Supporting Information

Dual-Acting Small Molecules: Subtype-Selective Cannabinoid Receptor 2 Agonist/Butyrylcholinesterase Inhibitor Hybrids Show Neuroprotection in an Alzheimer's Disease Mouse Model

Philipp Spatz[†], Sophie A. M. Steinmüller[†], Anna Tutov[†], Eleonora Poeta[§], Axelle Morilleau[‡], Allison Carles[‡], Marie H. Deventer[°], Julian Hofmann[†], Christophe P. Stove[°], Barbara Monti[§], Tangui Maurice^{*,‡}, Michael Decker^{*,†}

[†] Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilians University Würzburg, Am Hubland, D-97074, Germany

[‡] INSERM UMR-S1198, University of Montpellier, Place Eugène Bataillon, F-34095, France

§ Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy

° Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium

Corresponding author

* Michael Decker: E-mail: michael.decker@uni-wuerzburg.de

* Tangui Maurice: E-mail: tangui.maurice@umontpellier.fr

Contents

1.	Calculation of combination index	S2
2.	Neuroprotection and Neurotoxicity of compounds 14 and 15d	S3
3.	Time-dependent inhibition of <i>h</i> BChE by compounds 15d and 21d	S3
4.	βarr2 screening of the complete library	S4
5.	Pharmacokinetic measurements	S4
6.	HPLC chromatograms of target compounds	S9
7.	Melting point measurement	S14

1. Calculation of the combination index

Table S-1. Calculation of combination index (CI) for the **2** + **6** mix.

Treatment (mg/kg IP)	PP (%)	С _{х,UW-MD-95}	С _{х,UW-MD-131}	Cl
(a) Spontaneous alternation	(Fig. 8A)			
2 (0)	0.0 ± 11.2			
2 (0.1)	51.3 ± 14.2			
2 (0.3)	65.3 ± 14.8 ¹			
6 (0)	0.0 ± 11.2			
6 (0.1)	45.6 ± 15.7			
6 (0.3)	51.3 ± 24.3 ²			
2 (0.1) + 6 (0.1)	82.9 ± 12.2	0.36 ± 0.05	0.47 ± 0.08	0.49 ±0.08
(b) Passive avoidance (Fig. 8	3C)			
2 (0)	0.0 ± 34.9			
2 (0.1)	11.6 ± 38.1			
2 (0.3)	32.5 ± 33.9			
2 (1)	104.5 ± 51.6 ³			
6 (0)	0.0 ± 34.9			
6 (0.1)	20.7 ± 31.8			
6 (0.3)	80.1 ± 39.3 ⁴			
2 (0.1) + 6 (0.1)	56.0 ± 37.0	0.54 ± 0.21	0.22 ± 0.08	0.65 ± 0.25

Percent protection (PP) was calculated using 100% for V1/V2-treated animals and 0% for $AB_{25-35}/V2/V2$ -treated animals. CI: combination index. $C_{x,Drug}$ was calculated using the linear regression from responses with the drug alone: ¹ y = 196.4x +12.68; ² y = 150.7x + 12.217; ³ y = 103.9x +0.314; ⁴ y = 271.2x - 2.56. CI in bold shows synergy.

2. Neuroprotection and Neurotoxicity of compounds 14 and 15d

Figure S-1. Neurotoxicity studies on neuronal HT-22 cells for compounds **15d** and **14** (A) and neuroprotection against glutamate-induced oxidative stress of compound **15d** (B). Results of the modified MTT test are presented as means \pm SD of three independent experiments, each performed in sextuplicate, and refer to untreated control cells, which were set as 100% values. Statistical analysis was achieved by applying one-way ANOVA followed by Dunnett's multiple comparison post-test. Levels of significance: ** p < 0.01; **** p < 0.0001. Treated cells were compared to (A) untreated cells and (B) cells treated with glutamate only.

3. Time-dependent inhibition of hBChE by compounds 15d and 21d

To determine K_m and v_{max} , residual enzyme activity was plotted against time for several concentrations.

Figure S-2. Time-dependent inhibition of hBChE by compounds 15d and 21d.

4. βarr2 screening of the complete library

βarr2 recruitment (complete set) @ 10 μM

Figure S-3. Functional activity screening of compounds **4**, **14**, **15a**-**j**, **20** and **21a**-**e** by NanoBiT[®] hCB₂R β arr2 recruitment assay. Receptor activation was monitored at 10 μ M and normalized to the maximum response of compound **4**; n=3.

5. Pharmacokinetic measurements

Sample collection	Plasma concentration (ng/ml)							
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE		
0	BQL			BQL	ND	ND		
5	1912	1857	1645	1805	141	81		
15	794	638*	791	793	2	2		
60	20	19	13	18	4	2		
120	1	1	BQL	1	1	0		
240	BQL	BQL	BQL	BQL	ND	ND		

Table S-2. Plasma concentrations of compound 15d in male CD-1 mice following IV (2 mg/kg) administration.

BQL - Below the lower limit of quantitation (LLOQ)

ND - Not determined

*Grubbs' outlier test: Significant outlier. P < 0.05

Table S-3. Brain concentrations of compound 15d in male CD-1 mice following IV (2 mg/kg) administration.

Sample collection	Brain concentration (ng/g)							
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE		
0	BQL			BQL	ND	ND		
5	178	171	232	194	33	19		
15	38	30	39	36	5	3		
60	1	1	1	1	0	0		
120	BQL	BQL	BQL	BQL	ND	ND		
240	BQL	BQL	BQL	BQL	ND	ND		

BQL - Below the lower limit of quantitation (LLOQ)

ND - Not determined

Table S-4. Plasma concentrations of metabolite **14** in male CD-1 mice following IV administration of compound **15d** (2 mg/kg).

Sample collection	Plasma concentration (ng/ml)						
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE	
0	BQL			BQL	ND	ND	
5	114	109	86	103	15	9	
15	51	42	43	45	5	3	
60	6	4	2	4	2	1	
120	2	1	1	1	1	0	
240	BQL	1*	BQL	BQL	ND	ND	

BQL - Below the lower limit of quantitation (LLOQ)

ND - Not determined

*Grubbs' outlier test: Significant outlier. P < 0.05

Table S-5. Brain concentrations of metabolite **14** in male CD-1 mice following IV administration of compound **15d** (2 mg/kg).

Sample collection	Brain concentration (ng/g)							
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE		
0	BQL			BQL	ND	ND		
5	3	3	3	3	0	0		
15	1	1	2	2	0	0		
60	BQL	BQL	BQL	BQL	ND	ND		
120	BQL	BQL	BQL	BQL	ND	ND		
240	BQL	BQL	BQL	BQL	ND	ND		

BQL - Below the lower limit of quantitation (LLOQ)

ND - Not determined

Table S-6. Plasma concentrations of compound 21d in male CD-1 mice following IV administration (2 mg/kg).

Sample collection	Plasma concentration (ng/ml)							
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE		
0	BQL			BQL	ND	ND		
5	133	117	122	124	8	5		
15	109	89	86	95	13	7		
60	18	25	37	27	10	6		
120	7	7	6	7	1	0		
240	1	1	4	2	1	1		

BQL - Below the lower limit of quantitation (LLOQ)

Table S-7. Brain concentrations of compound 21d in male CD-1 mice following IV administration (2 mg/kg).

Sample collection	Brain concentration (ng/g)							
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE		
0	BQL			BQL	ND	ND		
5	32	38	44	38	6	4		
15	18	23	21	21	2	1		
60	9	8	11	9	2	1		
120	5	4	3	4	1	0		
240	2	1	2	2	0	0		

BQL - Below the lower limit of quantitation (LLOQ)

ND - Not determined

Table S-8. Plasma concentrations of metabolite 20 in male CD-1 mice following IV administration of compound 21d (2 mg/kg).

Sample collection	Plasma concentration (ng/ml)							
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE		
0	BQL			BQL	ND	ND		
5	6	6	17	10	7	4		
15	7	6	7	6	0	0		
60	4	4	9	6	3	2		
120	2	1	1	1	1	0		
240	BQL	1	1	1	0	0		

BQL - Below the lower limit of quantitation (LLOQ)

ND - Not determined

Table S-9. Brain concentrations of metabolite 20 in male CD-1 mice following IV administration of compound 21d (2 mg/kg).

Sample collection	Brain concentration (ng/g)							
time point, min	Mouse A	Mouse B	Mouse C	Mean	SD	SE		
0	BQL			BQL	ND	ND		
5	7	7	14	9	4	2		
15	13	13	15	14	1	0		
60	13	14	14	14	1	0		
120	6	4	3	4	2	1		
240	1	1	1	1	0	0		

BQL - Below the lower limit of quantitation (LLOQ)

ND - Not determined

6. HPLC chromatograms of target compounds

Figure S-4. HPLC chromatogram of 14.

Figure S-5. HPLC chromatogram of **15a**.

Figure S-6. HPLC chromatogram of **15b**.

Figure S-7. HPLC chromatogram of **15c**.

Figure S-8. HPLC chromatogram of **15d**.

Figure S-9. HPLC chromatogram of **15e**.

Figure S-10. HPLC chromatogram of 15f.

Figure S-11. HPLC chromatogram of 15g.

Figure S-12. HPLC chromatogram of 15h.

Figure S-13. HPLC chromatogram of 15i.

Figure S-14. HPLC chromatogram of 15j.

Figure S-15. HPLC chromatogram of 20.

Figure S-16. HPLC chromatogram of **21a**.

Figure S-17. HPLC chromatogram of 21b.

Figure S-18. HPLC chromatogram of **21c**.

Figure S-19. HPLC chromatogram of 21d.

Figure S-20. HPLC chromatogram of 21e.

7. Melting point measurement

Melting point were measured with OptiMelt MPA 100, an automated meltingpoint system from Stanford Research Systems. The device records a sigmoidal melting curve, wherein the inflection point is reported as the melting point.