-

gether, our data provide further support for the use of

singleton RNA-seq as an important diagnostic tool in rare

disease.

One caveat of our study is that whole blood was utilized

for RNA-seq; this has well-recognized limitations when

studying a heterogeneous cohort of individuals with sus-

pected undiagnosed rare genetic diseases.3 Another limita-

tion of our study is that we utilized the trio RNA-seq data in

a targeted way: for filtering out false-positive events based

on a de novo dominant mode of inheritance. It remains

possible that a trio design might facilitate the identifica-

tion of disease-causing RNA-level aberrations with other

modes of inheritance (e.g., inherited dominant-acting var-

iants where there are ASE differences between parent and

child causing apparent incomplete penetrance/highly

variable expression). Trio RNA-seq may yet show utility if

combined with additional novel analysis methods and/or

if applied to a different or larger cohort of individuals.

One additional caveat of our study is that our bioinformat-

ics pipeline used genome build hg19 and Ensembl v.75,

which have both since undergone additional improve-

ments. However, the impact of newer builds on these re-

sults is expected to be minimal given that we focused on

genes in which variants are known to cause disease, which

are expected to already have been well annotated.

In total, these data highlight the value and limitations of

blood-based RNA-seq as a clinical diagnostic test for rare

genetic disease. Further study is required to better under-

stand its diagnostic utility as a complement to GS in other

cohorts of individuals with suspected genetic disorders.
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Supplemental Note: 

 

Interpretation and re-classification of DNA variants 

For variant detected in CMC 27, the prior DNA classification was a VUS. Re-classification to 

likely pathogenic was achieved using PS2 (confirmed de novo with parental identity confirmed), 

PM2_Supporting (absent in gnomAD) and PS3_Supporting (RNA functional evidence detects 

mis-splicing). 

 

For variant detected in CMC 46, the prior DNA classification was a VUS. Re-classification to 

likely pathogenic was achieved using PS2 (confirmed de novo with parental identity confirmed), 

PM2_Supporting (absent in gnomAD) and PS3_Supporting (RNA functional evidence detects 

mis-splicing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figures and Legends: 

 

Figure S1 – Sashimi plot of aberrant junctions in CMC 27 in the gene SMS. 

The skipping of exons 3-4 and retention of intron 3 is evident in the proband (red) compared to his 

two parents and to 10 randomly selected controls from the cohort (blue). Y axis: number of aligned 

reads. The number of reads supporting each junction is shown between exons. 



 

Figure S2 - Sashimi plot of relevant junctions in MED23 for CMC 01.  

No aberrant splicing was observed in the proband (homozygous for the 

NM_004830.4(MED23):c.3939+5G>A variant; red) when compared to his father (heterozygous 

for the MED23 variant) and to 10 randomly selected controls from the cohort (blue). The minimum 

number of reads was set to 5 for this plot, for better visualization. Only exons near the variant are 

shown. 



 

 

Figure S3 - Individual data for trio vs cohort analysis for expression outliers.  

Detection of gene expression outliers in other samples. Each row represents a proband from a 

different family. Bar plots show the proportion of gene expression outlier defined by statistical 

significance (adjusted p-value < 0.05, red) or z-scores (absolute z-score >=3, blue) that are also 

detected in family members (left panel) or in the rest of the cohort (right panel). Total numbers of 

outlier genes are labelled in the right panel.   

  



 

Figure S4 – Individual data for trio vs cohort analysis for aberrant junctions 

Detection of aberrant splicing in other samples. Each row represents a proband from a different 

family. Bar plots show the proportion of novel junctions, outlier junctions, or genes containing 

aberrant junctions that are detected in family members (left panels) or in the rest of the cohort 

(right panels). Total numbers of genes/junctions in each proband are labelled in the right panels. 

 

 

 

 



 

Figure S5 – Proportions of aberrant splicing events detected in other samples by category 

Proportions of aberrant splicing events also detected in other samples. Each dot represents a 

proband with family data available. Y axis: proportions of genes containing aberrant junctions, 

novel junctions, or outlier junctions detected in other family members (left panel) or the rest of the 

cohort (right panel).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S6 – Individual data for trio vs cohort analysis for aberrant junctions with a rare 

variant nearby 

Detection of aberrant splicing in other samples when a rare variant is within 10bp of either end of 

a given junction. Each row represents a proband from a different family. Bar plots show the 

proportion of aberrant junctions with a rare variant nearby detected in family members (left panel) 

or in the rest of the cohort (right panel).  

 

 

 

 

 

 

 

 

 

 

 



Supplemental Tables: 

 

 

Table S1 – Clinical and molecular details for individuals not previously reported. 

GDD: global developmental delay, ID: intellectual disability, hem: hemizygous

Study ID Sex 
Selected Features (HPO 

terms) 

DNA 

Diagnosis 
Gene 

Variant Details (Zygosity) 

[Transcript] 
Origin 

CMC 27 M GDD, ID, seizures Yes SMS 
c.265-5T>A (hem) 

[NM_004595.4] 
dn 

CMC 53 M 

Abnormal autonomic nervous 

system physiology, 

gastroparesis, seizures 

No       

CMC 54 M 

Abnormal heart morphology, 

tracheal atresia, facial 

dysmorphism, arachnoid cyst 

No       

CMC 55 F 

Abnormal heart morphology, 

pulmonary arterial 

hypertension, chronic lung 

disease 

Yes TBX4 
c.1018C>T; p.(Arg340*) 

(het) [NM_018488.3] 
uk 

CMC 57 F 
Cloacal exstrophy, 

abnormality of the kidney 
No       

CMC 58 F 
GDD, facial dysmorphism, 

cleft palate 
No       

CMC 60 F 

Cloacal exstrophy, 

abnormality of the kidney, 

anorectal anomaly 

No       

CMC 61 M 

GDD, spastic tetraplegia, 

hemophagocytic 

lymphohistiocytosis 

Yes ATP7A 

c.4110_4115del; 

p.(Pro1371_Ile1372del) 

(hem) [NM_000052.7] 

mat 

CMC 65 F 

GDD, seizures, cortical visual 

impairment, abnormal muscle 

tone 

Yes KCNQ2 
c.634G>T; p.(Asp212Tyr) 

(het) [NM_004518.6] 
dn 



Supplemental Methods: 

 

Cohort recruitment and phenotyping 

Individuals were recruited from a structured Complex Care Program at a tertiary care pediatric 

hospital (The Hospital for Sick Children)1. All individuals were under the age of 18 years at the 

time of recruitment and were eligible for the study if an underlying genetic condition was suspected 

but had not yet been established by prior genetic testing. Additional selection criteria for this cohort 

have been previously described1. Phenotypic data were extracted from the electronic medical 

record and coded in PhenoTips using terms from Human Phenotype Ontology (HPO), a 

standardized vocabulary for each phenotypic feature.  

 

Genome Sequencing (GS) methods and results  

GS was performed using high-quality DNA extracted from blood at The Centre for Applied 

Genomics (Toronto, Canada), using established methods2,3. Genome data filtering and analysis 

was as previously described4. Phenotypic and molecular details of individuals not already 

described in Costain et al.1 are described in Table S1. Candidate variants that were deemed relevant 

to the primary phenotype using established laboratory reporting criteria were discussed with the 

clinical team and designated as diagnostic by consensus. A genetic diagnosis was attained for 15 

of the 39 probands (38 percent) included in this study from GS alone.  

 

RNA extraction and sequencing  

Whole blood was collected in PAXGene Blood RNA tubes (BD Biosciences) and total RNA was 

extracted using the PAXGene Blood RNA Kit (Qiagen). RNA quality and quantity was determined 

with TapeStation RNA ScreenTape (Agilent).  250 ng of total RNA was spiked with SIRV Set 3 

(Lexogen) and was enriched for poly(A). Libraries were prepared using an automated NEBNext 

Poly(A) mRNA Magnetic Isolation Module and NEBNext Ultra II Directional RNA Library Prep 

kit by Illumina (New England Biolabs) on the NGS Workstation (Agilent). Libraries were 

analyzed for quality using TapeStation DNA High Sensitivity ScreenTape (Agilent) and quantified 

with KAPA library quantification (Roche) prior to sequencing on a NovaSeq6000 (Illumina) with 

paired-end 150bp runs. While we had originally obtained samples from 40 families, one RNAseq 

library from one proband (CMC 18) only obtained < 1 million reads and was subsequently 



excluded from all analyses. RNAseq data from CMC 15 was of poor quality (very low number of 

genes detected). This sample was included in all analyses but excluded from gene expression and 

junction outlier summary plots. 

 

Bioinformatics methods  

We developed a customized RNAseq processing pipeline including read alignment, quality control 

(QC), identification of expression and splicing aberrations, and variant calling. First, raw 

sequencing reads were aligned to a hybrid genome of hg19 (1000 genomes reference genome, 

hs37d5) and the spike-in sequences (SIRVome, SIRV set3) using STAR (v2.6.1c)5. Gene 

annotation was obtained from Ensembl (v75) and combined with SIRVome transcript annotation. 

Fastqc (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, v0.11.5), RNA-seQC 

(v2.3.5)6, picard (http://broadinstitute.github.io/picard/, v2.18.0) Markduplicates and 

CollectRnaSeqMetrics were used to collect various quality metrics, including sequencing quality, 

duplication rate, percent ribosomal reads, 5’-3’ bias, and genomic distribution of the reads. Gene 

and transcript expression level quantification was performed with RSEM (v1.2.22)7.  HPO and 

Orphanet terms associated with each gene were obtained from https://hpo.jax.org/ and 

https://www.orpha.net/ respectively. OMIM (Online Mendelian Inheritance in Man) disease 

associations for each gene were obtained from Ensembl v75.   

 

Internal Cohort Selection 

For both gene expression and splicing analyses, our large internal cohort of pediatric blood samples 

was used as a comparison cohort instead of publicly available databases such as the Genotype-

Tissue Expression (GTEx). Our internal cohort consists of individuals with pediatric rare disease 

recruited through the SickKids Genome Clinic (122 individuals with pediatric rare disease) as well 

as 23 healthy children for a total of 145 individuals[NO_PRINTED_FORM]. The pediatric rare 

disease cohort consist of 68 male and 54 female children from 0-18 years of age presenting with 

diverse and complex phenotypes including epilepsy, global developmental delay and multiple 

congenital anomalies. The healthy children cohort samples were pre-experiment blood samples 

collected from 10 male and 13 female adolescent athletes who participated in two clinical trials on 

protein and dairy supplementation as previously described8,9. Participants were 12-16 years of age, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/
https://hpo.jax.org/
https://www.orpha.net/


free of injuries and any medical conditions that prevented them from participating in their 

respective trials and were not taking medications or nutritional supplements.  

 

We utilized our own internal cohort for our study given several experimental advantages: 1) we 

used a clinically validated, standardized experimental protocol with automated library preparation 

which minimizes technical variations; and 2) our internal cohort contained age-matched 

individuals which should increase test sensitivity. In addition, the median sequencing depth of our 

libraries was 113 million reads, which is higher than the targeted 50 million reads of GTEx 

samples.  

 

Identification of gene expression outliers 

Gene expression outliers were identified by comparing each sample to the rest of the samples in 

the cohort using the R package OUTRIDER (v 1.8.0). An internal cohort of pediatric blood 

samples were included in the analysis as controls resulting in a total of 243 samples. Gene read 

counts estimated by RSEM were first filtered for low expressed genes (only genes with >= 10 

reads mapped in >= one third of the samples were used) before being used as the input for 

OUTRIDER analysis. For each sample, genes with either an adjusted p-value < 0.05 or an absolute 

z-score >= 3 were then extracted as expression outliers. When parental data was available, genes 

were further prioritized if gene expression in the parents was not considered an outlier. Remaining 

genes were prioritized based on associations with HPO terms and known OMIM and Orphanet 

diseases.  We reasoned that filtering based on HPO terms would have a higher yield of genes 

associated with the individual’s phenotype. 

 

Identification of aberrant splicing events 

To identify aberrant splicing events, we adopted the approach described by Fresard et al10. Briefly, 

we used junction quantification by STAR (*SJ.out file). Only junctions that have more than 5 

uniquely mapped reads were considered in the analysis. Next, we calculated a junction coverage 

score, defined as the number of reads mapping to a junction of interest divided by the total number 

of reads mapping to other junctions that share a splicing donor or acceptor site with the junction 

of interest. We then calculated the z-score of junction coverage score for each junction within the 

study cohort. Junctions with an absolute z-score >= 2 were further examined. Aberrant junctions 



were identified by first looking for missing or outlier junctions defined as any junction detected in 

>80 percent of the control cohort with a junction coverage score of >0.6 but with a junction 

coverage score of <0.75 in the proband. Junctions were further filtered by removing any junction 

called as aberrant in >5 samples. Novel junctions in genes with a missing or outlier junction were 

then pulled in for further analysis.  Each junction was manually inspected with the Integrative 

Genomics Viewer (IGV). When parental data was available, aberrant junctions were prioritized if 

the missing/outlier junction was not called aberrant in the parent or a novel junction was prioritized 

if the junction was not detected in the parent. Remaining junctions were prioritized based on 

associations with HPO terms and known OMIM and Orphanet diseases. 

   

Allele specific expression analysis  

The genome VCF file was first decomposed using vt (v0.57721)11 and then extracted for all the 

heterozygous single nucleotide variants (SNVs). RNAseq reads were aligned to (hg19/GRCh37) 

using STAR (v2.6.1c) in two-pass mode with --waspOutputMode flag activated for allelic 

mapping bias correction. This flag enables the WASP algorithm that was introduced in van de 

Geijn et al12. The reads that passed the WASP filter were collected and duplicated reads were 

removed. SNV level allele expression data was generated using the GATK (v3.7.0) 

ASEReadcounter tool13,14. SNV sites that had less than 10 mapped reads, fell within low-

mappability regions (UCSC ENCODE 100-mer mappability < 1), had more than 5% of the reads 

mapped to allele other than the REF and ALT, or where REF/ATL counts from the RNAseq did 

not support their heterozygosity (FDR < 1%), were excluded in the downstream analysis (as 

described in Castel et al.15). For the remaining SNV sites, the binomial p-value was calculated 

with the expected null ratio and corrected for multiple hypothesis with FDR < 5%. An alternative 

allele expression ratio was generated by dividing the reads mapped to the reference allele by the 

total reads at a particular site. GnomAD v2.1.1 allele frequency data was used to annotate each 

SNV site. Allele specific expression outliers were filtered for SNVs that had an alt ratio ≥0.7 and 

a gnomAD genome allele frequency <0.01. SNV sites in the proband that showed allele 

imbalanced expression in either of the parents were further filtered out from the analysis. The 

remaining SNV sites were prioritized based on associations with HPO terms and known OMIM 

and Orphanet diseases. 
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