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Abstract 16 
Here we described PerturbSci-Kinetics, a novel combinatorial indexing method for capturing three-layer 17 
single-cell readout (i.e., whole transcriptomes, nascent transcriptomes, sgRNA identities) across hundreds 18 
of genetic perturbations. Through PerturbSci-Kinetics profiling of pooled CRISPR screens targeting a 19 
variety of biological processes, we were able to decipher the complexity of RNA regulations at multiple 20 
levels (e.g., synthesis, processing, degradation), and revealed key regulators involved in miRNA and 21 
mitochondrial RNA processing pathways. Our technique opens the possibility of systematically decoding 22 
the genome-wide regulatory network underlying RNA temporal dynamics at scale and cost-effectively.  23 
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Main 24 
Cellular functions are determined by the expression of millions of RNA molecules, which are tightly 25 
regulated across several critical steps, such as RNA synthesis, splicing, and degradation. However, our 26 
knowledge regarding how critical molecular regulators affect genome-wide RNA kinetics remains limited. 27 
For example, recent studies have combined single-cell transcriptome analysis with pooled CRISPR 28 
screens to gain insights into the gene regulation mechanisms1–8. Yet, these methods provide only a 29 
snapshot of gene expression programs and fail to capture the complexity of RNA dynamics (e.g., synthesis, 30 
splicing, and degradation). Although RNA metabolic labeling coupled with single-cell sequencing can 31 
reveal time-resolved transcriptomic dynamics, there is still a need for scalable tools that can efficiently 32 
characterize the impact of genetic perturbations on RNA dynamics in a high-throughput manner9. To 33 
resolve this challenge, we developed PerturbSci-Kinetics, which integrates CRISPR-based pooled genetic 34 
screen, highly scalable single-cell RNA-seq by combinatorial indexing, and metabolic labeling to recover 35 
single-cell transcriptome dynamics across hundreds of genetic perturbations. 36 
 37 
The new method features a novel combinatorial indexing strategy (referred to as ‘PerturbSci’) for targeted 38 
enrichment and amplification of sgRNA transcripts that carries the same cellular barcode with the single-39 
cell whole transcriptome (Fig 1a). In brief, we adopted the modified CROP-seq vector system5 and 40 
developed a strategy for direct capture of sgRNA sequences6,7, through reverse transcription using a 41 
sgRNA-specific primer followed by targeted enrichment of sgRNA sequences via PCR (Extended Data 42 
Fig 1a-b). A comparison of chemistries between PerturbSci and other similar approaches (e.g., CROP-43 
seq5, and Direct-capture Perturb-seq7) is included in Extended Data Fig 1c. With extensive optimizations 44 
on the primer design and reaction conditions (Extended Data Fig 2), PerturbSci achieves a high capture 45 
rate of sgRNA (i.e., up to 99.7%), comparable to previous approaches for single-cell profiling of pooled 46 
CRISPR screens1–7. Furthermore, built on an extensively improved single-cell RNA-seq by three-level 47 
combinatorial indexing (i.e., EasySci-RNA10), PerturbSci substantially reduced the library preparation 48 
costs for single-cell RNA profiling of pooled CRISPR screens (Fig 1b, Supplementary file 3). In addition, 49 
to maximize the gene knockdown efficacy, we used dCas9-KRAB-MeCP211, a highly potent dual-50 
repressor dCas9 that outperforms conventional dCas9 repressors.  51 
 52 
By integrating PerturbSci with 4-thiouridine (4sU) labeling method12, PerturbSci-Kinetics enables the 53 
capture of single-cell time-resolved nascent transcriptomes. Specifically, following 4sU labeling and in-54 
situ thiol (SH)-linked alkylation reaction12–18 (referred to as ‘chemical conversion’), the nascent 55 
transcriptome and the whole transcriptome from the same cell can be distinguished by T to C conversions 56 
in reads mapping to mRNAs19. The kinetic rates of mRNA (e.g., synthesis and degradation) were then 57 
inferred for each genetic perturbation (Fig 1a, Methods). Notebly, PerturbSci-Kinetics exhibits orders of 58 
magnitude higher throughput than previous metabolic labeling-coupled single-cell RNA-seq approaches 59 
(e.g., scEU-seq, sci-fate, scNT-seq)19–23(Fig 1a). We extensively optimized the cell fixation condition to 60 
reduce the cell loss during cell permeabilization and chemical conversion (Extended Data Fig 3a-e). We 61 
also optimized the computational pipeline for nascent reads calling19, enabling the identification of single 62 
cell nascent transcriptomes with higher accuracy (Extended Data Fig 4). Statistical benchmarking with 63 
other published datasets19 further validated the data quality (Extended Data Fig 3h-i). 64 
 65 
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As a proof of concept, we generated a human HEK293 cell line with the inducible expression of dCas9-66 
KRAB-MeCP211 (HEK293-idCas9), then transduced cells with a non-target control (NTC) sgRNA 67 
(sgNTC) or a sgRNA targeting IGF1R (sgIGF1R). The induction of dCas9 expression after Dox treatment 68 
and the high knockdown efficiency on the target gene were validated by single-cell RNA-seq, RT-qPCR 69 
and flow cytometry (Fig 1c, Extended Data Fig 5). By profiling a 1:1 mixed cell pool consisting of 70 
human HEK293-idCas9-sgIGF1R cells and mouse 3T3-CRISPRi-sgFto cells, we recovered 94.1% of 71 
singlets with both species-specific whole transcriptomes and sgRNAs (Fig 1d, Extended Data Fig 2l), 72 
validating the purity of the single-cell transcriptomes and sgRNAs co-captured by PerturbSci. 73 
 74 
We next sought to validate the ability of PerturbSci-Kinetics to capture three-layer readout (i.e., whole 75 
transcriptomes, nascent transcriptomes, sgRNA identities) at the single-cell level. Following 4sU labeling 76 
(200uM for two hours), we mixed HEK293-idCas9-sgNTC cells and sgIGF1R cells for fixation and 77 
chemical conversion. A significant enrichment of T to C mismatches in mapped reads of the chemical 78 
conversion group was observed, similar to our previous study19 (Fig 1e). A median of 22.1% of newly 79 
synthesized reads was recovered in labeled and chemically converted cells, compared to only 0.8% in the 80 
control group (Fig 1f). Reassuringly, the proportion of reads mapped to exonic regions was significantly 81 
lower in nascent reads compared with pre-existing reads (p-value < 1e-20, Tukey’s test after ANOVA) 82 
(Fig 1g, Extended Data Fig 3g). Indeed, genes with a higher fraction of nascent reads were significantly 83 
enriched in highly dynamic biological processes such as transcription coregulator activity (FDR = 5.7e-84 
12) and protein kinase activity (FDR = 2.6e-08)24 (Fig 1h). By contrast, genes with a lower fraction of 85 
nascent reads were strongly enriched for processes essential for cell vitality, such as the structural 86 
constituent of ribosome (FDR = 1.5e-42), unfolded protein binding (FDR = 4.5e-11), and translation 87 
regulator activity (FDR = 8.2e-10) (Fig 1i). Notably, the chemical conversion step is fully compatible 88 
with sgRNA detection at single-cell resolution: we recovered sgRNAs from 97% of chemically converted 89 
cells (a median of 62 sgRNA UMIs/cell), 92.6% of which were annotated as sgRNA singlets (Fig 1j-k). 90 
These analyses demonstrate the capacity of PerturbSci-Kinetics to profile both transcriptome dynamics 91 
and the associated perturbation identities at the single-cell level. 92 
  93 
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 94 

 95 
Fig. 1. PerturbSci-Kinetics enables joint profiling of transcriptome dynamics and high-throughput 96 
gene perturbations by pooled CRISPR screens. a. Scheme of the experimental and computational 97 
strategy for PerturbSci-Kinetics. The dot plot on the upper right shows the number of cells profiled in this 98 
study for comparison with the published single-cell metabolic profiling datasets19,22,23. Scale, the highest 99 
number of cells profiled in a single experiment of each technique. IAA, iodoacetamide. *4sU, chemically 100 
modified 4sU. R, steady-state RNA level. α, RNA synthesis rate. β, RNA degradation rate. Exp, steady-101 
state expression. Synth, synthesis rate. Deg, degradation rate. b. Bar plot showing the estimated library 102 
preparation cost for PeturbSci-Kinetics and other published techniques25,26 for single-cell transcriptome 103 
analysis coupled with CRISPR screens. c. The left box plot shows the normalized expression of dCas9-104 
KRAB-MeCP2 in untreated or Dox-induced HEK293-idCas9 cells. The right box plot shows the 105 
normalized expression of IGF1R in Dox-induced HEK293-idCas9 cells transduced with sgNTC or 106 
sgIGF1R. Gene counts of each single cell were normalized by the total gene count, multiplied by 1e4 and 107 
then log-transformed. d. An equal number of induced HEK293-idCas9-sgIGF1R cells and 3T3-CRISPRi-108 
sgFto cells were mixed after cell collection and were profiled using PerturbSci. The scatter plot displays 109 
the percentage of single-cell transcriptome reads that were mapped to the human genome on the x-axis, 110 
and the percentage of single-cell sgRNA reads that were mapped to the human cell-specific sgRNA on 111 
the y-axis. The shading represents the density of dots. e. Bar plot showing the normalized percentage of 112 
all possible single base mismatches in reads from sci-fate (blue), and PerturbSci-Kinetics on chemically 113 
converted (green) or unconverted cells (orange). Normalized mismatch rates, the percentage of each type 114 
of mismatch in all sequencing bases. f. Box plot showing the fraction of recovered nascent reads in single-115 
cell transcriptomes across conditions: no 4sU labeling + no chemical conversion, 4sU labeling + no 116 
chemical conversion, and 4sU labeling + chemical conversion. g. Box plot showing the ratio of reads 117 
mapped to exonic regions of the genome in nascent reads, pre-existing reads, and reads of the whole 118 
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transcriptomes across single cells. h-i. Bar plots showing the significantly enriched Gene Ontology (GO) 119 
terms in the list of genes with low (h) or high (i) nascent reads fractions (Methods). j. Box plot showing 120 
the number of unique sgRNA transcripts detected per cell in cells with or without the chemical conversion. 121 
k. We performed PerturbSci-Kinetics experiment using converted/unconverted HEK293-idCas9 cells 122 
transduced with sgNTC/sgIGF1R. Stacked bar plot showing the fraction of converted/unconverted cells 123 
identified as sgNTC/sgIGF1R singlets, doublets, and cells with no sgRNA detected. 124 
  125 
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To dissect the impact of key genetic regulators on transcriptome kinetics, we performed a PerturbSci-126 
Kinetics screen on HEK293-idCas9 cells transduced with a library of 699 sgRNAs, which contains 15 127 
NTC sgRNAs and sgRNAs targeting 228 genes involved in a variety of biological processes such as 128 
mRNA transcription, processing, degradation (Fig 2a, Supplementary Table 1). The cloning and 129 
lentiviral packaging were carried out in a pooled fashion, similar to the previous report27 (Methods). We 130 
then infected the HEK293-idCas9 cell line with the sgRNA lentiviral library at a low multiplicity of 131 
infection (MOI) (2 repeats at MOI = 0.1 and 2 repeats at MOI = 0.2) to ensure that most cells received 132 
only one sgRNA. After a 5-day puromycin selection to remove untransduced cells, we harvested a fraction 133 
of cells for bulk library preparation (‘day 0’ samples). The rest of cells were treated with 1ug/ml 134 
Doxycycline (Dox) to induce the dCas9-KRAB-MeCP2 expression for an additional seven days. At the 135 
end of the screen, we introduced 4sU labeling (200uM for two hours) and harvested samples for both bulk 136 
screen and single-cell PerturbSci-Kinetics library preparation (‘day 7’ samples). The time window for the 137 
screening period was chosen to ensure sufficient knockdown efficiency and establish new transcriptomic 138 
steady states28, as well as to minimize the effect of population dropout8 (Methods).  139 
 140 
As anticipated, activated CRISPRi significantly altered sgRNAs abundance in the pool, which was 141 
consistent between replicates and concordant with the previous study29 (Extended Data Fig 6a-b, 142 
Supplementary Table 2, 3). For example, sgRNAs-targeting genes involved in essential biological 143 
functions, such as DNA replication, ribosome assembly, and rRNA processing, were strongly depleted 144 
after the screen (Extended Data Fig 6c). Reassuringly, the sgRNA abundance recovered by PerturbSci-145 
Kinetics significantly correlated with the bulk screen libraries (Pearson correlation r = 0.988, p-value < 146 
2.2e-16) (Fig 2b).  147 
 148 
After filtering out low-quality cells, we recovered 161,966 labeled cells, 88% of which had matched 149 
sgRNAs (>= 10 sgRNA UMIs). A majority (78%) of these matched cells were annotated as sgRNA 150 
singlets (Extended Data Fig 7a). Despite the shallow sequencing (duplication rate of 17.9%), we obtained 151 
a median of 2,155 UMIs per cell. Most (698 out of 699) sgRNAs were recovered, with a median of 28 152 
sgRNA UMIs detected per cell. sgRNAs with low knockdown efficiencies (<= 40% expression reduction 153 
of target genes compared with NTC) were further filtered out (Extended Data Fig 7b-e). Of note, the 154 
knockdown efficiencies of several individual sgRNAs were further examined using RT-qPCR, which 155 
showed high consistency with the pooled screen (Extended Data Fig 7f). Finally, 98,315 cells were 156 
retained for downstream analysis, corresponding to a median of 484 cells per gene perturbation with a 157 
median of 67.7% knockdown efficiency of target genes (Fig 2c).  158 
 159 
Taking advantage of the ability of PerturbSci-Kinetics to capture multiple layers of information, we 160 
quantified gene-specific synthesis and degradation rates in each perturbation based on an ordinary 161 
differential equation30 (Methods). As CRISPRi is known to function through transcriptional 162 
repression31,32, we first examined the kinetic changes of sgRNA target genes upon perturbation. Indeed, 163 
these genes exhibited strongly reduced synthesis rates while their degradation rates were only mildly 164 
affected (Fig 2c). As a further validation of the technique, we observed significantly higher correlations 165 
among sgRNAs targeting the same genes in multiple layers (e.g., whole/nascent transcriptome, 166 
synthesis/degradation rates, Extended Data Fig 8a).  167 
 168 
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To further understand the impact of gene perturbations, we aggregated whole transcriptomes of each gene 169 
perturbation, followed by PCA for dimension reduction and UMAP visualization33(Methods). Indeed, 170 
perturbations targeting paralogous genes (e.g., EXOSC5 and EXOSC6; CNOT2 and CNOT3) or related 171 
biological processes (e.g., RNA degradation, RNA splicing, oxidative phosphorylation (OXPHOS) and 172 
energy metabolism) were readily clustered together in the low dimension space (Fig 2d). Reassuringly, 173 
UMAP embedding on gene-specific synthesis/degradation rates also grouped perturbations by their 174 
functions (Extended Data Fig 8b-c). 175 
 176 
We then investigated the impact of genetic perturbations on global transcriptome dynamics (i.e., synthesis, 177 
splicing, and degradation) (Fig 2e-g, Extended Data Fig 9, Methods, Supplementary Table 4, 5). As 178 
expected, the knockdown of genes involved in transcription initiation (e.g., GTF2E1, TAF2, MED21, and 179 
MNAT1), mRNA synthesis (e.g., POLR2B and POLR2K), and chromatin remodeling (e.g., SMC3, RAD21, 180 
CTCF, ARID1A) significantly downregulated the global synthesis rates but not the degradation rates (Fig 181 
2e-f). In contrast, perturbations targeting components of critical biological processes such as DNA 182 
replication (e.g., POLA2, POLD1), ribosome synthesis and rRNA processing (e.g., POLR1A, POLR1B, 183 
RPL11, RPS15A), mRNA and protein processing (e.g., CNOT2, CNOT3, CCT3, CCT4) substantially 184 
reduced both RNA synthesis and degradation globally, indicating a compensatory mechanism for 185 
maintaining overall transcriptome homeostasis (Fig 2e-f, Extended Data Fig 9a-b). Furthermore, we 186 
observed significantly reduced exonic reads fractions in nascent transcriptomes, an indicator of 187 
dysregulated splicing dynamics, following perturbations of genes involved in the main steps of RNA 188 
processing, including 5’ capping (e.g., NCBP1), RNA splicing (e.g., LSM2, LSM4, PRPF38B, HNRNPK), 189 
and 3’ cleavage/polyadenylation (e.g., CPSF2, CPSF6, NUDT21, CSTF3) (Fig 2g, Supplementary Table 190 
6). In addition, knocking down genes related to OXPHOS & energy metabolism (e.g., GAPDH, NDUFS2, 191 
ACO2) also significantly reduced the exonic reads ratio in nascent reads (Fig 2g, Extended Data Fig 9c), 192 
potentially because the mRNA processing is highly energy-dependent34–36.  193 
 194 
Interestingly, we found the knockdown of AGO2, a well-established post-transcriptional silencer37, 195 
resulted in an significant increase of the global synthesis (Fig 2e), suggesting its direct involvement in 196 
global transcription regulation. To validate this finding, we first examined Ago2 ChIP-seq data and bulk 197 
RNA-seq data upon shRNA-mediated silencing of AGO2 from ENCODE38,39. We observed a group of 198 
genes with strong Ago2 binding in close proximity to their transcription start sites (TSS) (Extended Data 199 
Fig 10a), and these genes were significantly upregulated upon AGO2 silencing, consistent with the 200 
transcription repressor role of AGO2 identified in our study (Extended Data Fig 10b). Moreover, we 201 
observed the enrichment of Ago2 binding right downstream of TSS (Extended Data Fig 10a), reflecting 202 
a potential role of Ago2 in regulating transcriptional pausing. To infer the gene-specific transcriptional 203 
pausing state, we analyzed another published GRO-seq dataset and quantified gene-specific Pausing Index 204 
(PI)40,41 (Methods). Remarkably, a strong positive association between AGO2 TSS binding and PI across 205 
genes was observed (Extended Data Fig 10c-d). We sought to further validate this mechanism by tracking 206 
on-going transcription. Following the construction of HEK293-idCas9-sgAGO2 cell line and 7-day Dox 207 
induction, we performed 20min short-term 4sU labeling and full-coverage SLAM-seq42 (Methods). 208 
AGO2 knockdown significantly upregulated 78 highly-paused genes, and their nascent RNA exhibited 209 
increased 3' end coverage upon AGO2 knockdown (Extended Data Fig 10e-f), indicating more efficient 210 
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transcriptions. Together, our integrated analyses strongly supported the non-canonical role of AGO2 in 211 
transcription identified by PerturbSci-Kinetics.  212 
 213 
We next sought to investigate regulators of mitochondrial RNA dynamics by quantifying the fraction of 214 
nascent read counts for mitochondrial genes (referred to as “mitochondrial transcriptome turnover”) 215 
(Methods). Notably, we observed a significantly reduced turnover of mitochondrial transcriptome 216 
following the perturbation of multiple metabolism-related genes (e.g., GAPDH, FH, PKM involved in 217 
glycolysis, ACO2, and IDH3A involved in the TCA cycle, NDUFS2 and COX6B1 involved in oxidative 218 
phosphorylation) (Fig 2h, Extended Data Fig 9d, Supplementary Table 7). Furthermore, the 219 
knockdown of LRPPRC introduced the most substantial defect in the mitochondrial turnover and 220 
expression levels of all mitochondrial protein-coding genes (Fig 2h, Extended Data Fig 11a). By 221 
examining mitochondrial gene-specific kinetics, we identified 5 of 13 mitochondrial protein-coding genes, 222 
including MT-CO1, MT-ATP8, MT-ND4, MT-CYB, and MT-ATP6, to be significantly regulated by both 223 
decreased synthesis and increased degradation (Extended Data Fig 11a, Supplementary Table 8).  224 
 225 
To further validate our findings, we examined the bulk RNA-seq and the RNase footprinting datasets from 226 
Lrpprc knockout mice43. While steady-state mitochondrial gene down-regulation showed great 227 
consistency across species, we further observed the strong relationship between mitochondrial mRNA 228 
stability and RNA secondary structure, potentially indicating the RNA stabilizing mechanism of LRPPRC 229 
(Extended Data Fig 11b). Moreover, the strong activation of integrated stress response (ISR) phenotype 230 
in LRPPRC knockdown cells enforced the essentiality of LRPPRC in maintaining mitochondrial mRNA 231 
homeostasis (Extended Data Fig 11c-f). By profiling HEK293-idCas9-sgLRPPRC cells following Dox 232 
induction and 4sU labeling, we further validated the robustness of kinetics changes of mitochondrial 233 
mRNA upon LRPPRC perturbation (Extended Data Fig 10g-i). It is worth noting that impaired 234 
mitochondrial gene expression and the functional defect of mitochondria in brown adipocytes specific 235 
LRPPRC knockout mice were reported in a recent study44. Overall, PerturbSci-Kinetics identified 236 
LRPPRC as a key regulator of mitochondrial RNA dynamics. 237 
 238 
Extending the above analysis, we identified differentially-expressed genes (DEGs) across perturbations 239 
(Supplementary Table 9) and examined their dynamic rate changes (Supplementary Table 10) 240 
(Methods). Out of 14,618 perturbation-DEGs pairs, 22.9% exhibited significant dynamics rate changes: 241 
15.1% showed synthesis rate changes only, 3.6% showed degradation rate changes only, and 4.2% showed 242 
changes on both, suggesting that RNA dynamics control is highly involved in gene regulation45. As 243 
expected, degradation-regulated DEGs were highly associated with perturbations on mRNA 244 
surveillance/processing genes (e.g., UPF1, UPF2, SMG5, SMG7 in nonsense-mediated mRNA decay 245 
pathway; EXOSC2, EXOSC5, EXOSC6 in RNA exosome; CSTF3, CPSF2, CPSF6, NUDT21, XRN2 for 246 
3’ polyadenylation; RNMT, NCBP1 related to 5’ RNA capping) (Fig 2i). For instance, our study identified 247 
a set of significantly overlapped DEGs upon knockdown of DROSHA and DICER146,47, two crucial 248 
regulators in the miRNA biogenesis pathway48. By concurrently profiling gene-specific expression and 249 
dynamics, we discovered that these differentially expressed genes were regulated through distinct 250 
mechanisms: some genes were regulated through decreased degradation (e.g., miRNA-mediated silencing 251 
complex (RISC) components: TNRC6A and TNRC6B), while others are through increased transcription 252 
(e.g., miRNA host genes: MIR181A1HG, FTX; genes involved in miRNA biogenesis: DDX3X) (Fig 2j-253 
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l, Extended Data Fig 12a-c). To reveal the direct involvement of miRNA-mediated RNA destabilization 254 
in regulating these degradation-regulated DEGs, we visualized the mRNA transcripts binding patterns of 255 
Ago2, a core component of RISC for targeted mRNA binding and degradation49. As expected, Ago2 256 
binding was strongly enriched in the 5’ and 3’ untranslated region (UTR) of transcripts from genes with 257 
reduced degradation but not in transcripts from genes with upregulated synthesis (Fig 2m), consistent with 258 
prior studies that miRNA induces targeted RNA degradation and translation repression mainly through 259 
binding to UTRs46,50.  260 
 261 
As validation, we profiled HEK293-idCas9 cells transduced with sgRNA targeting each of the four 262 
miRNA biogenesis pathway genes (XPO5, AGO2, DROSHA, DICER1) after Dox induction and 4sU 263 
labeling. Both single-cell transcriptome UMAP embedding and RNA dynamics changes recapitulated our 264 
findings in the pooled screen (Extended Data Fig 12d-f). In addition, by using 4sU chase labeling and 265 
3’end bulk SLAM-seq42, we tracked RNA degradation dynamics in DROSHA and DICER1 knockdown 266 
cells and confirmed the enhanced stability of mRNA from degradation-regulated genes (e.g., SHCBP1, 267 
PRTG), compared to transcription-related genes (e.g., FTX, YY1AP1) (Fig 2l, n, Extended Data Fig 12g). 268 
These analyses further demonstrate the unique capacity of PerturbSci-Kinetics of deciphering the 269 
regulatory mechanisms (degradation vs. transcription) involved in gene expression changes. 270 
 271 
Finally, to explore cell-state dependent RNA dynamics changes upon genetic perturbations at the sub-272 
population level, we investigated the effects of perturbations on RNA dynamics throughout the cell cycle 273 
using our validation dataset, in which we profiled more cells with deeper sequencing. Using a combination 274 
of cell cycle-related genes51 and cell cycle-related transcription factors19 for dimension reduction and 275 
clustering, we separated cells into five clusters representing different cell cycle stages (Extended Data 276 
Fig 13a-c). Gene-specific synthesis and degradation rates in the physiological condition were inferred 277 
across cell cycle stages in NTC cells, and four gene clusters with different cell cycle-dependent synthesis 278 
dynamics were identified52 (Extended Data Fig 13d). Among clusters, only genes in cluster 1 exhibited 279 
a cell cycle stage-specific expression pattern. While their synthesis and degradation rates both increased 280 
with the cell cycle progression, their synthesis rates outpaced the degradation rates, driving the increase 281 
of their steady-state mRNA levels from S to G2M stage (Extended Data Fig 13d). GO term enrichment 282 
analysis confirmed the strong association between functions of these genes and cell division53 (Extended 283 
Data Fig 13e).  284 
 285 
However, in DROSHA and DICER1 knockdown cells, while the steady-state expression pattern of cluster 286 
1 genes resembled NTC along the cell cycle, degradation rates of these genes failed to respond, especially 287 
in the early phase of the cell cycle (Extended Data Fig 13f). Surprisingly, it was fully compensated by 288 
the reduced synthesis rates (Extended Data Fig 13f), suggesting the existence of synthesis-degradation 289 
feedback loops for gene regulation. As a result of this buffering effect, both DROSHA and DICER1 290 
knockdown did not substantially affect the cell-cycle progression (Extended Data Fig 13b). In 291 
comparison, the knockdown of LRPPRC did not impair the RNA degradation dynamics of these genes 292 
throughout the cell cycle progression (Extended Data Fig 13g), which is consistent with our conclusion 293 
that LRPPRC primarily affects mitochondrial mRNA stability (Extended Data Fig 10d). Together, our 294 
findings reveal the highly coordinated RNA synthesis-degradation regulations and the existence of 295 
feedback loops between RNA synthesis and degradation throughout the cell cycle. 296 
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 297 
In summary, PerturbSci-Kinetics is the first method that allows for the quantitative analysis of the 298 
genome-wide mRNA kinetic rates across hundreds of genetic perturbations in a single experiment. We 299 
have provided step-by-step protocols and data processing pipelines in supplementary files 300 
(Supplementary file 1-4) to facilitate the broad applications of the technique. Of note, there are several 301 
potential limitations to consider: First, long-term 4sU labeling might alter cell states and hinder the 302 
identification of sgRNA sequences. We thus chose a relatively short-term (2 hours) treatment to minimize 303 
such effects. Second, RNA dynamics identified by PerturbSci-Kinetics may not directly indicate causality 304 
in gene regulation, partly due to the long duration of CRISPRi-based gene knockdown. This limitation 305 
could be mitigated by coupling the technique with large-scale chemical perturbations that allow short 306 
treatment and labeling time.  307 
 308 
Despite these limitations, our results  uncover the unique advantages of PerturbSci-Kinetics over 309 
conventional assays. Its multi-layer readout offers a comprehensive view of gene expression and RNA 310 
dynamics in response to genetic perturbations, facilitating high-throughput and parallel characterization 311 
of regulators of gene-specific transcription, splicing, and degradation. Moreover, the low-cost and the high 312 
sgRNA capture sensitivity of PerturbSci allows for systematic characterization of cell-type-specific gene 313 
regulatory networks in various biological contexts at an unprecedented scale and resolution both in vitro 314 
and in vivo. 315 
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 316 
Fig 2. Characterizing the impact of genetic perturbations on gene-specific transcriptional and 317 
degradation dynamics with PerturbSci-Kinetics. a. Scheme of the experimental design of the 318 
PerturbSci-Kinetics screen. The main steps are described in the text. b. The scatter plot shows the 319 
correlation between perturbation-associated cell count from PerturbSci-Kinetics and sgRNA read counts 320 
from bulk screen libraries. c. Box plot showing the log2 transformed fold changes of gene expression, 321 
synthesis rates, and degradation rates of sgRNA-targeted genes in perturbed cells expressing the 322 
corresponding sgRNA, compared to NTC. d. UMAP visualization of perturbed pseudobulk whole 323 
transcriptomes profiled by PerturbSci-Kinetics. We aggregated single-cell transcriptomes in each 324 
perturbation, followed by dimension reduction using PCA and visualization using UMAP. Population 325 
classes, the functional categories of genes targeted in different perturbations.  e-h. Scatter plots showing 326 
the extent and the significance of changes on the distributions of global synthesis (e), degradation (f), 327 
proportions of exonic reads in the nascent transcriptome (g), and proportions of mitochondrial nascent 328 
reads (h) upon perturbations compared to NTC cells. The fold changes were calculated by dividing the 329 
median values of each perturbation with that of NTC cells and were log2 transformed. i. Scatter plot 330 
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showing the number of synthesis/degradation-regulated DEGs from different perturbations. nDEGs: the 331 
number of DEGs.  j-k. Venn diagrams showing the number of merged DEGs with significantly enhanced 332 
synthesis (j) or impaired degradation (k) between DROSHA and DICER1. Based on statistical test results, 333 
merged DEGs of DROSHA and DICER1 perturbations were classified into synthesis-regulated genes (i.e., 334 
the upregulation of these genes was mainly driven by increased synthesis rates) and degradation-regulated 335 
genes (i.e., the upregulation of these genes were mainly driven by reduced degradation rates). Merged 336 
DEGs with p-value <= 0.05 on synthesis increase/degradation decrease in at least one perturbation were 337 
included in the diagram, in which genes with p-value < 0.1 on synthesis increase/degradation decrease in 338 
both perturbations were regarded as shared hits between two perturbations. l. Heatmaps showing the 339 
steady-state expression, synthesis and degradation rate changes of genes sharing the same regulatory 340 
mechanism upon DROSHA and DICER1 knockdown as shown in j-k. Tiles of each row were colored by 341 
fold changes of values of perturbations relative to NTC. m. Line plot showing the Ago2 binding patterns 342 
on the transcript regions of protein-coding genes in Figure 2n and 2o. The transcript regions of genes were 343 
assembled by merging all exons, and were divided into 5’UTR, coding sequence (CDS), and 3’UTR based 344 
on coordinates of the 5’ most start codon and the 3’ most stop codon. Single-base coverage of Ago2 eCLIP 345 
on each gene was calculated, binned, and scaled to 0-1. After merging and averaging scaled binned 346 
coverage of genes in the same group together, the lowest coverage value in the CDS was used to scale the 347 
averaged merged coverage again to visualize the Ago2/RISC binding pattern. n. Boxplots showing the 348 
relative proportion of labeled mRNA in a chase labeling experiment. HEK293-idCas9-sgNTC, 349 
sgDROSHA, and sgDICER1 cells were labeled with 100uM 4sU for 18 hours, followed by a 10mM 350 
uridine chase for 0h, 2h, and 4h. This tracked the degradation of labeled RNA in genes regulated by 351 
transcription (top) or degradation (bottom) upon DROSHA and DICER1 knockdown (Methods). Student 352 
t-tests were performed between knockdown groups and the NTC group. **, p-value < 1e-2; *, p-value < 353 
0.05; NS, no statistical significance. 354 
  355 
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Supplementary Figures: 381 

 382 
Extended Data Fig. 1. Scheme of plasmids and experiment procedures of PerturbSci. a. The vector 383 
system used in PerturbSci for dCas9 and sgRNA expression. The expression of the enhanced CRISPRi 384 
silencer dCas9-KRAB-MeCP211 was controlled by the tetracycline responsive (Tet-on) promoter. A GFP 385 
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sequence was added to the original CROP-seq-opti plasmid6 as an indicator of successful sgRNA 386 
transduction and for the lentivirus titer measurement. The CROP-seq vector utilizes the self-replication 387 
mechanism of lentivirus during the integration for amplifying the sgRNA expression cassette. In this 388 
lentiviral plasmid, the sgRNA expression cassette replaced the U3 region of the 3’LTR5. During the 389 
lentiviral integration, the shortened 5’LTR of reverse-transcribed lentiviral genomic DNA was extended 390 
by using its 3’LTR as a template, and the sgRNA expression cassette is self-replicated to the 5’LTR54. 391 
The self-replicated sgRNA expression cassette at 5’LTR generates functional sgRNA for guiding dCas9, 392 
and the original expression cassette at 3’LTR is transcribed as a part of the Puro-GFP fusion transcript 393 
driven by the EF-1α promoter. b. The library preparation scheme and the final library structures of 394 
PerturbSci, including a scalable combinatorial indexing strategy with direct sgRNA capture and 395 
enrichment that reduced the library preparation cost, enhanced the sensitivity of the sgRNA capture 396 
compared to the original CROP-seq5, and avoided the extensive barcodes swapping detected in Perturb-397 
seq6. c. A schematic comparison of chemistries between PerturbSci, CROP-seq5, and Direct-capture 398 
Perturb-seq7.   399 
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 400 

 401 

Extended Data Fig. 2. Representative optimizations on sgRNA enrichment of PerturbSci. a. Multiple 402 
RT primers targeting different sgRNA scaffold regions were mixed with polyT primers respectively and 403 
were used in our test experiment for targeted enrichment of sgRNA (RT primer 2-4 were modified from 404 
primers used in Direct-capture Perturb-seq7, CRISPR-sciATAC55, and ECCITE-seq56). CB, cell barcode. 405 
P_R1, partial TruSeq read1 sequence. b-c. A 96-well plate was divided into 4 parts and RT was performed 406 
using different combinations of sgRNA capture primers and shortdT primers. After ligation, cells were 407 
mixed and redistributed for SSS. We tested the capture efficiency of sgRNA by different RT primers in 408 
PerturbSci using “Direct PCR” and tested the efficiency of by-product removal by “sgRNA-only PCR” 409 
(Scheme shown in b) followed by gel electrophoresis for analyzing the PCR product (c). Crosses in b, 410 
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potential Tn5 tagmentation sites. As shown in c, sgRNA primer 2 and 3 yielded strongest amplification 411 
signals following PCR, while primer1 and 4 recovered weak signals. In addition, tagmentation removed 412 
large by-products generated potentially from polyT priming (as shown in b). d. We tested different 413 
conditions in post-multiplex PCR purification to obtain the input for the sgRNA enrichment PCR that 414 
could maximize the recovery of the sgRNA library. Left lane: 0.7x-1.5x double-size AMPURE beads 415 
purification followed by the sgRNA enrichment PCR reaction. Middle lane: 0.8x-1.2x AMPURE beads 416 
purification followed by the sgRNA enrichment PCR reaction. Right lane: Gel extraction on multiplex 417 
PCR product within 175-275 bp range followed by the sgRNA enrichment PCR reaction. The recovered 418 
sgRNA libraries generated from gRNA primer2 and 3 were marked on the gel image. Based on the result, 419 
the sgRNA primer2 and the 0.8-1.2x AMPURE beads purification condition yielded the best performance. 420 
e. A representative gel image of the final libraries of PerturbSci, including the sgRNA library (Lane 1) 421 
and the whole transcriptome library (Lane 2). f-i. We tested different concentrations of sgRNA RT primers 422 
in the PerturbSci experiment using 3T3-L1-CRISPRi cells transduced with either sgFto and sgNTC. The 423 
box plots show the number of unique sgRNA transcripts (f) or mRNA transcripts (g) detected per cell, the 424 
cell recovery rate (h) and sgRNA capture purity (i) across different sgRNA RT primer concentrations. j. 425 
We performed PerturbSci experiment with 3T3-L1-CRISPRi cells transduced with sgFto and sgNTC. 426 
After multiplex PCR, PCR product was purified and amplified for sgRNA library enrichment in individual 427 
PCR wells or in a pooled manner. The box plot showing the number of unique sgRNA transcripts detected 428 
per cell  across the two conditions. k. Scatter plot showing the correlation between log2-transformed 429 
counts per million (CPM) profiled by PerturbSci and EasySci10 in the mouse 3T3-L1-CRISPRi cell line. 430 
l. Barplots showing strong gene expression knockdown in both mouse 3T3-CRISPRi-sgFto cells and 431 
human HEK293-idCas9-sgIGF1R cells that we computationally assigned in the species-mixing 432 
experiment (Fig 1d), indicating the accuracy of single-cell sgRNA assignment and the compatibility of 433 
PerturbSci with diverse dCas9 effectors.  434 
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 435 

Extended Data Fig. 3. Representative optimizations on fixation conditions of PerturbSci-Kinetics 436 
and statistical benchmarking. We aimed to search for an optimal fixation condition that can i) minimize 437 
the cell loss during the fixation and chemical conversion, ii)  reduce the RNA cross-contamination, iii) be 438 
compatible with in-situ combinatorial indexing of cellular transcriptomes. a-c. We tested different cell 439 
fixation conditions on HEK293-idCas9 cells followed by PerturbSci profiling and quantified the fraction 440 
of cells that were assigned to different groups (a), the number of unique sgRNA (b) and mRNAs (c) 441 
detected per cell. PFA fixation conditions at the room temperature (RT) were too strong to recover 442 
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sufficient signals. FA fixation at 4°C yielded higher total UMI counts but showed stronger cross-443 
contamination, indicating that under 4°C it was a milder fixative compared to 4% PFA. d-e. Dot plots 444 
showing the relative recovery rate (with standard error of the mean) of HEK293-idCas9 cells in different 445 
fixation conditions (n = 4) following HCl permeabilization (d) and chemical conversion (e). All values 446 
were normalized by the standard condition used in sci-fate (PFA fixation)19. f. Box plot showing the 447 
number of unique transcripts detected per cell with or without chemical conversion. Fixation conditions 448 
included in the plots: 4°C PFA+BS3: cells were fixed with 4% PFA in PBS for 15 minutes, and were 449 
further fixed by 2mM BS3 during and after Triton-X100 permeabilization (Methods). 4°C FA+BS3: cells 450 
were fixed with 1% Formaldehyde (FA) in PBS for 10 minutes, and were further fixed by 2mM BS3 451 
during and after Triton-X100 permeabilization. 4°C FA: cells were only fixed once with 1% 452 
Formaldehyde (FA) in PBS for 10 minutes. 4°C PFA: cells were only fixed once with 4% PFA in PBS for 453 
15 minutes as sci-fate19. g. Mapping statistics of reads of different origins from PerturbSci-Kinetics. Exon, 454 
reads were mapped to exonic regions of the genome. Intron, reads were mapped to intronic regions of the 455 
genome. Unannotated, reads were mapped to the genomic regions without annotation. For nascent RNA, 456 
we found an average of 40% reads mapped to exonic regions and 50% reads mapping to intronic regions. 457 
Around 0.9% of nascent reads were mapped to the antisense transcripts. We observed around 10% of the 458 
nascent reads that did not overlap with any annotations in a strand-specific manner, suggesting that they 459 
may represent unannotated transcripts from intergenic regions or antisense transcripts. Notably, the 460 
proportion of unannotated reads we observed is consistent with other sci-RNA-seq datasets19,57, indicating 461 
that it is unlikely to be a technique-specific artifact. h-i. Downsampling comparison between sci-fate and 462 
PerturbSci-Kinetics. A subset of raw reads in sci-fate A549 dataset19 were randomly selected to generate 463 
a downsampled dataset with the same single-cell raw reads number distribution with PerturbSci-Kinetics, 464 
and both datasets were processed using the same pipeline. The single-cell whole transcriptome UMI 465 
counts (h) and the nascent reads percentages (i) between two datasets were compared. One-way ANOVA 466 
on all groups followed by Dunnett’s tests between control and other groups were performed in b-e. Wilcox 467 
tests were performed in f, h-i. ****, p-value < 1e-4; ***, p-value < 1e-3; **, p-value < 1e-2; *, p-value < 468 
0.05. Comparisons with no statistical significance were not marked.  469 
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 470 

 471 

Extended Data Fig. 4. Optimization of the computational pipeline for nascent reads calling. a-c. Bar 472 
plots showing the normalized mismatch rates of all 12 mismatch types detected in unconverted cells (a), 473 
converted cells (b), and the original sci-fate A549 dataset19 (c) at different positions of the reads using the 474 
original sci-fate mutation calling pipeline19. d-f. Bar plots showing the normalized mismatch rates of all 475 
12 mismatch types detected in unconverted cells (d), converted cells (e), and the original sci-fate A549 476 
dataset19 (f) at different positions of the reads using the updated mutation calling pipeline. Considering 477 
the different sequencing lengths between the present dataset and sci-fate, the Read2 from sci-fate were 478 
trimmed to the same length as the present dataset before processing. Compared to the original pipeline, 479 
the updated pipeline further filtered the mismatch based on the CIGAR string and only mismatches with 480 
“CIGAR = M” were kept. As shown in the result, this optimized pipeline efficiently removed the unaligned 481 
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mismatches enriched at the 5’ and 3’ end of reads. Normalized mismatch rates in each bin, the percentage 482 
of each type of mismatch in all sequencing bases within the bin. g-h. Statistics of T>C mutations in 483 
PerturbSci-Kinetics reads. Histogram showing the number of T>C mutations on reads that are identified 484 
to be from newly synthesized transcripts (g). For each read with high-quality mismatches identified, the 485 
fraction of mismatches from T>C mutations was calculated, which clearly separated the reads with 486 
background mutations and mutants introduced by 4sU in the plot (h). 30% was set as the cutoff to assign 487 
nascent reads as sci-fate19.  488 
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 489 

Extended Data Fig. 5. Validation of the CRISPRi performance. Inducible IGF-1R mRNA and protein 490 
knockdown in HEK293-idCas9-sgIGF1R cells were further validated by a. RT-qPCR after 3-day Dox 491 
induction (n=4, Dunnett’s test after one-way ANOVA was performed. ****, p-value < 1e-4; ns, no 492 
statistical significance.) and b. flow cytometry after 7-day Dox induction. Isotype, isotype control. αIGFIR, 493 
anti-IGF1R. c. Flow cytometry detection of IGF1R protein abundance after 4/7-day Dox induction in 494 
sgIGF1R and sgControl cells.  495 

  496 
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 497 

Extended Data Fig. 6. The changes in sgRNA abundance are consistent between replicates and 498 
previously published data. a. Heatmap showing the overall Pearson correlations of normalized sgRNA 499 
read counts between the plasmid library and bulk screen replicates at different sampling times. For each 500 
library, read counts of sgRNAs were normalized first by the sum of total counts and then by the counts of 501 
sgNTC. b. Box plot showing the reproducible trends of deletion upon CRISPRi between the present study 502 
and a prior report29. We calculated the fraction changes (After vs. before the CRISPRi induction) of 503 
sgRNAs for each gene, followed by log2 transformation. c. Bar plot showing the different extent of 504 
deletion of cells receiving sgRNAs targeting genes in different categories in the bulk screen. The 505 
knockdown on genes with higher essentiality caused stronger cell growth arrest.  506 
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 507 

Extended Data Fig. 7.  Quality control and sgRNA filtering on the PerturbSci-Kinetics library. a. We 508 
filtered out cells assigned to multiple gRNAs based on two criteria: the cell is defined as a sgRNA singlet 509 
if the most abundant sgRNA in the cell took >= 60% of total sgRNA counts and was at least 3-fold of the 510 
second most abundant sgRNA. The histogram shows the fraction distribution of the most abundant sgRNA 511 
in singlets (78%) and doublet cells (22%). b-e. Dotplots showing the expression fold changes of target 512 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.01.29.526143doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.29.526143
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

genes upon CRISPRi induction compared to NTC. Each dot represents a sgRNA. Fold change < 0.6 was 513 
used for sgRNA filtering, and target genes with 3, 2, 1, 0 on-target sgRNA(s) were shown in b-e, 514 
respectively. FC, fold change. f. The accuracy of sgRNA targeting efficiency detected in PerturbSci-515 
Kinetics was further confirmed by individual RT-qPCR validation (n=4). 5 sgRNAs with high efficiency 516 
and 1 off-target sgRNA were cloned to the modified CROP-seq-opti plasmid, and individual HEK293-517 
idCas9 clones were established. RNA was extracted and RT-qPCR was conducted after 3-day Dox 518 
induction. ACTB was used as the internal reference in RT-qPCR. ****, p-value < 1e-4; ***, p-value < 519 
1e-3; **, p-value < 1e-2. The comparison with no statistical significance was not marked. Mean 520 
expressions of target genes in NTC and corresponding cell populations in the original PerturbSci-Kinetics 521 
screen dataset were exhibited on the right for comparison. 522 

  523 
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 524 

Extended Data Fig. 8. PerturbSci-Kinetics captures multi-layer transcriptome and RNA kinetics 525 
information upon perturbations. a. Boxplots showing the pairwise correlation coefficients of sgRNAs 526 
targeting the same gene or different genes, computed using aggregated whole transcriptomes, pre-existing 527 
transcriptomes, nascent transcriptomes, gene-specific synthesis rates and degradation rates. Considering 528 
the data sparsity and different cell numbers across perturbations, 150 cells per sgRNA were assembled 529 
into one pseudobulk for downstream analysis. Spearman correlation coefficients were calculated using 530 
DEGs between perturbations and NTC in the pooled screen. Compared with sgRNAs targeting different 531 
genes, the sgRNAs targeting the same genes showed significantly higher correlations in the aggregated 532 
whole RNA, preexist RNA, nascent RNA, synthesis rates, and degradation rates, confirming the data 533 
quality of our pooled perturbation. b-c. UMAP visualization of gene perturbations by inferred synthesis 534 
rates (b) or degradation rates (c). Differentially expressed genes between all perturbations-NTC pairs were 535 
combined, and their synthesis and degradation rates were calculated for each perturbation. For genes with 536 
no steady-state expression or no nascent counts, their synthesis and degradation rates were both assigned 537 
as 0. To denoise, only genes with inferred synthesis or degradation rate > 0 in at least 75% of pseudobulk 538 
cell populations were used for dimension reduction. The top 12 and 15 principal components from the 539 
synthesis and degradation rates matrix were used for UMAP visualization, respectively. These UMAPs 540 
still showed meaningful patterns. For example, RNA exosome genes (e.g., EXOSC2, EXOSC5, EXOSC6), 541 
nonsense-mediated mRNA decay pathway members (e.g., SMG5, SMG7), ribosomal biogenesis genes 542 
(e.g., NOP2, RPL30, RPL11, POLR1A, POLR1B), miRNA biogenesis pathway members (e.g.,DICER1, 543 
DROSHA, XPO5, and AGO2) were in relative proximity in both UMAPs. Chromatin remodelers (e.g., 544 
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HDAC1, HDAC2, STAG2, RAD21, KMT2A, KDM1A, ARID1A) were closely clustered in synthesis 545 
rates-derived UMAP, while m6A regulators (e.g., METTL3, METTL16, ZC3H13, IGF2BP1) and 546 
polyadenylation factors (e.g., CPSF6, CSTF3) were closer to each other in degradation rates-derived 547 
UMAP.   548 
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 549 

Extended Data Fig. 9. A systematic view of the effects of perturbations on global synthesis rates, 550 
global degradation rates, exonic reads ratio, and mitochondrial turnover rates. a-d. For each gene 551 
category, we calculated the fraction of genetic perturbations associated with significant changes in global 552 
synthesis rates (a), global degradation rates (b), proportions of exonic reads in the nascent transcriptome 553 
(c), and proportions of mitochondrial nascent reads (d). Overall global transcription could be affected by 554 
more genes than degradation. Perturbation on essential genes, such as DNA replication genes, could affect 555 
both global synthesis and degradation. Perturbations on chromatin remodelers only specifically impaired 556 
the global synthesis rates but not the degradation rates, supporting the established theory that gene 557 
expression is regulated by chromatin folding. In addition to the enrichment of genes in transcription, 558 
spliceosome and mRNA surveillance, perturbation on OXPHOS genes and metabolism-related genes also 559 
affected the RNA processing, consistent with the fact that 5’ capping, 3’ polyadenylation, and RNA 560 
splicing are highly energy-dependent processes. That knockdown of OXPHOS genes and metabolism-561 
related genes could reduce the mitochondrial transcriptome dynamics and also supported the complex 562 
feedback mechanisms between energy metabolism and mitochondrial transcription58. e-h. Scatter plots 563 
showing the relationships between dropout effects and global synthesis rates (e), global degradation rates 564 
(f), proportions of exonic reads in the nascent transcriptome (g), and mitochondrial RNA turnover (h). 565 
Dropout rank, the ascending rank of gene-level sgRNA counts log2FC from the bulk screen. Directions 566 
were assigned as shown in Figure 2e-h. Both global synthesis and degradation rates showed strong 567 
negative correlations with dropout, indicating knocking out essential genes generally resulted in impaired 568 
global RNA synthesis and degradation. In contrast, proportions of exonic reads in the nascent 569 
transcriptome were much more stable across perturbations, and were only specifically affected by genes 570 
functioning in RNA processing. Proportions of mitochondrial nascent reads were also prone to be affected 571 
by genetic perturbation, but directions of changes depend more on the functions of perturbed genes than 572 
the essentiality of genes. 573 

  574 
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 575 

Extended Data Fig. 10. AGO2 functions as a transcriptional repressor by arresting transcription at 576 
the pausing status. a. The density plot (top) and heatmap (bottom) show the density of Ago2 ChIP-seq 577 
reads around TSS of genes with or without enriched Ago2 TSS binding peaks. b. We calculated the 578 
log2FC of gene expression between AGO2-silenced and control groups on genes with or without Ago2 579 
TSS binding peaks. c. The box plot displays the positive correlation between PI of genes and normalized 580 
Ago2 ChIP-seq coverage within corresponding TSS regions. c-d. Genes were separated into 4 bins based 581 
on the average ranks of PI in two replicates (Methods). The Venn diagram highlights the significant 582 
association between Ago2 TSS binding and strong pausing status of genes. Highly-paused genes, genes 583 
with top 10% of average PI ranks. e-f. Highly-paused genes were split into two groups, 1) significantly-584 
upregulated genes upon AGO2 knockdown or 2) genes without significant expression changes. We then 585 
calculated the nascent RNA coverage of these two groups of genes in sgNTC and sgAGO2 cells. Notably, 586 
only genes in group 1 displayed increased 3' end enrichment upon AGO2 knockdown (f).  587 
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 588 

Extended Data Fig. 11. PerturbSci-kinetics identified LRPPRC as the master regulator of 589 
mitochondrial RNA dynamics. a. Heatmap showing the relative fold changes of gene expression, 590 
synthesis, and degradation rates of mitochondrial protein-coding genes upon NDUFS2, CYC1, BCS1L 591 
and LRPPRC knockdown compared to NTC cells. Perturbation on genes encoding electron transport chain 592 
components resulted in stable steady-state expression with impaired turnover. However, LRPPRC 593 
knockdown significantly disrupted the mitochondrial transcriptome dynamics by inhibiting the synthesis 594 
of almost all mitochondrial protein-coding genes and promoting the degradation of multiple genes 595 
including MT-ND6, MT-CO1, MT-ATP8, MT-ND4, MT-CYB and MT-ATP6. b. The heatmap on the left 596 
showed mean z-scored mitochondrial protein-coding gene expression changes between wild-type and 597 
LRPPRC-knockout mice heart tissue samples, as reported by Siira, S.J., et al. 43. The heatmap on the right 598 
showed the extent of the mRNA secondary structure increase upon Lrpprc knockdown observed in the 599 
same prior study43, which positively correlated with the elevated degradation rates of genes detected in 600 
our study (coefficient of Pearson correlation = 0.708, p-value = 6.8e-3). These results further validated 601 
the mRNA-stabilizing role of Lrpprc in regulating mitochondrial transcriptome. c. Boxplot showing the 602 
distribution of integrated stress response scores of single cells received different perturbations. ISR, 603 
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integrated stress response. ISR score, average normalized expressions of genes within the ISR 604 
transcription program identified by Genome-wide Perturb-seq8. ****, p-value < 1e-4; **, p-value < 1e-2; 605 
*, p-value < 0.05. d. Bar plot showing the fraction of genes regulated by synthesis, degradation or both in 606 
mitochondrial-encoded and nuclear-encoded DEGs. e. Bar plot showing the enrichment of ATF4/CEBPG 607 
motifs at promoter regions of DEGs with or without significant synthesis changes. Nc DEGs w/o synth 608 
changes, Nuclear-encoded differentially expressed genes without synthesis changes. Nc DEGs w/ synth 609 
changes, Nuclear-encoded differentially expressed genes with synthesis changes. A large part of 610 
synthesis-regulated nuclear-encoded DEGs showed motif enrichment, suggesting the activation of an 611 
integrated stress response transcriptional program mediated by ATF4/CEBPG upon LRPPRC 612 
knockdown59. 5kb regions around transcription start sites of input genes were used for motif scanning and 613 
enrichment calculation using RcisTarget60. We identified two transcription factors (ATF4 and CEBPG) 614 
that were i) significantly upregulated upon LRPPRC knockdown ii) significantly over-represented in the 615 
surroundings of the transcription start site of the synthesis-regulated nuclear-encoded DEGs (Normalized 616 
motif enrichment score of 16 for ATF4 and 16.6 for CEBPG). f. The transcriptional regulatory network in 617 
LRPPRC perturbation inferred from our analysis. Notably, it was consistent with the prior study59 that 618 
ATF4 was regulated at both transcriptional and post-transcriptional levels. g. Single-cell UMAP 619 
embedding of HEK293-idCas9-sgNTC and sgLRPPRC cells in the validation dataset. h-i. Correlations of 620 
synthesis rate and degradation rate changes of mitochondrial mRNA upon LRPPRC knockdown between 621 
the original screen and the validation dataset. r, coefficient of Pearson correlation.622 
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 623 

Extended Data Fig. 12. The overview of the miRNA biogenesis pathway and the validation on 624 
miRNA pathway perturbations. a. Illustration of the canonical miRNA biogenesis pathway. After the 625 
transcription of miRNA host genes, the primary miRNA (pri-miRNA) forms into a hairpin and is 626 
processed by Drosha. Processed precursor miRNA (pre-miRNA) is transported to the cytoplasm by 627 
Exportin-5. The stem loop is cleaved by Dicer1, and one strand of the double-stranded short RNA is 628 
selected and loaded into the RISC for targeting mRNA46. b. Venn diagram showing the overlap of 629 
upregulated DEGs across perturbations on four genes encoding main members of the miRNA pathway. 630 
The knockdown of two critical RNases in this pathway (i.e., DROSHA and DICER1) resulted in 631 
significantly overlapped DEGs (p-value = 2.2e-16, Fisher’s exact test). In contrast, AGO2 knockdown 632 
resulted in more unique transcriptome features, and only 1 DEG (PRTG, identified to be mainly regulated 633 
by degradation and has been reported as a miRNA target61) overlapped with DEGs from DROSHA and 634 
DICER1 knockdown, indicating the RNAi-independent roles of AGO2. Interestingly, XPO5 knockdown 635 
showed no upregulated DEGs, which is consistent with a previous report in which XPO5 silencing only 636 
minimally perturbed the miRNA biogenesis, indicating the existence of an alternative miRNA 637 
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transportation pathway47. c. Bar plot showing the fraction of upregulated DEGs driven by synthesis 638 
changes and degradation changes upon DROSHA, DICER1, and AGO2 perturbations. While DROSHA 639 
and DICER1 knockdown resulted in increased synthesis and reduced degradation, AGO2 knockdown only 640 
affected gene expression transcriptionally, which was consistent with the previous finding that AGO2 641 
knockdown resulted in a global increase of synthesis rates (Fig 2e), and further supported its roles in 642 
nuclear transcription regulation62–64. As Drosha is upstream of Dicer1 in the pathway, we indeed observed 643 
stronger effects of DROSHA knockdown than DICER1 knockdown, which was supported by the previous 644 
study47. d-e. UMAP embedding of NTC cells and single cells with individual miRNA biogenesis pathway 645 
genes knockdown (d). Perturbed cells exhibited distinct transcriptomic features and low-dimensional 646 
space distributions (e). f. Steady-state expression, synthesis rate, and degradation rate changes of 647 
synthesis/degradation-regulated genes showed high consistencies between the validation dataset and the 648 
original screen. g. Examples showing unchanged (transcription-regulated genes: FTX, YY1AP1) and 649 
enhanced (degradation-regulated genes: SHCBP1, PRTG) mRNA stability upon DROSHA/DICER 650 
knockdown. After long term 4sU labeling on Dox-induced HEK293-idCas9-sgNTC, sgDROSHA, 651 
sgDICER cells, chase labeling was performed. 3’end SLAM-seq was used to directly track the degradation 652 
of labeled mRNA. The fraction of labeled read counts of individual genes at each time point were divided 653 
by their labeled fractions at 0h for normalization.     654 
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 655 

Extended Data Fig. 13. PerturbSci-Kinetics enables dissecting the effects of perturbations on cell 656 
cycle-dependent RNA dynamics. a. UMAP embedding of miRNA pathway genes-knockdown cells and 657 
NTC cells reflected the cell-cycle progression. b. Stacked barplot showing the cell cycle distribution of 658 
cells from each perturbation. c. The expression changes of cell cycle marker genes in cell cycle clusters. 659 
d. The cell cycle time-course synthesis rates, degradation rates, and expression levels of 4 gene clusters. 660 
Solid lines with dots, the mean values and the average trend of all genes within the cluster. e. Highly 661 
enriched GO terms of gene cluster 1 in GO enrichment analysis. f. Averaged trends of cell cycle time-662 
course synthesis rates, degradation rates, and expression levels of cluster 1 genes in HEK293-idCas9-663 
sgNTC, sgDROSHA, sgDICER1 cells. g. Averaged trends of cell cycle time-course synthesis rates, 664 
degradation rates, and expression levels of cluster 1 genes in NTC and sgLRPPRC HEK293-idCas9 cells. 665 
Considering potential strong batch effects from distinct genetic perturbation, cell cycle clustering analysis 666 
in (g) was performed independently of (a). Cell cycle clusters in (g) were not fully synchronized with 667 
clusters in (f). 668 

  669 
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Materials and Methods: 670 

Cell culture  671 
The 3T3-L1-CRISPRi cell line was obtained from the Tissue Culture facility at the University of 672 
California, Berkeley. The HEK293 cell line was a gift from the Scott Keeney Lab at Memorial Sloan 673 
Kettering Cancer Center. The HEK293T cell line and the NIH/3T3 cell line were obtained from ATCC. 674 
All cells were maintained at 37 °C and 5% CO2 in high glucose DMEM medium supplemented with L-675 
Glutamine and Sodium Pyruvate (Gibco 11995065) and 10% Fetal Bovine Serum (FBS; Sigma F4135). 676 
When generating a monoclonal cell line, the medium was supplemented with 1% Penicillin-Streptomycin 677 
(Gibco 15140163). In the screening experiment, sgRNA-transduced HEK293-idCas9 cells were cultured 678 
in high glucose DMEM medium supplemented with L-Glutamine (Gibco 11965092) and 10% FBS, 679 
following the induction of dCas9-KRAB-MeCP2 expression by 1ug/ml Dox (Sigma D5207),  680 
 681 
Cell lines generation 682 
To generate HEK293 with Dox-inducible dCas9-KRAB-MeCP2 expression, the lentiviral plasmid Lenti-683 
idCas9-KRAB-MeCP2-T2A-mCherry-Neo was constructed. A dCas9-KRAB-MeCP2-T2A insert was 684 
amplified from dCas9-KRAB-MeCP2 (Addgene #110821). A T2A-mCherry Gblock was synthesized by 685 
IDT. Gibson Assembly reaction (NEB E2611S) was performed at 50 °C with a mixture of Bsp119I-686 
digested Lenti-Neo-iCas9 (Thermo FD0124;  Addgene #85400), dCas9-KRAB-MeCP2-T2A amplicon, 687 
T2A-mCherry Gblock for 60 minutes to construct a dCas9-KRAB-MeCP2-T2A-mCherry plasmid. The 688 
reaction product was transformed into NEBstable competent cells (NEB C3040H), and colonies were 689 
inoculated and amplified in LB medium (Gibco 10855001) with 50ug/ml Sodium Ampicillin (Sigma 690 
A8351) at 37 °C overnight.  691 
 692 
After plasmid extraction (QIAGEN No.27106) and sequencing validation, the plasmid was co-transfected 693 
with psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) into low-passage HEK293T cells in a 694 
10cm dish using Polyjet (SignaGen SL100688) for 24 hours. Cells were gently washed twice with PBS, 695 
then cultured in a medium with 10mM Sodium Butyrate (Sigma TR-1008-G) for another 24 hours. The 696 
supernatant was collected, and cell debris was cleared by spinning down (5 minutes, 1000xg) and passed 697 
through a 0.45 μm filter. The lentivirus was concentrated 10x by the Lenti-X concentrator (TaKaRa 698 
631231), and the virus suspension was flash frozen by Liquid Nitrogen and was stored at -80 °C.  699 
 700 
The lentivirus titer was determined by examining the ratio of mCherry+ cells after 24 hours of transduction 701 
and 48 hours of Dox induction. Polybrene (Sigma TR-1003) at a final concentration of 8ug/ml was used 702 
to enhance the transduction efficiency. Then HEK293 cells were counted and transduced with lentivirus 703 
at MOI = 0.2 for 48 hours. Cells were treated with Dox for 48 hours, and the top 10% of cells with the 704 
strongest mCherry fluorescence were sorted to each well of a 96-well plate containing 100ul medium. 705 
After a 3-week expansion, monoclonal cells that survived were transferred to larger dishes for further 706 
expansion. We picked the clone with inducible homogeneous strong mCherry expression and normal 707 
morphology for the following experiment. 708 
 709 
The polyclone 3T3-CRISPRi cell line was generated in a similar way. pHR-SFFV-dCas9-BFP-KRAB 710 
(Addgenes #46911) was co-transfected with psPAX2 and pMD2.G to generate dCas9-expressing 711 
lentivirus, and the transduction at MOI=0.2 was performed on 3T3 cells. BFPhi cells (top 35% in BFP+ 712 
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population) were sorted and the sorting was repeated twice more after cell expansion to enrich cells with 713 
strong dCas9 expression.  714 
 715 
Gene Knockdown and efficacy examination 716 
To simplify the lentiviral titer measurement, CROP-seq-opti-Puro-T2A-GFP was assembled by adding a 717 
T2A-GFP downstream of Puromycin resistant protein coding sequence on the CROP-seq-opti plasmid 718 
(Addgene #106280). Flanking MluI and CsiI digestion sites were added to the GFP Gblock (IDT) by PCR. 719 
Both amplicon and CROP-seq-opti vector were digested using MluI (Thermo, FD0564) and CsiI (Thermo, 720 
FD2114) at 37 °C for 30 minutes, and were ligated at room temperature for 20 minutes using the Blunt/TA 721 
Ligase Master Mix (NEB M0367S). Transformation, clone amplification, and sequencing validation were 722 
done as stated above.  723 
 724 
Oligos corresponding to individual guides for ligation were ordered as standard DNA oligos from IDT 725 
with the following design: 726 
 727 
Plus strand: 5’-CACCG[20bp sgRNA plus strand sequence]-3’ 728 
Minus strand: 5’-AAAC[20bp sgRNA minus strand sequence]C-3’ 729 
 730 
Oligos were reconstituted into 100uM and were mixed and phosphorylated using T4 PNK (NEB M0201S) 731 
by incubating at 37 °C for 30 minutes. The reaction was heated at 95 °C for 5 minutes and then ramped 732 
down to 25 °C by -0.1 °C/second to anneal oligos into a double-stranded duplex. The CROP-seq-opti-733 
Puro-T2A-GFP was digested by Esp3I (NEB R0734L) at 37 °C for 30 minutes, then the linearized 734 
backbone and the annealed duplex were ligated at room temperature for 20 minutes using the Blunt/TA 735 
Ligase Master Mix (NEB M0367S). Transformation, clone amplification, sequencing validation, 736 
lentivirus generation, and titer measurement were done as stated above.  737 
 738 
Mouse 3T3-L1-CRISPRi cells and 3T3-CRISPRi cells were transduced with the lentivirus expressing 739 
non-target control (NTC) sgRNA or sgRNA targeting Fto. Human HEK293-idCas9 cells were transduced 740 
with lentivirus expressing NTC sgRNA or sgRNA targeting IGF1R during technique development, and 741 
HEK293-idCas9-sgXPO5, sgAGO2, sgDROSHA, sgDICER1, sgLRPPRC cell lines were later 742 
established for validating significant hits from the screen. Transduction was  carried out at MOI = 0.2 with 743 
8ug/ml of Polybrene for 48 hours. Based on our puromycin titration experiments, sgRNA-transduced 3T3-744 
L1-CRISPRi cells were selected by 2.5ug/ml Puromycin for 2 days and 2ug/ml Puromycin for 3 days, and 745 
sgRNA-transduced HEK293-idCas9 cells were selected by 1.5ug/ml Puromycin for 3 days and 1ug/ml 746 
Puromycin for 2 days. sgRNA-transduced 3T3-CRISPRi cells were directly sorted by gating on GFP 747 
fluorescence. 748 
 749 
As dCas9-BFP-KRAB was constitutively expressed in 3T3-L1-CRISPRi cells and 3T3-CRISPRi cells, 750 
target genes started being silenced once sgRNA lentivirus was introduced. For HEK293-idCas9 cells, Dox 751 
treatment for a minimum of 72 hours was required before examining the knockdown effect.  752 
 753 
For RT-qPCR validation, primer pairs targeting IGF1R, AGO2, XPO5, DROSHA, DICER1, LRPPRC, 754 
ACTB were selected from PrimerBank (https://pga.mgh.harvard.edu/primerbank/) and were synthesized 755 
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from IDT. Total RNA in 1e6 cells of each sample was extracted using the RNeasy Mini kit (QIAGEN 756 
74104) and the concentrations were measured by Nanodrop. 1ug total RNA was then reverse-transcribed 757 
into the first strand cDNA by SuperScript VILO Master Mix (Thermo 11755050). PowerTrack SYBR 758 
Green Master Mix (Thermo A46109) and PowerUp™ SYBR™ Green Master Mix (Thermo A25742) 759 
were used for RT-qPCR following the manufacturer's instructions. 760 
 761 
For flow cytometry validation, 1e6 cells of each sample were harvested and resuspended in 100ul of PBS-762 
0.1% sodium azide-2% FBS. BV421 Mouse Anti-Human CD221 (BD 565966) and BV421 Mouse IgG1 763 
k Isotype Control (BD 562438) at the final concentration of 10 ug/ml were added, and reactions were 764 
incubated at 4 °C in the dark with rotation for 30 minutes. Cells were then washed twice using PBS-0.1% 765 
sodium azide-2% FBS, and fluorescence signals were recorded. 766 
 767 
Construction of pooled sgRNA library 768 
Genes to be included in our sgRNA library were carefully selected based on following considerations: 1) 769 
both essential and non-essential genes were included for comparison. These genes were identified using 770 
the bulk CRISPR screen data from the publication introducing the optimized CRISPRi sgRNA library29 771 
and Depmap65. For example, knocking down ribosomal genes is usually fatal. 2) To validate the ability of 772 
PerturbSci-kinetics to characterize gene-specific RNA dynamics, we selected genes involved in 773 
transcription, chromatin remodeling, RNA processing, and mRNA decay based on Gene Ontology terms66 774 
and KEGG pathways67. For instance, we included CNOT2 and CNOT3, which are components of the key 775 
deadenylase complex for global mRNA degradation. 3) We ensured that all selected genes were expressed 776 
in the cell line to be used in our study. An in-house HEK293 EasySci-RNA dataset was used to select 777 
expressing genes that met criteria 1 and 2.  778 
 779 
sgRNA sequences targeting genes of interest were obtained from an established optimized CRISPRi 780 
sgRNA library (only sgRNA set A was considered)29. Finally, 684 sgRNAs targeting 228 genes (3 781 
sgRNAs/gene) and 15 non-targeting controls were included in the present study.  782 
 783 
The single-stranded sgRNA library was synthesized in a pooled manner by IDT in the following format:  784 
5’-GGCTTTATATATCTTGTGGAAAGGACGAAACACCG[20bp sgRNA plus strand 785 
sequence]GTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTT-3’ 786 
 787 
100ng of oligo pool was amplified by PCR using primers targeting 5’ homology arm (HA) and 3’ HA 788 
with limited cycles (x12) to avoid introducing amplification biases. The PCR product was purified, and 789 
double-stranded library amplicons were extracted by DNA electrophoresis and gel extraction. Then the 790 
insert was cloned into Esp3I-digested CROP-seq-opti-Puro-T2A-GFP by Gibson Assembly (50 °C for 60 791 
minutes). In parallel, a control Gibson Assembly reaction containing only the backbone was set. Both 792 
reactions were cleaned up by 0.75x AMPURE beads (Beckman Coulter A63882) and eluted in 5uL EB 793 
buffer (QIAGEN 19086), then were transformed into Endura Electrocompetent Cells (Lucigen, 602422) 794 
by electroporation (Gene Pulser Xcell Electroporation System, Bio-Rad, 1652662). After 1 hour of 795 
recovery at 250rpm, 37 °C, each reaction was spread onto an in-house 245 mm Square agarose plate 796 
(Corning, 431111) with 100ug/ml of Carbenicillin (Thermo, 10177012) and was then grown at 32 °C for 797 
13 hours to minimize potential recombination and growth biases. All colonies from each reaction were 798 
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scraped from the plate and the CROP-seq-opti-Puro-T2A-GFP-sgRNA plasmid library was extracted 799 
using ZymoPURE II Plasmid Midiprep Kit (Zymo, D4200). The lentiviral library was generated as stated 800 
above with extended virus production time. The step-by-step protocol is included in the supplementary 801 
materials. 802 
 803 
The pooled PerturbSci-Kinetics screen experiment 804 
For each replicate, 7e6 uninduced HEK293-idCas9 cells were seeded. After 12 hours, two replicates were 805 
transduced at MOI=0.1 (1000x coverage/sgRNA) and another two replicates were transduced at MOI=0.2 806 
(2000x coverage/sgRNA) with 8ug/ml of Polybrene for 24 hours. Then we replaced the culture medium 807 
with the virus-free medium and culture cells for another 24 hours. Transduced cells were selected by 808 
1.5ug/ml of Puromycin for 3 days and 1ug/ml of Puromycin for 2 days. During the selection, we passed 809 
cells every 2 or 3 days to ensure at least 1000x coverage. At the end of the drug selection, we harvested 810 
1.4e6 cells in each replicate (2000x coverage/sgRNA) as day0 samples of the bulk screen and pellet down 811 
at 500xg, 4 °C for 5 minutes. Cell pellets were stored at -80 °C for genomic DNA extraction later. Then 812 
the dCas9-KRAB-MeCP2 expression was induced by adding Dox at the final concentration of 1ug/ml, 813 
and L-glutamine+, sodium pyruvate-, high glucose DMEM was used to sensitize cells to perturbations on 814 
energy metabolism genes. Cells were cultured in this condition for additional 7 days and were passed 815 
every other day with 4000x coverage/sgRNA. On day7, 6ml of the original media from each plate was 816 
mixed with 6uL of 200mM 4sU (Sigma T4509-25MG) dissolved in DMSO (VWR 97063-136) and was 817 
put back for nascent RNA metabolic labeling. After 2 hours of treatment, 1.4e6 cells in each replicate 818 
were harvested as day7 samples of the bulk screen, and the rest of the cells were fixed and stored for 819 
single-cell PerturbSci-Kinetics profiling (see the next section). 820 
 821 
Genomic DNA of bulk screen samples was extracted using Quick-DNA Miniprep Plus Kit (Zymo, 822 
D4068T) following the manufacturer's instructions and quantified by Nanodrop. All genomic DNA was 823 
used for PCR to ensure coverage. The primer targeting the U6 promoter region with P5-i5-Read1 overhang 824 
and the primer targeting the sgRNA scaffold region with P7-i7-Read2 overhang was used for generating 825 
the bulk screen libraries for sequencing. 826 
 827 
Library preparation for the PerturbSci-Kinetics 828 
After trypsinization, cells in each 10cm dish were collected into a 15ml falcon tube and kept on ice. Cells 829 
were spun down at 300xg for 5 minutes (4 °C) and washed once in 3ml ice-cold PBS. Cells were fixed 830 
with 5ml ice-cold 4% Paraformaldehyde (PFA) in PBS (Santa Cruz Biotechnology sc-281692) for 15 831 
minutes on ice. PFA was then quenched by adding 250ul 2.5M Glycine (Sigma 50046-50G), and cells 832 
were pelleted at 500xg for 5 minutes (4 °C). Fixed cells were washed once with 1ml PBSR (PBS, 0.% 833 
SUPERase In (Thermo AM2696), and 10mM dithiothreitol (DTT; Thermo R0861)), and were then 834 
resuspended, permeabilized, and further fixed in 1ml PBSR-triton-BS3 (PBS, 0.1% SUPERase In, 0.2% 835 
Triton-X100 (Sigma X100-500ML), 2mM bis(sulfosuccinimidyl)suberate (BS3; Thermo, PG82083), 836 
10mM DTT) for 5 minutes. Additional 4ml of PBS-BS3 (PBS, 2mM BS3, 10mM DTT) was then added 837 
to dilute Triton-X100 while keeping the concentration of BS3, and cells were incubated on ice for 15 838 
minutes. Cells were pelleted at 500xg, 4 °C for 5 minutes and resuspended in 500ul nuclease-free water 839 
(Corning 46-000-CM) supplemented with 0.1% SUPERase In and 10mM DTT. 3ml of 0.05N HCl (Fisher 840 
Chemical, SA54-1) was added for further permeabilization. After 3 minutes of incubation on ice, 3.5ml 841 
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Tris-HCl, pH 8.0 (Thermo 15568025), and 35ul of 10% Triton X-100 were added to each tube to neutralize 842 
the HCl. After spinning down at 4 °C, 500xg for 5 minutes, cells were finally resuspended in 400ul PSB-843 
DTT at the concentration of ~2e6 cells/100ul (PBS, 1% SUPERase In, 1% BSA (NEB B90000S), 1mM 844 
DTT), mixed with 10% DMSO, and were slow-frozen and stored in -80 °C.  845 
 846 
The chemical conversion was performed before the library preparation. Cells were thawed with shaking 847 
in the 37 °C water bath and spun down, then were washed once with 400ul PSB without DTT. Next, cells 848 
were resuspended in 100ul PSB, mixed with 40ul Sodium Phosphate buffer (PH 8.0, 500mM), 40ul IAA 849 
(100mM, Sigma I1149-5G), 20ul nuclease-free water, and 200ul DMSO with the order. The reaction was 850 
incubated at 50 °C for 15 minutes and was quenched by adding 8ul 1M DTT. Then cells were washed 851 
with PBS and were filtered through a 20um strainer (Pluriselect 43-10020-60). Cells were finally 852 
resuspended in 100ul PSB.  853 
 854 
For library preparation, a step-by-step protocol is included as a supplementary file. It is worth noting that 855 
PerturbSci-Kinetics is based on three levels indexing and can generate more than 5.6 million barcodes in 856 
a single full-scale experiment. In contrast, sci-fate is a two-level combinatorial indexing technique with a 857 
capacity of processing ~5,000 cells in a single experiment19. scEU-seq is a "one-cell one-well" solution23 858 
with a theoretical throughput of n plates x 96/384 wells, and Drop-seq-based scNT-seq22 normally 859 
processes ~10,000 cells in each run. In the present proof-of-concept screen experiment, 576,000 cells in 860 
total were loaded for reverse transcription. After the second round of indexing (ligation), 69.5% - 74.5% 861 
of cells were recovered (413,980 cells in total). ~248,388 cells were loaded for the third round of indexing, 862 
and finally 161,966 cells were computationally recovered after sequencing. The cell recovery rate of 863 
PerturbSci-Kinetics was significantly improved compared to 7% observed in sci-RNA-seq357.  864 
 865 
4sU pulse/chase labeling and SLAM-seq 866 
HEK293-idCas9-sgAGO2 and sgNTC cells were induced with Dox for 7 days in 10cm dishes, during 867 
which the culture medium was replaced every 2 days to keep the stability of induction. Before harvesting 868 
cells, cells were labeled with 600uM 4sU for 20 minutes. The culture medium was then aspirated and cells 869 
were lysed by adding 600ul buffer RLT from RNeasy Mini kit with 1:100 V/V β-mercaptoethanol (Sigma 870 
M3148-250ML) to the dish. Lysate was scraped using cell scrapers (VMR 10062-906) and was then 871 
collected to a 1.5ml tube. Total RNA extraction was then done using the RNeasy Mini kit.  872 
 873 
HEK293-idCas9-sgDROSHA, sgDICER1, and sgNTC cells were induced with Dox for 4 days in 10cm 874 
dishes. After seeded to a 6-well plate, cells were treated for another 3 days. By the end of the induction, 875 
the culture medium was replaced with Dox+ medium containing 100uM 4sU and cells were labeled for 876 
18h. The medium was refreshed every 6h to keep the 4sU concentration stable. Then cells in each well 877 
were washed with PBS carefully once and the fresh medium containing 10mM uridine (Sigma U3750-1G) 878 
was added. Following 2h and 4h incubation, the medium was aspirated and cells were lysed with 250ul 879 
buffer RLT RNeasy Mini kit with 1:100 V/V β-mercaptoethanol. Total RNA was extracted using the 880 
RNeasy Mini kit, and RNA concentrations were measured by Nanodrop. Samples were stored at -80°C 881 
before further processing. 882 
 883 
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2-5 ug of total RNA from each sample was used for chemical conversion. RNA was diluted into 15ul, and 884 
mixed with 5ul of 100mM IAA, 5ul of NaPO4 (pH 8.0, 500mM) buffer, and 25ul of DMSO. The reaction 885 
was incubated at 50 °C for 15 minutes and was then quenched with 1ul 1M DTT. The RNA was purified 886 
using the Monarch RNA Cleanup Kit (NEB T2030L) and was eluted in 10ul of EB buffer. RNA 887 
concentrations were measured again using the Qubit RNA HS kit (Thermo Q32852) and samples were 888 
immediately used for library construction.  889 
 890 
Full-length and 3’end bulk SLAM-seq were used for different experimental purposes. For full-length bulk 891 
SLAM-seq library construction, the CRISPRclean Stranded Total RNA Prep with rRNA Depletion Kit 892 
(Jumpcode Genomics KIT1014) was used. For 3’end bulk SLAM-seq library construction, an in-house 893 
3’end library preparation workflow was used. In brief, 250-500ng total mRNA was mixed with 1ul 100uM 894 
oligodT primer (ACGACGCTCTTCCGATCTNNNNNNNNNNTTTTTTTTTTTTTTT), 1ul 10mM each 895 
dNTP mix, 0.5ul SUPERase In and the volume was adjusted to 15ul with molecular biology grade water. 896 
The reaction was Incubated at 55C for 5min and was then cooled on ice. 4ul 5xRT buffer and 1ul Maxima 897 
H Minus Reverse Transcriptase (Thermo EP0753) were added to the reaction, and reverse transcription 898 
was performed under the following program: 25 °C for 10min, then 50 °C for 15min. After 0.6x AMPURE 899 
beads purification, 20ul eluate was mixed with 14ul water, 4ul second strand synthesis (SSS) buffer, and 900 
2ul SSS enzyme (NEB, E6111L). SSS was carried out by 1h incubation at 16 °C, then cDNA was extracted 901 
using another round of 0.6x AMPURE purification and the concentration was measured using Qubit 902 
dsDNA HS kit (Thermo Q32851). Read2 tagmentation was performed by mixing 10ng cDNA with 2xTD 903 
buffer (Supplementary file 1) containing 1:20 V/V Nextera Read2-Tn5 (Supplementary file 1) and 904 
incubating at 55 °C for 10 minutes. The reaction was quenched, and the final PCR was conducted in the 905 
same way as EasySci-RNA 10. The final library was purified using 0.8x AMPURE beads. 906 
 907 
Reads processing 908 
For bulk CRISPR screen libraries, bcl files were demultiplexed into fastq files based on index 7 barcodes. 909 
Reads for each sample were further extracted by index 5 barcode matching. Then every read pair was 910 
matched against two constant sequences (Read1: 11-25bp, Read2: 11-25bp) to remove reads generated 911 
from the PCR by-product. For all matching steps, a maximum of 1 mismatch was allowed. Finally, sgRNA 912 
sequences were extracted from filtered read pairs (at 26-45bp of R1), assigned to sgRNA identities with 913 
no mismatch allowed, and read counts matrices at sgRNA and gene levels were quantified.    914 
 915 
For PerturbSci-Kinetics transcriptome reads processing and whole-transcriptome/nascent transcriptome 916 
gene counting, the pipeline was developed based on EasySci10 and Sci-fate19 with minor modifications. 917 
After demultiplexing on index 7, Read1 were matched against a constant sequence on the sgRNA capture 918 
primer to remove unspecific priming, and cell barcodes and UMI sequences sequenced in Read1 were 919 
added to the headers of the fastq files of Read2, which were retained for further processing. After potential 920 
polyA sequences and low-quality bases were trimmed from Read2 by Trim Galore (0.6.7)68, reads were 921 
aligned to a customized reference genome consisting of a complete hg38 reference genome and the dCas9-922 
KRAB-MeCP2 sequence from Lenti-idCas9-KRAB-MeCP2-T2A-mCherry-Neo using STAR (2.7.9a)69. 923 
Unmapped reads and reads with mapping score < 30 were filtered by samtools (1.13)70. Then 924 
deduplication at the single-cell level was performed based on the UMI sequences and the alignment 925 
location, and retained reads were split into SAM files per cell. These single-cell sam files were converted 926 
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into alignment tsv files using the sam2tsv function in jvarkit (d29b24f)71. To minimize the impact of 927 
sequencing errors, we set thresholds on both the quality and the quantity of mismatches. First, we only 928 
considered mismatches with the CIGAR string “M”, and soft-clipped mismatches that failed to map to the 929 
reference genome in the head or at the end of reads were removed. After mismatches overlapping with 930 
intrinsic SNPs were removed, only mismatches with quality scores > 45 were used for 4sU mutation 931 
calling, as the probability of these mismatches to be sequencing errors were lower than 10-4.5 defined by 932 
the sequencer. Referred to sci-fate19, only reads with > 30% of T>C mutations among all mismatches were 933 
identified as nascent reads, and the list of reads was extracted from single-cell whole transcriptome sam 934 
files by the Picard MarkDuplicates program (2.27.4)72. Finally, single-cell whole transcriptome gene x 935 
cell count matrix and nascent transcriptome gene x cell count matrix were constructed by assigning reads 936 
to genes if the aligned coordinates overlapped with the gene locations on the genome. At the same time, 937 
single cell exonic/intronic read numbers were also counted by checking whether reads were mapped to 938 
the exonic or the intronic regions of genes. To quantify dCas9-KRAB-MeCP2 expression, a customized 939 
gtf file consisting of the complete hg38 genomic annotations and additional annotations for dCas9 was 940 
used in this step. 941 
 942 
Read1 and read2 of PerturbSci-Kinetics sgRNA libraries were matched against constant sequences 943 
respectively, allowing a maximum of 1 mismatch. For each filtered read pair, cell barcode, sgRNA 944 
sequence, and UMI were extracted from designed positions. Extracted sgRNA sequences with a maximum 945 
of 1 mismatch from the sgRNA library were accepted and corrected, and the corresponding UMI was used 946 
for deduplication. De-duplication was performed by collapsing identical UMI sequences of each 947 
individual corrected sgRNA under a unique cell barcode. Cells with overall sgRNA UMI counts higher 948 
than 10 were maintained and the sgRNA x cell count matrix was constructed.   949 
 950 
SLAM-seq reads were processed in a similar way with PerturbSci-Kinetics. In brief, for 3’end SLAM-951 
seq, UMI sequences in Read1 were extracted and were attached to the headers of Read2 by UMI-tools 952 
(1.1.2)73, and only read2 were further processed. After polyA and low quality base trimming by Trim 953 
Galore, reads were aligned to the hg38 reference genome by STAR. To align reads from samples with 954 
high-concentration 4sU labeling, more loose alignment parameters were used (--955 
outFilterMatchNminOverLread 0.2 --outFilterScoreMinOverLread 0.2). Unmapped reads and reads with 956 
mapping score < 30 were filtered by samtools, and PCR duplicates in passed reads were further removed 957 
by UMI-tools. Nascent reads were identified and extracted, and gene counting on both whole 958 
transcriptome and nascent transcriptome were performed as mentioned above but at the sample level. For 959 
full-length SLAM-seq, reads were processed similarly but paired-end reads were retained. FeatureCounts 960 
(v2.0.1)74 was used for gene counting on these paired-end strand-specific libraries. A full list of software 961 
and their versions were included in the Supplementary file 4. 962 
 963 
Bulk screen sgRNA counts analysis 964 
For each bulk screen library, read counts of sgRNAs were normalized first by the sum of total counts to 965 
remove the biases from sequencing depth, and then the abundance of each sgRNA relative to the sum of 966 
sgNTC was calculated, assuming the NTC cells had no selection pressure during the screen. The Pearson 967 
correlations across replicates were calculated based on the relative abundances. Then the fraction changes 968 
(After vs. before the CRISPRi induction) of sgRNAs were calculated within each replicate, and the mean 969 
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fold changes across replicates were log2 transformed. The raw counts of another external bulk CRISPRi 970 
screen dataset29 was processed as stated above and the log2 mean relative abundance was compared to the 971 
current study. 972 
 973 
sgRNA singlets identification and off-target sgRNA removal  974 
In the cell mixture experiments, cells with at least 200 whole transcriptome UMIs and 200 genes detected, 975 
and unannotated reads ratio < 40% were kept. If the count of the most abundant sgRNA was at least 3-976 
fold of the second most abundant sgRNA within this single cell, then this cell was identified as a sgRNA 977 
singlet.  978 
 979 
In the screen dataset, cells with at least 300 whole transcriptome UMIs and 200 genes detected, and 980 
unannotated reads ratio < 40% were kept. sgRNA identities of cells were assigned and doublets were 981 
removed based on the following criteria: the cell is assigned to a single sgRNA if the most abundant 982 
sgRNA in the cell took >= 60% of total sgRNA counts and was at least 3-fold of the second most abundant 983 
sgRNA. Then whole transcriptomes and sgRNA profiles of single cells were integrated with the matched 984 
nascent transcriptomes.  985 
 986 
Target genes with the number of cells perturbed >= 50 were kept for further filtering. The knockdown 987 
efficiency was calculated at the individual sgRNA level to remove potential off-target or inefficient 988 
sgRNAs: whole transcriptome counts of all cells receiving the same sgRNA were merged, normalized by 989 
the total counts, and scaled using 1e6 as the scale factor, then the fold changes of the target gene 990 
expressions were calculated by comparing the normalized expression levels between corresponding 991 
perturbations and NTC. sgRNAs with >= 40% of target gene expression reduction relative to NTC were 992 
regarded as “effective sgRNAs”, and singlets receiving these sgRNAs were kept as “on-target cells”. 993 
Downstream analyses were done at the target gene level by analyzing all cells receiving different sgRNAs 994 
targeting the same gene together. 995 
 996 
Gene Ontology analysis of genes with high or low nascent reads ratio 997 
To validate the specificity of 4sU labeling and the computational identification of nascent reads, we 998 
identified features of gene groups with different turnover rates. Single cells were split into nascent 999 
transcriptomes and pre-existing transcriptomes, and were loaded into Seurat33. Nascent transcriptomes 1000 
and pre-existing transcriptomes were normalized, scaled independently, and DEGs between the two 1001 
groups were identified by FindMarkers function33 with default parameters. Then GO enrichment analyses 1002 
were performed using ClusterProfiler75 on upregulated genes (genes with significantly higher fraction of 1003 
nascent counts, FDR of 0.05) and downregulated genes (genes with significantly lower fraction of nascent 1004 
counts, FDR of 0.05) respectively. 1005 
 1006 
UMAP embedding on pseudo-cells 1007 
The count matrix of the “on-target” cells described above was loaded into Seurat33, and DEGs of each 1008 
perturbation (compared to NTC) were retrieved by FindMarkers function33 with default parameters. Cells 1009 
from perturbations with over one DEGs (by FindMarkers function33) were selected. We also included cells 1010 
from genetic perturbations involved in similar pathways of the top perturbations. The fold changes of the 1011 
normalized gene expression between perturbations and NTC were calculated, and were binned based on 1012 
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the gene-specific expression levels in NTC. The top 3% of genes showing the highest fold changes within 1013 
each bin were selected and merged as features for Principal Component Analysis (PCA). The top 9 PCs 1014 
were used as input for Uniform Manifold Approximation and Projection (UMAP) embedding (min.dist = 1015 
0.3, n.neighbors = 10). 1016 
 1017 
Differential expression analysis 1018 
In PerturbSci-Kinetics, pairwise differential expression analyses between each perturbation and NTC cells 1019 
were performed by the differentialGeneTest() function of Monocle 276. To identify DEGs with rate 1020 
changes, we selected significant hits (FDR of 5%, likelihood) with a >= 1.5-fold expression difference 1021 
and counts per million (CPM) >= 5 in at least one of the tested cell pairs. To showcase LRPPRC and 1022 
miRNA pathway perturbations, more stringent criteria were used to obtain DEGs with high confidence: 1023 
significant hits (FDR of 5%, likelihood) with a >= 1.5-fold expression difference and CPM >= 50 in at 1024 
least one of the tested cell pairs were kept. EdgeR was used for bulk RNAseq DEGs analysis. Genes were 1025 
firstly filtered by following thresholds: 1) a minimum of 10 raw counts in at least one sample; 2) genes 1026 
were expressed in at least 50% of samples in each group. Then library sizes were normalized, and 1027 
differential expression analysis was conducted. P-values were corrected by the Benjamini-Hochberg 1028 
method and significant hits were selected at FDR < 5% level. 1029 
 1030 
Synthesis and degradation rates calculation 1031 
After the induction of CRISPRi for 7 days, we assumed new transcriptomic steady states had been 1032 
established at the perturbation level before the 4sU labeling, and the labeling didn’t disturb these new 1033 
transcriptomic steady states. The following RNA dynamics differential equation is used for synthesis and 1034 
degradation rates calculation similar to the previous study30: 1035 

!(#)
!(%)

= 𝛼 − 𝑅 ⋅ 𝛽 (1) 1036 

In which  is the mRNA abundance of each gene,  is the synthesis rate of this gene, and  is the 1037 
degradation rate of this gene. Since the RNA synthesis follows the zero-order kinetics and RNA 1038 

degradation follows the first-order kinetics in cells, !(#)
!(%)

 is determined by 𝛼 and 𝑅 ⋅ 𝛽. 1039 

As steady states had been established, the mRNA level of each gene didn’t change. We can get:  1040 
!(#)
!(%)

= 0  (2) 1041 

𝑅 = &
'

   (3) 1042 

Under the assumption that the labeling efficiency was 100%, all nascent RNA were labeled during the 1043 
4sU incubation, and pre-existing RNA would only degrade. So, for nascent RNA (𝑅(), 𝑅((𝑡 = 0) = 0	 1044 
and 𝛼( = 𝛼 . For pre-existing RNA (𝑅( ), 𝑅)(𝑡 = 0) = 𝑅 = 𝛼

𝛽
 and 𝛼) = 0 . Based on these boundary 1045 

conditions, we could further solve the differential equation above on nascent RNA and pre-existing RNA 1046 
of each gene. 1047 

𝑅( =
𝛼	
𝛽
(1 − 𝑒−𝛽⋅𝑡)	 (4) 1048 

𝑅) =
𝛼	
𝛽
𝑒−𝛽⋅𝑡  (5) 1049 

 1050 
As both 𝑅 and 𝑅( were directly measured in PerturbSci-Kinetics, and cells were labeled by 4sU for 2 1051 
hours (𝑡 = 2), 𝛽 can be calculated from equation 3 and 4. Then 𝛼 can be solved by equation 3. 1052 
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 1053 
Due to the shallow sequencing and the sparsity of the single cell expression data, synthesis and degradation 1054 
rates of DEGs were calculated at the pseudo-cell level. We aggregated the expression profiles of all cells 1055 
with the same target gene knockdown, normalized the expressions of genes by the sum of gene counts, 1056 
and scaled the size of the total counts to 1e6. Synthesis and degradation rates of DEGs in the corresponding 1057 
perturbed pseudo-cell were calculated as stated above. DEGs with only nascent counts or degradation 1058 
counts were excluded from further examination since their rates couldn’t be estimated. 1059 
 1060 
To examine the significance of synthesis and degradation rate changes upon perturbation, regarding the 1061 
different cell sizes across different perturbations and NTC, which could affect the robustness of rate 1062 
calculation, randomization tests were adopted. Only perturbations with cell number >= 50 were examined. 1063 
For each DEG belonging to each perturbation, background distributions of the synthesis and degradation 1064 
rate were generated: a subset of cells with the same size as the corresponding perturbed cells was randomly 1065 
sampled from a mixed pool consisting of corresponding perturbed cells and NTC cells, then these cells 1066 
were aggregated into a background pseudo-cell, and synthesis and degradation rates of the gene for testing 1067 
were calculated as stated above, and the process was repeated for 500 times. Rates = 0 were assigned if 1068 
only nascent counts or degradation counts were sampled during the process (referred to as invalid 1069 
samplings), but only genes with less than 50 (10%) “invalid samplings” were kept for p-value calculation. 1070 
The two-sided empirical p-values for the synthesis and degradation rate changes were calculated 1071 
respectively by examining the occurrence of extreme values in background distributions compared to the 1072 
rates from perturbed pseudo-cell. Rate changes with p-value <= 0.05 were regarded as significant, and the 1073 
directions of the rate changes were determined by comparing the rates from the perturbed pseudo-cell with 1074 
the background mean values. The fold changes of rates for each significant gene were calculated as follows: 1075 
only NTC cells were sampled at the same size as perturbed cells and aggregated, and the background rates 1076 
were calculated at the pseudo-cell level. After resampling for 200 times, these gene-specific rates were 1077 
averaged. Fold changes of the rates = rates in perturbed pseudo-cell / mean rates from the NTC-only 1078 
background. 1079 
 1080 
Of note, in PerturbSci-Kinetics, we used oligo-dT primers for whole/nascent transcriptome capture, which 1081 
only capture 3' ends of transcripts and allow for gene-level feature counting, and most introns within gene 1082 
bodies cannot be covered. Besides, the random tagmentation at the 3' ends of the cDNA during the library 1083 
preparation further confounds the 3’end exon-intron fraction, making it difficult to accurately infer the 1084 
gene-specific splicing status. Additionally, splicing timings vary between different splicing sites within 1085 
the same transcript77, and isoforms could have distinct splicing kinetics. Moreover, incorporating the 1086 
splicing rate into our current rate estimation model is technically challenging, as the one-shot metabolic 1087 
labeling design used in PerturbSci-Kinetics is incompatible with estimating the splicing rate 1088 
mathematically. In fact, at least three labeling time points are needed to solve the differential equation for 1089 
splicing rate estimation30. 1090 
 1091 
Global changes of key statistics upon perturbations 1092 
For global synthesis and degradation rate changes, considering the noise from lowly-expressed genes, we 1093 
selected top1000 highly expressed genes from NTC cells, then calculated their synthesis rates and 1094 
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degradation rates in NTC cells and all perturbations with cell number >= 50. KS tests were performed to 1095 
compare rate distributions between each perturbation and NTC cells. 1096 
 1097 
During the reads processing, the number of reads aligned to exonic/intronic regions were counted at the 1098 
single cell level. Then the distributions of exonic reads percentage in nascent reads from single cells with 1099 
the same target gene knockdown and NTC cells were compared using the KS tests to identify genes 1100 
affecting RNA processing.  1101 
 1102 
The ratio of nascent mitochondrial read counts to total mitochondrial read counts was calculated in each 1103 
single cell, and the distributions of the ratio from single cells with the same target gene knockdown and 1104 
NTC cells were compared using the KS tests to identify the master regulator of mitochondrial mRNA 1105 
dynamics.   1106 
 1107 
In all global statistics examinations, the p-values were corrected from multiple comparisons, and 1108 
comparisons with FDR <= 0.05 were considered as significant. The median value from each perturbation 1109 
and NTC cells were compared to determine the direction of significant changes. 1110 
 1111 
Coverage analysis 1112 
To identify the potential different RISC binding patterns between synthesis/degradation-regulated DEGs 1113 
in DROSHA and DICER1 perturbations, we reprocessed the raw data of Ago2 eCLIP obtained from Hela 1114 
cells (two replicates, SRR7240709 and SRR7240710) from Zhang, K et, al78. Potential adapters at 3’ ends 1115 
of reads were trimmed by Cutadapt79, and the first 6-base UMI were extracted and attached to headers of 1116 
the reads. After STAR alignment69 and samtools filtering70, only uniquely aligned reads were kept and 1117 
deduplication was performed based on the UMI and mapping coordinates using UMI-tools73. Then bam 1118 
files were transformed to the single-base coverage by BEDtools80. The transcript regions of genes-of-1119 
interest were reconstructed based on the hg38 genome annotation gtf file from GENCODE. Briefly, for 1120 
each gene, the exonic regions were extracted and were redivided into 5’UTR, CDS, and 3’UTR by the 1121 
5’most start codon and the 3’most stop codon annotated in the gtf. The Ago2 binding coverages of these 1122 
designated regions were obtained by intersection and were binned. A small background (0.1/base) was 1123 
added for smoothing. The gene-specific signal in each bin was normalized by the number of bases in each 1124 
bin, and the binned coverage of each gene was scaled to be within 0-1. After aggregating scaled coverages 1125 
of synthesis/degradation-regulated genes respectively, the second scaling was performed to visualize the 1126 
relative enrichment of Ago2 binding at UTR compared to the CDS: fold changes of the scaled binned 1127 
coverage relative to the lowest coverage value in the CDS along the aggregated transcript were calculated. 1128 
 1129 
Meta-gene coverage analysis was conducted to visualize the gene body distribution of newly transcribed 1130 
RNA in NTC and AGO2-knockdown samples. Genomic coordinates of protein coding genes on 1131 
chromosome 1-22 and chromosome X were retrieved from the hg38 genome annotation gtf file from 1132 
GENCODE in R. Gene bodies were binned into 50 bins by the tile() function in the GenomicRanges 1133 
package, and an additional 200 bp bin downstream the end of genes were attached. These bins were 1134 
ordered from TSS to gene ends and were exported as bed files separately by strandness using the 1135 
export.bed() function in the rtracklayer package81. For input reads, two nascent reads BAM files per group 1136 
from the pulse-labeling full-coverage SLAM-seq were merged using samtools, then reads with FLAG = 1137 
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83 and 163 were extracted for coverage calculation of genes on the plus strand, and reads with FLAG = 1138 
99 and 147 were extracted for coverage calculation of genes on the minus strand. The gene-specific binned 1139 
coverages were counted using the bedtools intersect command. Binned counts of each gene were 1140 
normalized by total counts in the gene body, and the coverage of any group of genes was finally drawn by 1141 
averaging the normalized signals across genes.   1142 
 1143 
Public ChIP-seq, shRNA RNA-seq, GRO-seq data analysis 1144 
Genes with detectable expression were identified from shControl/shAGO2 bulk RNA-seq in ENCODE. 1145 
Processed gene counts quantification tables were downloaded from the ENCODE portal (ENCSR495YSS, 1146 
ENCSR898NWE). Only genes with mean transcript per million (TPM) > 1 across 4 samples and with 1147 
detected expression in at least 3 of 4 samples were included. Log2 fold changes of each gene upon AGO2 1148 
silencing were calculated by dividing the mean TPM in the shAGO2 group with the mean TPM in the 1149 
shControl group.  1150 
 1151 
Ago2 ChIP-seq bam and narrow peak files from ENCODE (ENCSR151NQL) were merged and were then 1152 
used to identify TSS binding of Ago2. TSS regions of genes with detectable expression (defined as 1153 
upstream 2kb to downstream 2kb around TSS) were retrieved by the promoters() function in the 1154 
GenomicRanges package82. Genes were classified into Ago TSS peak+/- genes based on the overlap 1155 
between their TSS regions with merged Ago2 ChIP-seq narrow peaks identified by findOverlaps() 1156 
function. The Ago2 binding patterns of these two groups of genes were visualized using the 1157 
computeMatrix function in deepTools83, and bed files containing coordinates of corresponding TSS 1158 
regions and the merged ChIP-seq bam file were used as input. 1159 
 1160 
GRO-seq data was downloaded from GEO (GSM2551016, GSM2551017) and were reprocessed to depict 1161 
the transcriptional pausing status of genes. 3’end of reads were trimmed against polyA by Cutadapt79, and 1162 
reads were then aligned to the hg38 reference genome using Bowtie284. After filtering out unmapped reads 1163 
using samtools, bam files were imported to R. TSS proximal regions and transcriptional elongation regions 1164 
of protein coding genes with gene lengths >= 1kb were extracted, and the getPausingIndices() function 1165 
from the BRGenomics package85 was used to calculate the pausing indices of genes. Genes detected in 1166 
both replicates were ranked by the pausing index within the replicate, and an averaged rank was used to 1167 
study the association with Ago2 TSS binding.  1168 
 1169 
Data Availability 1170 
The data generated by this study can be downloaded in raw and processed forms from the NCBI Gene 1171 
Expression Omnibus (GSE218566,  reviewers’ token: itqlgacczrgxpmb).  1172 
 1173 
Code Availability 1174 
The computation scripts for processing PerturbSci-Kinetics were included as supplementary files. Scripts 1175 
and the user manual are available for open access in GitHub: 1176 
https://github.com/JunyueCaoLab/PerturbSci_Kinetics 1177 
 1178 
Supplementary Tables (provided as Microsoft Excel files) 1179 
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Supplementary Table 1: Genes and sgRNAs included in the study. Each gene (“gene_symbol”) has 3 1180 
sgRNAs, and they were named in the format “Gene_number” (“names”). sgRNA sequences were included 1181 
in “sgRNA_seq”. The “gene_class” is the functional category of each gene. 1182 

Supplementary Table 2: Raw sgRNA counts of the bulk screen samples collected at different time points. 1183 
Read counts of each sgRNA (“sgRNA_name”) from 4 replicates at day 0 and day 7 were included. 1184 

Supplementary Table 3: Relative sgRNA abundance fold changes between day 7 and day 0. The 1185 
“Day7_vs_Day0_repX” is the fold changes of relative sgRNA abundance at the gene level (Methods).  1186 

Supplementary Table 4: Information about perturbations that showed significant global synthesis rate 1187 
changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The “direction” is the 1188 
direction of the changes on the global synthesis rates distributions comparing perturbed cells to the NTC 1189 
cells, and the “KD_median/NTC_median” is the quantitative measurement of the changes. The 1190 
“gene_class” is the functional category of target genes (“Perturbations”). 1191 

Supplementary Table 5: Information about perturbations that showed significant global degradation rate 1192 
changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The “direction” is the 1193 
direction of the changes on the global degradation rates distributions comparing perturbed cells to the 1194 
NTC cells, and the “KD_median/NTC_median” is the quantitative measurement of the changes. The 1195 
“gene_class” is the functional category of target genes (“Perturbations”). 1196 

Supplementary Table 6: Information about perturbations that showed significant nascent exonic reads 1197 
ratio changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The “direction” 1198 
is the direction of the changes on the nascent exonic reads ratio distributions comparing perturbed cells to 1199 
the NTC cells, and the “KD_median/NTC_median” is the quantitative measurement of the changes. The 1200 
“gene_class” is the functional category of target genes (“Perturbations”). 1201 

Supplementary Table 7: Information about perturbations that showed significant mitochondrial RNA 1202 
turnover changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The “direction” 1203 
is the direction of the changes in the distributions of mitochondrial nascent/total reads ratio comparing 1204 
perturbed cells to the NTC cells, and the “KD_median/NTC_median” is the quantitative measurement of 1205 
the changes. The “gene_class” is the functional category of target genes (“Perturbations”). 1206 

Supplementary Table 8: Steady-state expression and synthesis/degradation dynamics of mitochondrial 1207 
genes upon LRPPRC, NDUFS2, CYC1, BCS1L perturbations. The “synth_rate”, “synth_FC”, 1208 
“synth_pval”, “synth_direction” are the synthesis rate of the gene in the perturbed cells, the fold change 1209 
of the synthesis rate of the gene in the perturbed cells compared to the NTC cells, the significance of the 1210 
synthesis rate change, and the direction of the synthesis rate changes. The “deg_rate”, “deg_FC”, 1211 
“deg_pval”, “deg_direction” are the degradation rate of the gene in the perturbed cells, the fold change of 1212 
the degradation rate of the gene in the perturbed cells compared to the NTC cells, the significance of the 1213 
degradation rate change, and the direction of the degradation rate changes. The “DEG_qval” and 1214 
“DEG_fold.change” are the multiple comparison-corrected FDR and the fold change of the steady-state 1215 
gene expression change in perturbed cells compared to the NTC cells. 1216 
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Supplementary Table 9: Filtered differentially expressed genes between perturbations with cell 1217 
number >= 50 and NTC. For each gene (“Gene_symbol”), the “perturbation” is the target gene in 1218 
perturbed cells. The “DEGs_direction” is the direction of gene expression changes comparing perturbed 1219 
cells to the NTC cells, and the “DEGs_FC” is the fold change of the gene expression changes comparing 1220 
perturbed cells to the NTC cells. The “max.CPM.between.KD.NTC” and “min.CPM.between.KD.NTC” 1221 
are the pseudobulk expression levels of the gene that showed higher and lower expression in perturbed 1222 
cells or the NTC cells. The expression level was quantified by counts per million. The “qval” is the false 1223 
discovery rate (one-sided likelihood ratio test with adjustment for multiple comparisons).  1224 

Supplementary Table 10: Differentially expressed genes with significant synthesis and/or degradation 1225 
changes. The “perturbations” is the target gene of the perturbed cells, and the “Gene_symbols” is the 1226 
symbols of DEGs with significant synthesis and/or degradation rate changes in corresponding 1227 
perturbations. The type of significant rate change of each gene is included in the “Regulation_type”. The 1228 
“Synth_deg_FC”, the “Synth_deg_direction”, and the “Synth_deg_pval” reflect the fold change, the 1229 
direction of the change, and the randomization test p-value of the rate indicated in the “Regulation_type”. 1230 
“DEGs_FC”, “DEGs_direction”, and “max.expr.between.KD.NTC” are the fold changes of gene 1231 
expression, the direction of the change, and the maximum pseudobulk CPM between the corresponding 1232 
perturbation and the NTC cells. 1233 

Supplementary Table 11: Steady-state expression and synthesis/degradation dynamics of merged DEGs 1234 
upon DROSHA and DICER1 perturbations.  The “synth_rate”, “synth_FC”, “synth_pval”, 1235 
“synth_direction” are the synthesis rate of the gene in the perturbed cells, the fold change of the synthesis 1236 
rate of the gene in the perturbed cells compared to the NTC cells, the significance of the synthesis rate 1237 
change, and the direction of the synthesis rate changes. The “deg_rate”, “deg_FC”, “deg_pval”, 1238 
“deg_direction” are the degradation rate of the gene in the perturbed cells, the fold change of the 1239 
degradation rate of the gene in the perturbed cells compared to the NTC cells, the significance of the 1240 
degradation rate change, and the direction of the degradation rate changes. The “DEG_fold.change” and 1241 
“DEG_qval” are the fold change of the steady-state gene expression change in perturbed cells compared 1242 
to the NTC cells and the multiple comparison-corrected FDR. 1243 

Supplementary files 1244 

Supplementary file 1: Detailed experiment protocols for PerturbSci-Kinetics, including all materials and 1245 
equipment needed, step-by-step descriptions, and representative gel images. 1246 

Supplementary file 2: Primer sequences used in the PerturbSci-Kinetics experiment. The design 1247 
principles and sequences of the oligo pool library, bulk screen sequencing primer, shortdT RT primers, 1248 
sgRNA capture primers, ligation primers, sgRNA inner i7 primers, and P5/P7 primers were included. The 1249 
columns indicate the positions on the 96-well plate (Well positions), an identifier of the sequence (Names), 1250 
the full primer sequence (Sequences), and the barcode sequence (Barcodes). 1251 

Supplementary file 3: The overall costs for PerturbSci-Kinetics library preparation. Reagents used in 1252 
each step were included, and the costs were calculated based on the scale of the real experiment. 1253 
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Supplementary file 4: Computational pipeline scripts and notes for processing PerturbSci-Kinetics data, 1254 
from sequencer-generated files to single-cell gene count matrix. 1255 
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