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Figure S1. Quality Assessment of the 

scRNA-Seq data. (A)  nCount, unique 

molecular identifiers (UMIs); (B) 

nFeature, number of genes; (C) 

assignment of cell cycle scores for S and 

G2/M phases (D) percentage of 

mitochondrial gene UMIs. 



 

Figure S2. Clustering and identification of cell types in scRNA-Seq of mouse atherosclerotic 

lesion. (A) UMAP projection of the scRNA-Seq profiles represented as 23 clusters identified using 

automated clustering and the eleven manually annotated populations. (B) UMAP plots showing the 

expression of selected markers used to annotate the cell types. (C) Dot plot demonstrating the top 

four marker genes for each lesional cell type. Dot size corresponds to the proportion of cells within 

the cluster that expressed the gene, and dot color intensity corresponds to the average expression 

level.  

 



 

Figure S3. Changes in the cell numbers during progression of atherosclerosis. UMAP 

projection of the scRNA-Seq profiles separately for each disease condition.  
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Figure S4. Differentially abundant cellular neighborhoods based on k-nearest neighbor graph 

analysis (Milo1). Each stage of disease was compared to control, and significantly increased or 

decreased neighborhoods (SpatialFDR < 0.1) are indicated by color. The method allows partially 

overlapping neighborhoods, and the thickness of the lines connecting neighborhoods indicates the 

number of overlapping cells. The overlap is taken into account when calculating significance in the 

SpatialFDR procedure.
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Figure S5. Cell state gene program activity as standard deviation (SD). Cell state marker genes were used as gene sets in the 

AddModuleScore function of Seurat (expression bin-based averaging). The module scores are presented normalized to the score SD within the 

cell type.
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Figure S6. Immunohistological validation of identified cell state marker genes. Representative 

images of (A) Lrg1, (B) Vcam1 and (C) Palld (all in green) staining in wild type chow diet-fed and 

Ldlr-/-/Apob100/100 3-month high fat diet mice. The smooth muscle cells are stained with Acta2 antibody 

(red) and DAPI staining is shown in cyan. 

Ctrl (WT) 3 mo HFD

Acta2

Vcam1

Acta2

Vcam1

B

A

Acta2

Lrg1

Lumen

Lumen
3 mo HFDCtrl (WT)

Acta2

Lrg1

Lumen

C

Lumen

3 mo HFD

Acta2

Palld



    

Cdh5: EC control

Col6a3: Vcam1/Col2a1+ SMCs

Lmod1: SMC control

Lrg1: Lrg1+ ECs

Palld: Palld+ SMCs

Sox9: Col2a1+ SMCs

Spi1: MP control

Cdh5: EC control

Col6a3: Vcam1/Col2a1+ SMCs

Lmod1: SMC control

Lrg1: Lrg1+ ECs

Top2a: Stmn1+ MPs

Abca1: Spp1+ MPs

Il1b: Ccl4+ MPs

Necrotic

core

Necrotic

core

Lumen

Media

Necrotic

core

Necrotic

core

Lumen

Media

A

B



Figure S7. Molecular Cartography based identification of selected cell states. Distribution of 

seven selected genes representing the Lrg1+ ECs and (A) the three SMC cell states and (B) the 

three MP cell states along with established cell type markers (Cdh5, Lmod1 and Spi1) in the aortic 

root of Ldlr−/−/Apob100/100 mice (3-month high fat diet). Each dot represents a single RNA molecule 

and each pixel equals 138 nm. Insert on the left corner represents magnification of the part of image 

marked with a dashed line.  

 

 

Figure S8. Analysis of cell type proportions from bulk transcriptomics data. (A) Number of 

differentially expressed genes identified from bulk RNA-Seq analysis during different stages of 

disease progression (see Figure 1A). (B) Cell types expressing the genes detected as differentially 

expressed in bulk RNA-Seq comparison of disease stages. Expression levels of differentially 

expressed genes from bulk RNA-seq analysis (panel A) are plotted from the cell types identified in 

scRNA-Seq. (C) Computational prediction of cell type composition from the bulk RNA-Seq using the 

scRNA-Seq data as reference. (D) Cell type proportions detected in the scRNA-seq data.   

 



 

Figure S9. Reprocessing of public scRNA-Seq datasets for cell type identification (A) 

Reprocessing of mouse scRNA-Seq dataset from Pan et al2 using Ldlr-/- and Apoe-/- mouse models. 

(B) Reprocessing of scRNA-Seq dataset from four human atherosclerotic coronary arteries3. 
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Figure S10. Atherosclerotic cell state marker gene set enrichment scoring. Module scores shown in the target cell type highlights 

subpopulations of cells with high expression of disease associated markers.  
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Figure S11. Atherosclerotic cell state marker gene set enrichment scoring in the Pan et al 2 Ldlr-/- and Apoe-/- mouse models scRNA-Seq 

dataset. Module summary scores (Seurat AddModuleScore; expression bin-based average log fold change) are visualized on a UMAP of the 

dataset in the cell type of interest (for cluster identifies, see Figure S9A). 
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Figure S12. Atherosclerotic cell state marker gene set enrichment scoring in the Pan et al2 dataset. Cells were classified as either positive 

or negative for the gene program using a cutoff of >1 standard deviation. This binary classification of the cells used to generate Figure S13. 
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Figure S13. Relative changes in the cell state proportions in different models and timepoints 

of atherosclerosis in the Pan et al2 dataset. Fraction of cell state-positive cells (as defined in 

Figure S12) from the total library are presented. SMC-related cell states are shown from Myh11 

(ZsGreen) lineage-positive libraries (blue dots), while all others are shown from Myh11 (ZsGreen) 

lineage-negative libraries (red dots). 

 

 

 

 

 



 
Figure S14. Atherosclerotic cell state marker gene set enrichment scoring in the Wirka et al3 human coronary artery scRNA-Seq dataset. 

Module summary scores (Seurat AddModuleScore; expression bin-based average log fold change) are visualized on a UMAP in the target cell 

cluster (for cluster identities, see Figure S9B).
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Figure S15. Pseudotime analysis of SMC cell states from atherosclerotic aorta. (A) scRNA-

Seq trajectory analysis of SMC states colored by pseudotime and cell state assignment. (B) Gene 

expression changes of selected marker genes along the pseudotime trajectory. Cells are colored by 

cell state as in panel A. (C) Expression changes of secreted ligands, transcription factors and CAD 

GWAS genes that display differential expression along the pseudotime trajectory. 



 

Figure S16. Projection of IL-1β responsive genes on in vivo SMC disease response 

pseudotime trajectory. (A) Differentially expressed genes identified using scRNA-seq of in vitro 

SMCs (MOVAS cells) upon 24 and 48 h IL-1β treatment plotted on the in vivo SMC trajectory (see 

Figure S15A) as a gene set activity score. scRNA-Seq trajectory analysis of in vitro SMCs under 

basal and IL-1β treatment conditions colored by (B) pseudotime and (C) treatment. (D) Vcam1+ SMC 

and (E) Col2a1+ SMC marker gene sets plotted as activity scores on the in vitro SMC IL-1β response 

trajectory (described in panels B-C). 



 

Figure S17. Prediction of cell-cell signaling networks. Ligands predicted to mediate paracrine 

and autocrine signaling between Lrg1+ ECs and either (A) Col2a1+ SMCs or (B) Vcam1+ SMCs.  

 

 

Figure S18. Enrichment of CAD GWAS genes within the disease associated cell states gene 

signatures. Hypergeometric enrichment test results are shown for CAD GWAS candidate causal 

gene lists from 9 different sources separately or all combined (different colors). The set of 

background genes for enrichment testing was all genes expressed at >1 TPM in at least one cell 

type or cell state in aorta scRNA-Seq (total 14902 genes). 
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Figure S19. Enrichment of CAD GWAS prioritized genes in cell state marker sets truncated to 

a specific gene count. The indicated number of top markers were selected for each cell state (up 

to the total number of marker genes available). The set of CAD GWAS genes was prioritized genes 

from all 9 sources combined (Methods). The set of background genes for enrichment testing was all 

genes expressed at >1 TPM in at least one cell type or cell state in aorta scRNA-Seq (total 14902 

genes). 

 



 

Figure S20. Enrichment of CAD GWAS prioritized genes in cell state marker lists equalized 

for gene count by including sub-threshold marker genes.  The indicated number of top markers 

were selected for each cell state using log fold change ranking. The required number of top genes 

were selected irrespective of whether the marker gene criteria (log fold change > 0.25 and FDR < 

0.05; Methods) were fulfilled. Overlap enrichment was tested by hypergeometric test. The set of CAD 

GWAS genes was prioritized genes from all 9 sources combined (see Methods). The set of 

background genes for enrichment testing was all genes expressed at >1 TPM in at least one cell 

type or cell state in aorta scRNA-Seq (total 14902 genes). Column and row order is by average -

log10(FDR). The dot size indicates the ratio of CAD GWAS genes within the marker gene set. 



 

 

Figure S21. Proportion of variance of CAD explained by the cell type specific marker genes. 

PRS was constructed using the cell type specific marker gene coordinates (-35 kb upstream to 10 

kb downstream; gene list in Table S1) using PRSet4. 

 



 

Figure S22. Evaluation of gene set-based PRS for CAD as a function of the number of cell 

state marker genes selected. The indicated number of top marker genes were retained (up to the 

maximum available). Upper panel: PRS predictive power (PRS.R2 = full model R2 – null model R2; 

the difference in R2 for a model including PRS and covariates, compared to a model with only 

covariates). Bottom panel: permutation-based significance test comparing the performance to 

identically-clumped SNP sets from background regions (genes + flanks), as implemented by PRSet4. 



 

Figure S23. Number of pairwise shared marker genes for 79 human cell types. Marker genes 

were selected as described in Methods using gene expression profiles compiled by the Protein Atlas 

from 30 scRNA-Seq datasets. For each cell type, the top 400 marker genes were used. Color scale 

shows the number of shared genes. 



 

Figure S24. Enrichment of CAD GWAS prioritized genes among the top 500 cell type markers 

of 79 human cell types. Markers were selected as described in Methods. Overlap enrichment was 

tested by hypergeometric test using 18043 genes as the background. Column and row order is by 

average -log10(FDR). The dot size indicates the ratio of CAD GWAS genes within the marker gene 

set. 



 

Figure S25. Gene set-based PRS for CAD using marker gene sets for 79 human cell types. 

The indicated number of top marker genes was selected for each cell type and used to define a PRS 

using the gene bodies + flanks. Color scale shows the PRS.R2 (full model R2 – null model R2, i.e., 

the difference in R2 for a model with PRS and covariates, compared to a model with only covariates). 

Cell types are sorted according to row mean. 



 

Figure S26. Proportion of variance of CAD explained by polygenic risk score (PRS) calculated 

using to 10,000 strongest cell type-specific peaks of each cell type. Peaks were ranked by 

ATAC signal score as calculated by the peak caller (MACS2)5. Peaks were each 500 bp in length. 

Thus, the fraction of genome included in the search space based for each cell type is equal-sized 

and non-overlapping between the cell types. 



 

Figure S27. Number of pairwise shared scATAC-Seq peaks among top 25,000 most distinctive 

peaks of 111 human cell types. All adult cell types of the human scATAC-Seq atlas6 were used. 

All peaks were of equal width. The cell type peak accessibility matrix was z-scored per peak, and 

the top 25,000 peaks were selected per cell type to obtain the most distinctive peaks. Color scale 

shows the number of shared peaks between pairs of cell types. 



 

Figure S28. Evaluation of CAD PRS strength among the 111 human cell types of the adult 

single-cell atlas of chromatin accessibility6. PRS R2 (PRS strength) values are shown. For each 

cell type, the indicated number (either 100,000; 75,000; 50,000; 25,000 or 15,000) of strongest peaks 

were selected for PRS calculation. All peaks were of equal width. 

 



 

 

Figure S29. Evaluation of CAD PRS strength among the 111 human cell types of the adult 

single-cell atlas of chromatin accessibility6. The results are as in Figure S28, except the column 

z-score of the PRS R2 is shown. 

 



 



Figure S30. Performance of CAD PRS derived using 25,000 most cell type-specific peaks for 

each of 111 cell types in the adult scATAC atlas6. All peaks were of equal width. The cell type 

peak accessibility matrix was z-scored per peak, and the highest scoring peaks were selected per 

cell type to obtain the most distinctive peaks. 

 

Supplemental Table Legends 

 

Table S1. Markers of the major cell types identified by supervised clustering. 

Table S2. Markers of the 12 atherosclerosis-associated cell states. 

Table S3. Differentially expressed genes identified in bulk RNA-Seq experiment. Genes are sorted 

by effect direction followed by statistical significance. 

Table S4. Complete gene ontology listing of the cell state marker genes used to generate Figure 

3C.  

Table S5. Cell type marker genes for 79 human cell types based on scRNA-Seq expression profiles 

(https://www.proteinatlas.org/about/download). For each cell type, top 500 genes are ranked in 

descending order of importance. 
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Supplemental Methods 

 

Differentially abundant cellular neighborhood analysis for scRNA-Seq 

Milo version 1.7.11 was used for testing differential neighborhood abundance with a k-

nearest neighbor graph calculated using k = 20 and the first 30 dimensions from PCA from 

Seurat. 

Mouse bulk RNA-Seq differential expression and cell type decomposition 

For differential expression analysis between experiment groups, lowly expressed genes 

were first removed using the EdgeR (version 3.24.3)7 function filterByExpr (minimum count 

per sample 15, minimum total count 50). The remaining 15559 genes were used in 

differential expression analysis with DESeq2 (version 1.22.2)8. FDR < 0.05 was considered 

significant. 

Cell type proportions in mouse aorta bulk tissue RNA-Seq profiles were estimated using the 

CIBERSORTx web tool (access date 2019-10-17)9. Aorta scRNA-Seq cells from the current 

study were used as the reference transcriptome profiles for bulk RNA expression profile 

decomposition. For generating the cell type reference signatures, single cells were 

annotated to the cell type level, 7 most abundant cell types were retained, cells randomly 

subsampled to a maximum of 1,200 cells per cell type, and genes expressed in >5 cells 

were retained (total 14,632 genes). 

 

Single cell trajectory analysis 

Monocle (version 2.8.0)10 was used for pseudotime trajectory modeling following the 

author’s recommendations. To model the transition from contractile (Myh11-expressing) 

SMC-s to disease-increased SMC cell states, cells from the 3-month HFD library were used 

to avoid the need for batch correction. Contractile SMC-s were randomly subsampled to 500 



cells to approximately match the number of cells in the disease-increased populations. The 

gene expression count preprocessing and automated cell clustering was done according to 

the Monocle 2 tutorial, followed by cluster marker gene detection using the Monocle 

differentialGeneTest function (model: ‘~Cluster’). The 1000 most significant genes by p 

value were used for trajectory construction using default parameters. To model the in vitro 

SMC IL-1β response trajectory, G1-phase cells (identified using Seurat cell cycle scoring 

with default parameters) from control and IL-1β treatment were used. Monocle 2 default 

processing was used, as above. As the trajectory ordering genes, all differentially expressed 

genes comparing treatment and control sample cells were used (Wilcoxon test, FDR < 0.05). 

To evaluate concordance between the in vivo SMC dedifferentiation trajectory and the in 

vitro SMC IL-1β response trajectory, gene set activity scores (function AddModuleScore 

from Seurat) were calculated for each cell and shown on cells positioned in pseudotime 

space. The scores were based on the 50 most significant genes by p value of either the in 

vivo cell state gene signature or the in vitro treatment differential expression. 

Single-cell analysis of cultured smooth muscle cells 

Mouse immortalized aortic smooth muscle cells (MOVAS; ATCC cell line CRL-2797) were 

cultured in DMEM supplemented with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin 

and 200 μg/ml geneticin in a 37 °C incubator with 5% CO2. Cells were cultured in 12-well 

plates to approximately 70% confluency. Prior to experimental treatments, cells were 

incubated for 24 h in serum-starvation medium (DMEM supplemented with 0.2% BSA). 

Subsequently, the medium was replaced with serum-starvation medium supplemented with 

recombinant interleukin-1β (IL-1β; Sino Biological #10139HNAE) at 25 or 50 ng/ml and 

incubated for a further 24 or 48 h. The different IL-1β treatments were timed to end 

concurrently and, after trypsinization, the cells were pooled in equal counts to obtain a 

mixture of cells at different phases of the IL-1β response. As a control treatment, 24 h serum-



starved cells were placed in fresh serum starvation medium for a further 48 h.  

The Chromium Single Cell 3’ Kit (v3 Chemistry; 10xGenomics) was used to prepare 

scRNA-Seq libraries for control and IL-1β treated cells in separate lanes. Paired-end high-

throughput sequencing was carried out on an Illumina NextSeq 550 instrument (Read 1: 28 

bp, Read 2: 91 bp). Sequencing reads were processed using the Cell Ranger pipeline 

(version 3.0.2; 10xGenomics) and the mm10 reference transcriptome package (version 

3.0.0).  

 

Cell state gene signature activity in human plaque scRNA-seq cells and scRNA-Seq of 

alternative models of mouse atherosclerosis 

Human coronary atherosclerosis scRNA-Seq datasets published by Wirka et al3 (GEO: 

GSE131778) and mouse atherosclerosis scRNA-Seq datasets of Apoe-/- and Ldlr-/- mouse 

models published by Pan et al2 (GEO: GSE155513) were analyzed to identify cells that have 

activated the cell state gene programs using the gene signature activity calculation 

implemented in the Seurat function AddModuleScore. Briefly, genes are binned based on 

average log expression level across samples, and, in each sample, a bin background level 

(calculated from random control genes in the same bin) is subtracted from the levels of the 

test genes. 

Chromatin accessibility and gene expression by cell type for human tissues throughout the 

body 

The adult human scATAC-Seq atlas6 data matrix of chromatin accessibility of 111 cell types 

in a common peak set of approximately 890000 equal-width peaks was downloaded from 

Mendeley Data (DOI: 10.17632/yv4fzv6cnm.4) and the peak coordinates were lifted over 

from hg38 to hg19. To obtain peak profiles representative of each cell type, peaks were 

ranked within a cell type by accessibility signal strength and the 15000, 25000, 50000, 75000 



or 100000 strongest peaks were selected. 

Gene expression (TPM) profiles for 79 human cell types across the body, compiled 

from 30 scRNA-Seq datasets, were obtained from the Protein Atlas11 

(https://www.proteinatlas.org/about/download; access date 2023-02-10). Out of the initial 

20090 genes, genes expressed at >5 TPM in at least one cell type were retained, resulting 

in 18043 genes. To select cell type marker genes (most distinctive genes), gene expression 

was first transformed into z-score per gene (gene expression relative to the variation of that 

gene), and then top n genes were selected within each cell type. 

Immunohistochemistry 

Tissue sections were blocked with 10% normal goat serum, and incubated with following 

primary antibodies: recombinant anti-VCAM1 antibody (ab134047, Abcam, Cambridge, UK; 

dilution 1:100), palladin polyclonal antibody (10853-1-AP, Proteintech, Manchester, UK; 

dilution 1:100), LRG1 polyclonal antibody (PA5-76287, Thermo Fisher Scientific, Waltham, 

MA; dilution 1:200), and monoclonal mouse anti-actin, α-smooth muscle-Cy3 (C6198, 

Sigma-Aldrich, St. Louis, MO; dilution 1:50 or 1:100). Biotinylated goat anti-rabbit IgG (BA-

1000, Vector Laboratories, Burlingame, CA) secondary antibody and fluorescein Avidin DCS 

(A-2011, Vector Laboratories) were used. Nuclei were stained with DAPI (H-1200, Vector 

Laboratories). Imaging was performed by Zeiss LSM800 Airyscan confocal microscope with 

405/488/555 nm diode lasers together with the appropriate emission filters (Plan-

Apochromat 20×/0.8 objective, 1024 × 1024 and 2048 × 2048 frame sizes). 

Molecular Cartography 

Mice were euthanized and a full-body perfusion was executed using PBS (Gibco). Aortas 

and hearts were extracted on ice. The tissues were embedded in (VWR Chemicals) and 

then snap frozen fresh in isopentane (Fisher Scientific). The isopentane was chilled on dry 

https://www.proteinatlas.org/about/download


ice for 30 minutes prior to tissue freezing. The embedded tissues were kept in -70°C until 

sectioning. The embedded tissue samples and the Resolve Biosciences Molecular 

CartographyTM slides were put in the cryostat (Leica Biosystems CM1950 Cryostat, 

temperature at -20°C) 30 minutes prior to cryosectioning. 10 µm sections were cut and 

placed on the capture areas of Resolve Biosciences Molecular CartographyTM slides. The 

slides were packed in dry ice and sent to Resolve Biosciences for further processing. Upon 

arrival, tissue sections were thawed for 30 min at 37°C to improve adhesion and were fixed 

with 4% v/v Formaldehyde (Sigma-Aldrich F8775) in 1x PBS for 30 min at 4 °C. After fixation, 

sections were washed three times in 1x PBS for one min, followed by one min washes in 

70% Ethanol, isopropanol, 100% Ethanol and 70% Ethanol at room temperature. Fixed 

samples were used for Molecular Cartography (100-plex combinatorial single molecule 

fluorescence in-situ hybridization) according to the manufacturer’s instructions, starting with 

the aspiration of ethanol and incubation in Trueblack for 5 min, followed by buffer DST1, 

tissue priming and hybridization. Briefly, tissues were primed for 30 min at 37°C followed by 

24h hybridization of all probes specific for the target genes. After the hybridizations step, 

samples were washed to remove excess probes and fluorescently tagged in a two-step color 

development process. Regions of interest were imaged as described below and fluorescent 

signals removed during decolorization. Color development, imaging and decolorization were 

repeated for multiple cycles to build a unique combinatorial code for every target gene that 

was derived from raw images as described below.  

The probes for selected genes were designed using Resolve’s proprietary design 

algorithm. Briefly, the probe-design was performed at the gene-level. For every targeted 

gene all full-length protein coding transcript sequences from the ENSEMBL database were 

used as design targets if the isoform had the GENCODE annotation tag ‘basic’12; 13. To 

speed up the process, the calculation of computationally expensive parts, especially the off-



target searches, the selection of probe sequences was not performed randomly, but limited 

to sequences with high success rates. To filter highly repetitive regions, the abundance of 

k-mers was obtained from the background transcriptome using Jellyfish14. Every target 

sequence was scanned once for all k-mers, and those regions with rare k-mers were 

preferred as seeds for full probe design. A probe candidate was generated by extending a 

seed sequence until a certain target stability was reached. A set of simple rules was applied 

to discard sequences that were found experimentally to cause problems. After these fast 

screens, every kept probe candidate was mapped to the background transcriptome using 

ThermonucleotideBLAST15 and probes with stable off-target hits were discarded. Specific 

probes were then scored based on the number of on-target matches (isoforms), which were 

weighted by their associated APPRIS level16, favoring principal isoforms over others. A 

bonus was added if the binding-site was inside the protein-coding region. From the pool of 

accepted probes, the final set was composed by greedily picking the highest scoring probes. 

The following table highlights the gene names and Catalogue numbers for the specific 

probes designed by Resolve BioSciences with gene list name KG719. 

Samples were imaged on a Zeiss Celldiscoverer 7, using the 50x Plan Apochromat 

water immersion objective with an NA of 1.2 and the 0.5x magnification changer, resulting 

in a 25x final magnification. Standard CD7 LED excitation light source, filters, and dichroic 

mirrors were used together with customized emission filters optimized for detecting specific 

signals. Excitation time per image was 1000 ms for each channel (DAPI was 20 ms). A z-

stack was taken at each region with a distance per z-slice according to the Nyquist-Shannon 

sampling theorem. The custom CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45 µm 

pixel size) was used. For each region, a z-stack per fluorescent color (two colors) was 

imaged per imaging round. A total of 8 imaging rounds were done for each position, resulting 

in 16 z-stacks per region. The completely automated imaging process per round (including 



water immersion generation and precise relocation of regions to image in all three 

dimensions) was realized by a custom python script using the scripting API of the Zeiss ZEN 

software (Open application development).  

The algorithms for spot segmentation were written in Java and are based on the 

ImageJ library functionalities. Only the iterative closest point algorithm is written in C++ 

based on the libpointmatcher library (https://github.com/ethz-asl/libpointmatcher). As a first 

step all images were corrected for background fluorescence. A target value for the allowed 

number of maxima was determined based upon the area of the slice in µm² multiplied by the 

factor 0.5. This factor was empirically optimized. The brightest maxima per plane were 

determined, based upon an empirically optimized threshold. The number and location of the 

respective maxima was stored. This procedure was done for every image slice 

independently. Maxima that did not have a neighboring maximum in an adjacent slice (called 

z-group) were excluded. The resulting maxima list was further filtered in an iterative loop by 

adjusting the allowed thresholds for (Babs-Bback) and (Bperi-Bback) to reach a feature 

target value (Babs: absolute brightness, Bback: local background, Bperi: background of 

periphery within 1 pixel). This feature target values were based upon the volume of the 3D-

image. Only maxima still in a z-group of at least 2 after filtering were passing the filter step. 

Each z-group was counted as one hit. The members of the z-groups with the highest 

absolute brightness were used as features and written to a file. They resemble a 3D-point 

cloud. Final signal segmentation and decoding: To align the raw data images from different 

imaging rounds, images had to be corrected. To do so the extracted feature point clouds 

were used to find the transformation matrices. For this purpose, an iterative closest point 

cloud algorithm was used to minimize the error between two point-clouds. The point clouds 

of each round were aligned to the point cloud of round one (reference point cloud). The 

corresponding point clouds were stored for downstream processes. Based upon the 



transformation matrices the corresponding images were processed by a rigid transformation 

using trilinear interpolation. The aligned images were used to create a profile for each pixel 

consisting of 16 values (16 images from two color channels in 8 imaging rounds). The pixel 

profiles were filtered for variance from zero normalized by total brightness of all pixels in the 

profile. Matched pixel profiles with the highest score were assigned as an ID to the pixel. 

Pixels with neighbors having the same ID were grouped. The pixel groups were filtered by 

group size, number of direct adjacent pixels in group, number of dimensions with size of two 

pixels. The local 3D-maxima of the groups were determined as potential final transcript 

locations. Maxima were filtered by number of maxima in the raw data images where a 

maximum was expected. Remaining maxima were further evaluated by the fit to the 

corresponding code. The remaining maxima were written to the results file and considered 

to resemble transcripts of the corresponding gene. The ratio of signals matching to codes 

used in the experiment and signals matching to codes not used in the experiment were used 

as estimation for specificity (false positives). Final image analysis was performed in ImageJ 

using the Polylux tool plugin from Resolve BioSciences to examine specific Molecular 

Cartography signals. 
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