
Materials and Methods 
We examined variation in 241 reference genomes from 240 species. Each species was 

represented by a single genome, with the exception of Canis lupus, which was represented by 
two genomes—one domestic breed and one village dog. The reference genomes varied in 
quality, with contig N50 values ranging from 1,039 to 56,413,054, with a median of 45,189 
(table S1).  For some of these species, no short-read sequencing data were available from NCBI 
to map to the reference genome (n=8), variant calling failed (n=11), or downstream pipelines 
failed (heterozygosity-related metrics, n=13, PSMC, n=12).  The reference genomes were used 
to estimate homozygous deleterious genetic load; while the short-read sequence data (usually 
from the reference individual) were used to estimate metrics related to historical demography, 
heterozygosity, and heterozygous deleterious variants (fig. S1). We examined correlations 
between these metrics using statistical methods that account for relationships across the 
phylogeny, and examined genomic features of extinction risk to predict the conservation status of 
species. 

 
Metadata 

We compiled metadata on conservation status, diet, and generation time for the 240 
placental mammal species in the Zoonomia alignment (table S1). We determined the 
conservation status (Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered 
(EN) or Critically Endangered (CR)) and population trends (declining, stable or increasing) using 
the IUCN Red List category (IUCN Red List API v. 3) based on the scientific name of the 
species. We use IUCN category as a proxy for extinction risk, however we recognize that 
because the assessments are often done at the species level, the categorization of a species may 
miss important variation between populations.  Where we were able to determine a specific 
subspecies or population for the sequenced sample, we used the IUCN category for the lower 
taxonomic level. For the diet category, we classified each species as either carnivore, herbivore, 
or omnivore based on (54). In cases where species-specific diet information was unavailable, we 
used data reported at the genus level. We categorized as carnivores all species for which other 
animals made up a majority of their diets, including terrestrial vertebrate-eaters, insectivores, 
piscivores, and planktivores; we also considered the vampire bat, a hematophage, to be a 
carnivore. Any animal with a diet composed of both plant products and animal products was 
considered an omnivore. Species for which the diet was all or nearly all plant products were 
considered herbivores; some of these species consumed insects occasionally or as a minor part of 
their diets. For generation time, we used a published database of mammalian generation lengths 
(60). If a species was not in the database, we used the value from the next closest species. We 
determined species specific mutation rates per generation by multiplying an average mammal 
mutation rate of 2.2e-9 basepairs per year (21) by the species-specific generation time in years.  

We compiled additional metadata associated with provenance of the specific sample that 
was sequenced for the genome of each species. For 39 samples used for reference genome 
assembly, there were no publicly available short-read Illumina sequencing data, which were 
necessary for analyses based on heterozygous sites (i.e. heterozygosity, segments of 
homozygosity, heterozygous deleterious variants, and PSMC). For 31 of these we identified an 
alternate sample with resequencing data, choosing a sample as similar to the reference individual 
as possible (e.g. from the same population). For each sample (including both reference genome 
samples and, if different, short-read data samples), we determined subspecies or population 
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information and whether the sample was a wild (including captive offspring of wild-born 
parents), captive, or domesticated individual. We obtained sample information from the NCBI 
records and published papers that used the sample, such as the genome announcement papers. In 
some instances, insufficient metadata were available, but informal project summaries provided 
details. For 16 samples, no additional data were available and the sample metadata were marked 
as unknown.  

 
Alignment and variant calling of short-read sequencing data 

 We interrogated the assemblies included in the Zoonomia alignment for heterozygous 
positions using the GATK best practices pipeline as described previously (7). We removed 
adapters with Cutadapt (version 1.10)(67). This step was not done for the alignments used for 
PSMC analysis for the original Zoonomia genomes (7), but this difference should not affect our 
results since the alignment algorithm soft clips reads (57). We mapped the paired-end sequencing 
data corresponding to each assembly against their respective assemblies using BWA mem 
(version 0.7.15)(57). We marked and removed optical duplicates using the PICARD 
MarkDuplicates tool (version 2.5.0)(68). Finally, we called heterozygous variants using the 
Haplotypecaller module of the GATK software suite (version 3.6)(58). 

 

Phylogenetic regression  
All regressions of variables across species were conducted with phylogenetic linear 

regression or phylogenetic logistic regression in the R package phylolm (55), incorporating the 
phylogenetic tree with branch lengths (56) to account for non-independence. Where we report 
means for groups compared in phylogenetic regressions, we report the phylogenetically-adjusted 
means. 

 
Dynamics of historical effective population sizes 

  We inferred the history of effective population sizes (Ne) for each species using PSMC 
(version 0.6.5-r67)(59). We used the short-read alignments generated for variant calling of 
scaffolds greater than 50 kb (69). For each alignment, we used samtools depth (version 1.11-3-
g7028dd4)(70) to determine the average depth of coverage. To prepare for PSMC, we generated 
a pileup file with samtools mpileup (version 1.7)(70) from the 50-kb alignment files, retaining 
anomalous read pairs (-A) and downgrading mapping quality for reads with excessive 
mismatches (-C50). We then called variants on the pileup file using bcftools call (version 
1.8)(71), using the consensus caller (-c). From the variant file we generated a consensus fastq file 
using vcfutils vcf2fq (version 2014)(70), with a minimum coverage of one-third the sample's 
average coverage and a maximum coverage of two times the sample's average coverage. We then 
generated a PSMC input fasta file using the PSMC's fq2psmcfa with a minimum base quality 
score of 20 (-q20). Finally, we ran PSMC with default parameters, except we altered the 
parameter intervals to -p "4+25*2+4+6", as suggested for humans (72). We rescaled the output 
of PSMC using the species-specific generation times and mutation rates (see Metadata section).  

To estimate historical Ne, we calculated the harmonic mean from the PSMC estimates of 
effective population size through time, excluding time intervals less than 10 kya. While our 
samples varied in level of inbreeding, we do not expect this to have a substantial impact on our 
estimates of historical Ne. Previous work examining inbred samples showed similar PSMC 
curves regardless of whether runs of homozygosity were included or excluded in the analysis 
(38, 73).  Additionally, our genomic data varied in other important aspects, including genome 
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quality and coverage, and PSMC has been shown to be robust to variation in these characteristics 
(39, 74, 75).  

 
Inferring recent population declines from Ne/Nc ratios 

To compare contemporary population sizes to historical Ne, we obtained census population 
estimates (Nc) for 89 species from the PanTHERIA database (15), estimating Nc as the product of 
population density and geographic area from census data (15, 61). Although not a true population 
census, it provides an overall gauge of the potential number of individuals within a species’ 
current distribution. Nc estimates ranged widely across species, from 2,909 (Bison bison) to 
65,971,017,419 (Procavia capensis). Although the values are not meant to be interpreted as real 
census population sizes, they provide a gauge of relative census population sizes across species. 
As expected, Nc was strongly correlated with IUCN status (phylolm, meanthreatened=16,619,347; 
meannon-threatened=90,341,802; p=6.1e-7), as it is a criterion for IUCN status assessments, but 
examining Ne/Nc ratios can nonetheless provide additional information on recent declines not 
reflected in the genome. Species with larger Ne/Nc ratios were slightly more likely to have 
“declining” population trends classified by the IUCN Redlist than “stable” or “increasing” 
(phyloglm, β= 0.59, p=0.026, where each 10-fold increase in Ne/Nc increases odds of being 
categorized as declining by 59%), suggesting that Ne/Nc  may be useful for identifying recent 
declines. Ne/Nc ratios are influenced by life-history traits, including mating strategy, range size, 
trophic level, generation time, population structure and population fluctuations (14, 76), but we 
nonetheless found a comparable relationship between Ne/Nc and conservation status within 
Primates (phylolm, meanthreatened=3.46e-3; meannon-threatened=1.11e-3; p=0.029), the only group 
with enough Ne/Nc estimates in both threat categories, suggesting that it is not driven by life-
history traits alone. Because Ne/Nc ratios require population census information, and thus it is not 
useful for informing conservation status of species that lack this information, Ne/Nc may 
nonetheless be valuable for identifying species with historically large populations that have 
recently declined. 

 
Estimating runs of homozygosity (RoH) and heterozygosity 

 We used an identical strategy to the Zoonomia data release paper to identify runs of 
homozygosity (RoH) (7). Briefly, for every assembly, we calculated the ratio of heterozygous 
positions per callable base pair in non-overlapping, 50-kb windows. Then, we used the 
pomegranate python environment (77) to fit a 2-component Gaussian Mixture Model (with a 
third component to capture outliers and low confidence windows, such as windows with large 
amounts of missing data) to the joint distribution of all heterozygosity windows in the assembly. 
These joint distributions are expected to be bimodal, with a sharp peak at the lower tail of the 
distribution corresponding to low heterozygosity regions, such as runs of homozygosity. Finally, 
each window was assigned to its most likely component (RoH or non-RoH) based on the 
model’s posterior probabilities. We note that this method is unable to distinguish between true 
segments of homozygosity and other genomic regions with very low heterozygosity. However, 
given the large window size, we expect that only a small proportion of the genome would be 
miscalled due to low heterozygosity.  Additionally, all species are likely to be impacted by this 
minor bias, so we do not expect it to substantially affect relative estimates of metrics using RoH. 

For each species, from the windows assigned as either heterozygous or homozygous we 
calculated the proportion of the genome in RoH (fRoH) (fig. S15), genome-wide heterozygosity, 
and outbred heterozygosity.  To estimate fRoH we calculated the length of the genome in RoH 
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and divided it by the total length of the genome assigned as either RoH or non-RoH. We next 
calculated genome-wide heterozygosity as the mean of the heterozygosity estimates from the 50-
kb windows, weighted by the length of the segment to account for the shorter segments at the 
ends of scaffolds. Lastly, we estimated heterozygosity in non-RoH regions (i.e. outbred 
heterozygosity) using the mode of the distribution of 50-kb window heterozygosity estimates 
with regions identified as RoH excluded. To ensure the accuracy of the estimation of the mode of 
the non-RoH distributions, we manually inspected both the full distribution and the non-RoH 
distribution. In 25 instances, we needed to correct the automated call. One scenario where this 
occurred was when the full distribution was not bimodal due to low overall heterozygosity and 
the mode of the distribution was zero. For these, we examined the full distribution and set 
heterozygosity to the peak when most windows were non-RoH. The second scenario where 
automated calls needed to be corrected was when the distribution of the non-RoH segments was 
bimodal due to miscalled RoH. In these instances, we were able to visually identify a clear non-
RoH peak in the distribution. 

Adding neutral diversity statistics for 79 additional species relative to our previous analysis 
(7), we substantiate the result that species with threatened IUCN status had, on average, 
significantly lower genome-wide heterozygosity (phylolm, meanthreatened=0.0024, meannon-
threatened=0.0029, p=0.017; fig. S2). However, unlike the previous results, we found that the 
proportion of the genome in RoH (fRoH) was highly variable across the expanded dataset (fig. 
S15), and the mean was actually lower for threatened species compared to non-threatened 
species (phylolm, meanthreatened=0.21, meannon-threatened=0.27, p=0.015). This contrasting result is 
likely due to the skewed distribution of RoH (fig. S15). Furthermore, intraspecific variation in 
heterozygosity and fRoH, which is not captured in our data because we used a single individual 
from each species, may add variability that makes any correlation with endangerment status 
more difficult to detect.  

 
Estimating deleterious genetic load 

        We estimated homozygous substitutions from the reference genome sequences, 
calling derived substitutions relative to the most recent ancestral sequence in the multispecies 
alignment. Reconstructed ancestral sequences are included in the multispecies alignment HAL 
file (https://cglgenomics.ucsc.edu/data/cactus/) that was previously generated using the program 
Progressive Cactus (7), which implements ancestral reconstruction for all nodes in the multiple 
alignment procedure by incorporating multiple ingroup and outgroup sequences (78). We used 
the halBranchMutations tool in the Comparative Genomics Toolkit (62), which annotates the 
locations of single nucleotide substitutions on a branch-by-branch basis relative to the closest 
ancestral node, thus calling derived substitutions arising along the branch for each species in the 
alignment. We assume that most of these substitutions are likely to be fixed because typically 
enough time has elapsed since the ancestral node for the derived alleles to have become fixed or 
lost (on the order of <4Ne generations)(63). We found that genomic windows that aligned to 
multiple regions of the genome tended to have many substitutions. Because querying the 
multispecies alignment HAL file to directly identify regions with duplicate alignments is very 
computationally expensive, we filtered regions with more substitutions than expected from a 
poisson distribution, though this step likely excludes true hypervariable regions from our 
analysis. Therefore, we filtered potentially spurious calls by fitting the number of substitutions in 
all 1KB windows across the genome to a poisson distribution, and removing windows identified 
as outliers at alpha=0.1 using the function aout.pois in the R package alphaOutlier 
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(https://CRAN.R-project.org/package=alphaOutlier). Heterozygous variants (which have, by 
definition, one derived and one ancestral allele) were identified from single sample, short-read 
data mapped to the reference genome of each species as described above. We included in our 
analysis only single nucleotide polymorphisms, heterozygous sites with genotype quality (GQ; 
the Phred-scaled confidence that the genotype assignment is correct)>80, and read depth (DP) < 
three standard deviations from the mean DP across variant sites for a given sample. 

To assess the functional impact of each derived mutation, we used 1) evolutionary 
conservation at the site, and 2) the estimated impact of the mutation on protein-coding genes. 
First, for evolutionary conservation we assigned human-based conservation -log10 p-values 
(phyloP scores) estimated by the Zoonomia consortium (9). Briefly, the PHAST v1.5 package: 
https://github.com/CshlSiepelLab/phast (79) was used to estimate phyloP scores under a null 
hypothesis of neutral evolution, performing a likelihood ratio test at each alignment column (--
method LRT) of the human-referenced, 241-way, duplicate-filtered alignment. To assign these 
phyloP scores to derived mutations identified in each genome, we lifted over all derived 
mutations to the human genome using halLiftover and the 241-way mammalian alignment, 
ignoring paralogous alignments using the --noDupes option (62). We were specifically interested 
in evolutionarily conserved sites which have a positive phyloP score, and thus to minimize the 
influence of negative phyloP scores that reflect accelerated evolution (80), we set all negative 
phyloP values to 0. We noted differences in genome-wide phyloP scores across taxonomic 
orders. To determine whether the differences could stem from using human-based phyloP scores, 
we also assigned phyloP scores derived from mouse and dog genomes to heterozygous sites for a 
subset of 115 genomes from across the phylogeny. Mean phyloP scores from human, mouse and 
dog were highly correlated (r2>0.99), indicating no substantial bias stemming from the genome 
used as the basis for phyloP scores. Furthermore, in tests that account for phylogenetic 
relationships (phylolm), mean phyloP scores did not significantly differ across taxonomic orders, 
suggesting that phylogenetic regressions adequately account for variation across orders. 
Specifically, taxonomic order did not explain mean phylop across substitutions better than 
intercept-only phylogenetic regression models (run with the phylostep function of phylolm), 
suggesting that the significant relationships between phyloP and other variables identified using 
these methods were not driven by the phylogeny.  

Second, we inferred functional impacts from genome-specific gene annotations. Genes were 
estimated by lifting over human annotated transcripts through genomes in the alignment via 
halLiftover (81). Briefly, the human exon intervals were lifted over to the target species, and for 
each exon the resulting range was consolidated into a single range per contig with 500 bp added 
to both ends. The target sequence within the resulting interval was then aligned to the human 
protein sequence using exonerate (82), keeping only the best alignment. The alignment was 
checked to make sure that it resulted in a contiguous reading frame, that the predicted protein 
started with methionine, and that the predicted protein was within 90-110% of the length of the 
human reference protein. Using these gene annotations for each genome, we estimated 
synonymous, missense and loss-of-function (LoF) variants using the program SnpEff v.5.0e with 
default settings (64). SnpEff defines LoF variants as those causing complete loss of function of 
the affected transcripts: stop codon-introducing (nonsense) or splice site-disrupting single 
nucleotide variants predicted to disrupt a transcript's reading frame, affecting more than 50% of 
the protein-coding sequence. For homozygous sites, the effect of the ancestral allele was 
predicted relative to the focal genome, and thus homozygous LoF substitutions could not be 
reliably called, and we instead focused only on missense substitutions for homozygous sites. We 



 
 

 
 

36 

assumed that mutations at sites that are more conserved, that cause missense and LoF changes in 
protein-coding genes, especially those that show lethality as a result of LoF, are more likely to be 
harmful and to contribute to genome-wide deleterious genetic load (19).  

Given these assumptions, we measured homozygous genetic load as the distribution of 
phyloP scores across all homozygous substitutions (mean and Pearson's kurtosis estimated from 
the moments package in R), the proportion of homozygous substitutions in protein-coding genes 
that are missense, and the proportion of homozygous substitutions that are at an evolutionarily 
conserved site (phyloP>2.27; (81)). Because homozygous substitutions were estimated for each 
species relative to the closest ancestral node in the phylogeny, the number of substitutions 
depended on the distance to the nearest species in the dataset, and ranged from 145,602 for Cavia 

tschudii (montane guinea pig) to 53,919,964 substitutions for Hystrix cristata (crested 
porcupine). There was a negative correlation between the proportion of putatively deleterious 
substitutions and the distance between a species and its closest ancestor (e.g. log-log linear 
regression r2=0.415 for missense substitutions at conserved sites). Comparisons between closely 
related species are typically enriched for nonsynonymous substitutions relative to more distant 
species (41). To adjust for this bias, we performed log-log linear regressions of homozygous 
genetic load variables against the total number of substitutions, and for variables that were 
significantly correlated (proportion of missense substitutions, proportion of conserved 
substitutions, proportion of missense substitutions at conserved sites, and kurtosis of phyloP), we 
used the residuals for subsequent statistical tests of the relationship between genetic load and 
demographic variables. We reported p-values for the branch-length adjusted variables, and 
presented the non-adjusted values and their coefficients in figures for readability and 
interpretability. For phylogenetically corrected logistic regression tests (phyloglm), we present 
coefficients (β) converted to the change in odds of being threatened using eβ-1. 

To further parse the potential fitness consequences of mutations, we estimated the 
proportion of homozygous missense, heterozygous missense and heterozygous LoF single 
nucleotide mutations in genes that differ in their essentiality (i.e. the requirement of a gene for an 
organism’s survival). We limited the analysis to single-copy genes with associated viability 
phenotypic data in knockout mice as classified by the International Mouse Phenotyping 
Consortium (IMPC) (23). From all genes (annotated with human orthologs as described above), 
we selected single-copy genes using the BUSCO mammalia_odb10 dataset, searching pub_og_id 
names against the OrthoDB v.10 database, and retaining hits identified as single-copy in >90% 
of the mammalian species set. The IMPC set of genes with a viability phenotype (Data Release 
15.0) is provided for one-to-one mouse-human orthologs, which achieve an agreement support 
score of at least 5 out of 12 of the inference methods implemented by HGNC Comparison of 
Orthology Predictions (HCOP; i.e., support>=5, one-to-one in both directions, human to mouse 
and mouse to human). Single-gene knockout mouse lines are assigned a lethal, subviable or 
viable phenotype category based on the observed number of viable homozygote pups at pre-
weaning stage. These categories can be used as a proxy for gene essentiality and, consequently, 
for the potential fitness impacts of mutations in these genes (23). The number of genes in each 
category varied across species depending on the completeness of the annotation for that genome. 
The IMPC lethal category had on average 263 genes annotated in each genome (range 19-782), 
and the IMPC viable category had on average 530 genes (range 40-1564). Because there were 
relatively few genes in the IMPC subviable category, and the results from the subviable category 
were qualitatively similar to the lethal category, we presented results from only the viable and 
lethal gene categories in the main text. To minimize noise associated with estimation of 
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heterozygous variants from low sequencing depths, we restricted the analysis to 131 genomes 
with mean read depth >= 20x and mean genotype quality (GQ; the Phred-scaled confidence that 
the genotype assignment (GT) is correct) >= 80 across heterozygous sites. For homozygous 
substitutions, we restricted the analysis to 220 genomes with >=10,000 substitutions in coding 
regions. We evaluated both missense and LoF variants at heterozygous sites, and missense 
substitutions for homozygous sites. From the genome of a single individual, we are likely to 
capture many thousands of mildly and moderately deleterious alleles that are at high frequency 
or fixed (drift load), but only a few highly deleterious/lethal alleles (which are typically rare in 
the population and across the genome, and comprise mainly inbreeding load); thus we likely do 
not have high power to detect differences in highly deleterious alleles between species.  

 
 

Correlations between demography, genetic diversity, genetic load and conservation status 
Species with smaller historical effective population sizes tend to have higher proportions of 

mildly to moderately deleterious mutations in their genomes. The proportion of homozygous 
substitutions at conserved sites was negatively correlated with species Ne (phylolm, p=9.65e-3, 
β= -1.14e-3, where each 10-fold increase in Ne corresponds to a 1.14e-3 decrease in the 
proportion, fig. S4A), and the proportion of homozygous missense substitutions was negatively 
correlated with species Ne (phylolm, β= -0.020, p=7.76e-5; fig. S4B). Phylop kurtosis (which 
describes the extremity of phyloP outliers in the tail of the distribution across substitutions) was 
positively correlated with Ne (phylolm, β=0.851, p=0.014), i.e. species with smaller Ne had 
smaller right tails, suggesting fewer extreme conservation scores. In contrast to historical Ne, 
neither genome-wide heterozygosity nor the proportion of the genome in RoH (metrics that are 
influenced by more recent population history) were significantly correlated with the proportion 
of deleterious variation in the genome (phylolm, all p>0.098).  

We then parsed the potential fitness impacts of mutations by examining genes classified as 
having lethal, subviable and viable phenotypes in knockout mice (figs. S5-S6). As expected for 
genes under strong purifying selection, there were proportionally fewer missense variants in 
subviable and lethal gene categories compared to genes in the viable category across species 
(ANOVA, all p<2e-16, fig. S7), validating the relative impacts of mutations in genes inferred 
from IMPC categories. The historical Ne of species was negatively correlated with the proportion 
of heterozygous missense variants for all IMPC categories (phylolm, all p< 2.53e-3; fig. S5), and 
with homozygous missense substitutions in the viable and lethal categories and in all gene 
categories combined (phylolm, all p< 1.72e-5; fig. S5). By contrast, heterozygous LoF variants 
were not significantly associated with Ne, except for a negative correlation for LoF alleles in 
IMPC lethal genes (phylolm, p=0.019; fig. S5), and the proportion of LoF alleles did not 
significantly differ between threatened and non-threatened species (fig. S6). Because of the rarity 
of LoF alleles in the genome, we had little power to test for differences in LoF alleles across 
species. To assess whether differences in annotation impacted our LoF results, we reran the 
regression with Ne using LoF estimates only for species with at least 200 genes in the IMPC 
lethal and viable categories and found that the results did not qualitatively change. Populations 
with smaller Ne had larger variability in the proportion of LoF alleles, especially in genes in the 
IMPC lethal category (fig. S5); however, the overall number of heterozygous sites is lower in 
these species, which adds additional stochasticity to the estimates. 

While we do find that species with small Ne have proportionally higher genetic load, species 
with large Ne are expected to have more deleterious alleles segregating at low frequency by count 
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(12, 22). We examined heterozygous deleterious variants, normalized by the number of genes 
annotated in each genome, and found that that species with larger Ne have more heterozygous 
missense variants in IMPC viable genes (log-log phylolm, β=0.222, p=0.002) and IMPC lethal 
genes (log-log phylolm, β=0.167, p=0.03), as expected from theory. 

Deleterious genetic load in threatened compared to non-threatened species was often, but 
not always, consistent with expectations for small compared to large populations, respectively. 
Phylop kurtosis was lower on average in threatened than non-threatened species (phylolm, 
meanthreatened=22.03, meannon-threatened=22.75, p=0.001), a trend largely driven by Carnivora 
(phylolm, meanthreatened=24.39, meannon-threatened=25.95, p=0.047) and Primates (phylolm, 
meanthreatened=23.96, meannon-threatened=25.32, p=7.9e-4)(fig. S8). There was no significant 
difference in phylogenetically corrected means of proportional genetic load between threatened 
and non-threatened species, including the proportion of missense substitutions (phylolm, 
p=0.31), the proportion of substitutions at conserved sites (phylolm, p=0.46), and the proportion 
of missense substitutions at conserved sites (phylolm, p=0.53)).  

There were significant relationships between fixed genetic load and the odds of being 
threatened, however, the relationship was different for protein-coding genes compared to 
evolutionarily conserved sites genome-wide. Species that had proportionally fewer homozygous 
substitutions at evolutionarily conserved sites across the genome were more likely to be 
threatened in logistic regression tests (phyloglm, β= -0.52, where each 1% increase in these 
substitutions is associated with a 52% decrease in odds of being threatened; p=1.38e-05; fig. 
S4C), even though species with smaller Ne tended to have proportionally more homozygous 
substitutions at conserved sites (phylolm, p=9.6e-3; fig. S4A). Species with lower kurtosis of the 
phyloP distribution across substitutions (i.e. fewer extremely conserved outliers) were also more 
likely to be threatened (phyloglm, β= -0.17, p=0.018, fig. S8). In protein coding regions, by 
contrast, species with proportionally more missense substitutions were more likely to be 
threatened (phyloglm, β=0.23, where each 1% increase in these substitutions is associated with a 
23% increase in odds of being threatened; p=0.002; fig. S4D). Genomes with proportionally 
more missense substitutions in IMPC categorized genes were also more likely to be those of 
threatened species for nearly all gene categories (phyloglm, all p<0.053; fig. S6).  

 
Impact of variation in annotation performance across species 

The number of genes annotated in each genome across species varied widely (range=1760-
8465, mean=5992, std. dev.=1311), with Primate genomes having the most genes annotated. 
However, because we estimated genetic load as the proportion of deleterious mutations relative 
to total coding mutations (and not by counts of deleterious mutations), there was not a strong 
effect of different numbers of annotated genes used in the analysis. To determine whether 
differences in annotation performance may have impacted our results, we estimated the 
proportion of missense substitutions using only the subset of genes that were annotated in at least 
200 species. The results were very similar and qualitatively identical. The estimated proportion 
of missense substitutions for species using the restricted and full sets of single-copy BUSCO 
genes were highly correlated (r2=0.94). The significance of the relationships between the 
proportion of homozygous missense substitutions and threatened status (phyloglm, β= 0.20, 
p=0.013), and between the proportion of homozygous missense substitutions and Ne (phylolm, 
β= -0.019, p=1.72e-5) were also qualitatively identical with the more restricted set of genes 
relative to the full set. 
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Additional lines of evidence suggest that overall our estimates of genetic load are robust. 1) 
The observation of proportionally fewer deleterious mutations with increasing Ne fits theoretical 
expectations that purifying selection is more effective at removing/reducing deleterious alleles in 
large populations, and confirms that our classification of deleterious mutations is correlated with 
the true deleterious fitness impacts across mutations. 2) Mutations and derived alleles were 
estimated using distinct methods for homozygous versus heterozygous sites. (Homozygous 
derived substitutions were called relative to ancestral reconstructions from the multispecies 
alignment, and their impact inferred from evolutionary conservation and/or changes to protein 
coding sequences, whereas heterozygous variants were called from short-read data mapped to 
reference genomes, and a single derived allele was assumed.) Yet there are negative correlations 
between Ne and proportional genetic load for both mutation types (Fig. 2), which further supports 
our classification of deleterious alleles.  

 
Using single genomes to represent genetic load of a species 

While a single genome can never encompass intraspecific variation, by using a single 
genome per species we were able to include species that had minimal genomic resources and 
increase the number of species analyzed. The proportions of deleterious mutations are driven by 
the effects of purifying selection to remove these variants and the effects of genetic drift over 
time, and thus we expect that individuals within a species should have similar proportions of 
genetic load, and these proportions would not rapidly change with, for example, recent changes 
in demography. For example, under population contraction, all variants (deleterious and non-
deleterious) are expected to become increasingly homozygous, but the proportion of deleterious 
and non-deleterious homozygous mutations would not change much in the short term.  

Empirical studies suggest that most individuals within a species have similar levels of 
proportional genetic load. For example, van der Valk, et al. (29) evaluated load based on 
evolutionary conservation scores (GERP) across mammals, including resequencing data from 
multiple individuals, and found that intraspecific variability in genetic load is typically small (+/-
SD 1.3%), and is smaller than interspecific variability. In a study of the vaquita (Phocoena 

sinus), intraspecific variation in the proportion of deleterious variants was also small relative to 
interspecies variability (83). Other studies also suggest that proportional drift load is not sensitive 
to recent demographic history (84). Although intraspecific variability can not be captured by 
sampling a single individual, these studies suggest that it will often provide a reasonable estimate 
of drift load that has accumulated over long evolutionary time periods in a given species.  

The only two conspecific genomes in the dataset, the domestic dog and the village dog, 
have shared evolutionary histories until very recently, when lineages began to diverge in the 
Victorian Era. As expected, the domestic dog has slightly lower historical Ne (Ne=2,131) than the 
village dog (Ne=2,356), and the domestic dog had a slightly higher proportion of homozygous 
missense substitutions (0.3603) than the village dog (0.3591). These differences are very small 
compared to all of the species in the dataset, which ranged from 0.224-0.434 across 239 
genomes, and the two dog genomes were 202nd and 206th when species were ranked by this 
metric. These measures of genetic load reflect older, shared evolutionary histories that have 
changed little with recent population divergence and different selective conditions. Other studies 
also suggest that proportional drift load is not sensitive to recent demographic history. In 
southern white rhinos, individuals sampled before a population bottleneck and after the 
bottleneck showed no difference in the proportions of homozygous missense mutations relative 
to homozygous synonymous mutations (84). In both of these examples, however, the populations 
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have diverged very recently (≲200 years). With increasing time since divergence between 
populations, samples from different populations are expected to become increasingly dissimilar. 

 
Estimating heterozygosity and genetic load across homologous windows 

We used the genomic distribution of heterozygosity and genetic load across mammalian 
taxa to train machine learning models for predicting conservation status (see below for machine 
learning methods). To generate matrices of heterozygosity and genetic load across homologous 
windows, we lifted over 50KB windows of 174 species to windows of the human genome using 
halLiftover, assigning the estimates of RoH, heterozygosity, mean phyloP across substitutions, 
and number of missense substitutions, from windows of each species to the window of the 
human genome. We averaged heterozygosity and the amount of RoH in each human-based 
window, and removed windows with fewer than 5KB that lifted over.  

  
Statistical regression models of threatened status using genomic variables 

We took three approaches to model conservation status across species using regression 
models. First, we used a phylogenetic logistic regression model, which accounts for evolutionary 
relationships across species. This model allowed us to test the significance of predictor variables, 
but does not readily make predictions for species with unknown threat status. Second, we used 
ordinal regression models, which estimate parameters based on specific IUCN categories. We 
included taxonomic order as a factor to account for phylogenetic relationships. These models 
allowed us to test the significance of predictor variables and make predictions for species with 
unknown threat status. Third, we used principal components (PCs) to summarize genomic 
variables, and tested the significance of PCs as predictors of threatened status using logistic 
regression. We also tested the ordinal regression and PC models within taxonomic orders to 
explore how the predictors of conservation status vary with taxonomy. 

We incorporated genomic variables with taxonomic order and dietary trophic level, a 
known correlate of extinction risk (65), into these regression models. We subsetted the full 
dataset of 240 species to remove 16 domesticated species. We identified 13 possible predictor 
variables related to genomic heterozygosity and genetic load (table S2). We examined these 
numeric variables for normality by visualizing Q-Q plots, transforming as necessary to improve 
normality and rescaling all variables to a Z-score. We then removed the three species with an 
IUCN status of "Data Deficient". 

 We estimated model error by running the ordinal regression and PC regression models on 
80% of the data and using the predict function from the R stats package to predict the threatened 
status of the remaining 20% of the data. Our estimate of model error was the mean of 100 runs 
with different data subsets. 

 We used a phylogenetic logistic regression model to determine which genomic features 
were most predictive of conservation status and to calculate the odds of a classification of 
"threatened" (IUCN NT, VU, EN, CR categories), as compared to non-threatened (IUCN LC 
category). We combined all four non-LC categories to increase the power of our analyses and 
balance sample sizes between threatened and non-threatened groups. Visual inspection of 
genomic variables suggested that the four threatened categories were more similar to one another 
than to the LC category (fig. S2). To select variables for inclusion into the final model, we used 
phyloglm from the R phylolm package (version 2.6.3)(55) with the phylogenetic tree generated 
from the X chromosome for the 240 species (56). We tested each of the 13 heterozygosity and 
load variables and two categorical covariates (diet category and wild versus captive status) 
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individually against threatened status, dropping variables that were not significant at a p=0.10 
threshold. For the remaining numeric variables, we examined pairwise correlations and for pairs 
with a correlation greater than 0.7, we removed the variable of the pair with the higher p-value in 
the individual models predicting conservation status. We ran phyloglm for the final phylogenetic 
logistic regression model with the variables that remained after filtering for significance and 
correlation. We retained both categorical covariates (the diet category of the species and wild 
versus captive status of the short-read data sample) in the final model because they were 
significant (p<0.10) when considered individually, and to account for their possible influence on 
heterozygosity and fRoH estimates. We dropped four numeric variables that were not significant 
individually (p>0.10), and dropped three other numeric variables that were highly correlated 
with, but less significant than, another variable. The final model included the phylogenetic tree, 
two categorical covariates, three variables related to genome heterozygosity and fRoH, and three 
variables related to genetic load. In this final model, both diet category and wild versus captive 
status significantly predicted threatened status (p<0.05); and two numeric variables significantly 
predicted threatened status (p<0.05): harmonic mean of the historical effective population size 
and proportion of the genome in RoH. As expected, lower historical effective population sizes 
increase the odds of being classified as threatened. Contrary to expectations, a lower proportion 
of the genome in RoH increases the odds of being classified as threatened, likely due to the 
skewed distributions of RoH and the captive samples included in the analysis. None of the 
genetic load metrics were significant in this model. 

 We used an ordinal regression model to determine which genomic features were most 
predictive of IUCN category, to estimate the probability of each IUCN category, and to examine 
how these probabilities covary with taxonomic order, diet category, and wild versus captive 
status. Due to the sparsity of species in a number of taxonomic orders, for this model we used 
only five orders that had a sufficient number of species (Carnivora, Cetartiodactyla, Chiroptera, 
Primates, and Rodentia). To select variables for inclusion into the final model, we used polr from 
the R MASS package (version 7.3.51.4)(85). We tested each of the 13 heterozygosity and load 
variables and three categorical covariates individually against IUCN category, dropping 
variables that were not significant at a p=0.10 threshold. For the remaining numeric variables, we 
examined pairwise correlations and for pairs with a correlation greater than 0.7, we remove the 
variable of the pair with the higher p-value in the individual models. We dropped six numeric 
variables because they were not significant individually (p>0.10); we dropped three other 
variables due to high correlation with and lower significance than another variable. We ran polr 
for the final ordinal regression model with the variables that remained after significance and 
correlation filtering. The final model included all three covariates, one variable related to 
heterozygosity, and three variables related to genetic load, and had a cross validation (CV) error 
of 31% for classification of threatened versus non-threatened. In the final model, taxonomic 
order, diet category, and harmonic mean of the historical effective population size significantly 
(p<0.05) predicted IUCN status. As with the previous model, lower historical Ne indicated an 
increased probability of being classified as threatened. The impact of a lower historical Ne was 
greater on species with a diet classification of herbivores, as compared to omnivores and 
carnivores (Fig. 3B). We then modeled extinction risk within the three taxonomic orders with 
sufficient samples in threatened and non-threatened categories (Carnivora, Cetartiodactyla, and 
Primates), using the same process as above (excluding the taxonomic order variable) to select 
variables in order-specific ordinal regression models. When examining taxonomic order, the 
impact of historical Ne was reduced in Chiroptera and Rodentia (Fig. 3C). 
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 To retain the information from all predictor variables and account for the correlation 
between them, we used principal component (PC) regression. Using the same 13 predictor 
variables, we removed species with missing data and ran a PC analysis using prcomp from the R 
stats package (version 3.6.1)(86). We ran a linear model to predict threatened status using lm 
from the R stats package, including the fewest PCs that cumulatively accounted for at least 80% 
of the variance in the data (table S3). For the three taxonomic orders with sufficient sample sizes, 
we used lm from the R stats package and the same set of PCs to run order-specific PC regression 
models. We tested the significance of the first five PCs, which accounted for greater than 80% of 
the cumulative variation in the predictor variables, in predicting threatened status. Two PCs were 
significant: PC1 (p=0.0038; explaining 35% of the total variance) and PC3 (p=5.6e-4; explaining 
13% of the total variance). PC1 broadly represents heterozygosity and genetic load metrics and 
PC3 separates the mildly and severely deleterious mutations (table S3). 

Given the importance of taxonomic order in all the models we examined, we tested the 
ordinal regression and PC models within the three taxonomic orders that had enough individuals 
in both non-threatened and threatened categories. Carnivora showed a complex relationship 
between threatened status and genomic variables. While a number of variables were significant 
when considered individually, none significantly impacted threatened status when considered 
together in the ordinal regression model. When PC regression was used to incorporate all the 
genomic variables while reducing dimensionality and correlation, the two most significant PCs 
were PC1 (p=0.07) and PC4 (p=0.04) that have major contributions from historical Ne and 
genetic load due to viable heterozygous loss of function (fig. S9). For Carnivora, the ordinal 
regression model had a CV error of 28% and the PC regression model had a CV error of 38%. 
Within Cetartiodactyla, there were no significant (p<0.05) predictors of threatened status in 
either the ordinal or PC regression models, however a few predictors were significant at a p=0.10 
threshold, suggesting either a weak relationship and/or a lack of power due to small sample sizes. 
Additionally, Cetartiodactyla contains two groups with distinct ecological niches, one terrestrial 
and one aquatic, which may influence the genomic predictors of extinction risk in the two 
groups. The ordinal regression model had a CV error of 39% and the PC regression model had a 
CV error of 47%. Primates had a single variable that was significantly predictive of threatened 
status–the kurtosis of phylop, which is a measure of the tailedness of the distribution of phylop 
scores across substitutions. Primate species that are threatened tend to have fewer variants in the 
tail of the phylop distribution (phylolm, p=0.003), suggesting that purging of deleterious variants 
may be common in Primates (fig. S8). For Primates, the ordinal regression model had a CV error 
of 39% and the PC regression model had a CV error of 44%. 

To make predictions for species classified as "Data Deficient", we used the predict function 
from the R stats package with the ordinal regression models and the PC regression models 
(excluding the phylogenetic PC regression model because there is no predict function available 
in the phylolm package).  

 
Machine learning (ML) methods for categorizing IUCN status using genomic features 

We next used random-forest based classification to identify the genomic features that 
predict “threatened” versus “non-threatened” status of species. We used two different genomic 
data types: 1) summary statistics of heterozygosity, RoH, and metrics of genetic load within 
homologous 50KB windows, and 2) genome-wide summary statistics related to heterozygosity, 
demographic history, and genetic load (table S4). For window-based summary statistics, we 
lifted over each genome to common coordinates of the human genome as described above (see 
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Estimating diversity across homologous windows). We generated five genomic feature matrices 
by estimating the following within windows of each genome: heterozygosity, RoH, mean phyloP 
of substitutions, number of missense substitutions, and number of missense substitutions at 
evolutionarily conserved sites. We ran the two genomic data types separately and combined, and 
additionally incorporated 39 numeric ecological features from the PanTHERIA database (table 
S4) to assess predictive performance of genomic features in comparison with ecological 
variables, considered a “gold standard” for prediction (31, 32). 

We started with five genomic feature window matrices in 57,509 homologous 50KB 
windows for at least 197 and up to 236 species depending on the statistic (table S5). Because we 
observed little impact of removing domesticated species in the regression models, we included 
them in the random forest models. We normalized counts of missense substitutions and counts of 
conserved missense substitutions by dividing by the total number of protein-coding variants for a 
given species. For each of the five genomic feature window matrices, we removed species that 
had missing values in more than 30,000 windows (which varied based on the statistic).   

We included 13 genome-wide summary statistics describing demographic history, diversity, 
and genetic load (table S4). Of a total of 39 possible ecological features, the number of features 
included in each model depended on the number of species that had complete data for each 
model included in the training set, and this varied depending on which genomic feature dataset 
was used (window matrices, genome-wide summary statistics, or the two types combined).  

We first split our dataset into a 75% train set and a 25% test set, and removed three data-
deficient species (Orcinus orca, Tragulus javanicus and Nannospalax galili) lacking an IUCN 
status. This split was defined by a reproducible seed (ranging from 1 to 5), and repeated to test 
for robustness. Then, to prevent data leakage, we performed preprocessing and imputation steps 
using only the training data. We removed window-based metrics that had (1) missing values in 
more than 75% of the species, or (2) features with the mode value occuring in more than 75% of 
non-missing values. (All genome-wide summary statistics and ecological features passed these 
criteria.) Missing values were imputed within a feature vector using two methods (1) computing 
the median across all other species, or (2) by leveraging taxonomic order as follows: first, we 
compute the median of the species within the same genus; if there are no non-missing values, 
then we move up to compute the median value within the same family; then order. Missing 
values within the test set were imputed analogously using only the values within the training set. 

We grouped the IUCN conservation status into two classes, threatened (NT/VU/EN/CR) 
and non-threatened (LC), with the goal of distinguishing between threatened and non-threatened 
species. Our models take as input the filtered window-based statistics, genome-wide summary 
statistics, and ecological variables. The output is a probability of the species being threatened.  

Similar to previous work (31, 32), we used random forest classifiers to assess the 
relationship between features and IUCN status. Random forests is an ensemble learning 
approach, making predictions by combining the outputs of hundreds of decision trees. We ran 5-
fold cross validation on the training set to determine the optimal set of hyperparameters, which 
define the structure and learning process of the internal decision trees. Specifically, we tuned the 
number of decision trees, the maximum depth of the trees, and the number of features used at 
each decision to optimize a performance metric. For all models (except for the model trained on 
solely the 13 genomic summary variables), we added an additional hyperparameter governing 
the number of features selected during feature selection. During cross-validation, our median-
based imputation was computed within each fold, whereas our phylogenetic imputation was 
computed on the entire training set. We used the area under the receiver operating characteristic 
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(AUROC) curve to evaluate performance. AUROC is a performance metric that estimates how 
well a model assigns (predicts) the correct output class, and is designed to be more robust to 
class imbalance in comparison to a metric such as accuracy. A model with AUROC of 0.5 has no 
predictive ability, whereas a model with AUROC of 1.0 has perfect predictive performance. 
Using the selected features and hyperparameters, we re-trained a model on the training set, 
evaluated it on the held-out test set, and reported the performance metric used during 
optimization. For all models, we ranked the features based on the model feature importance, a 
measure of the predictive power of the feature relative to other features in the model. Feature 
selection was performed in all cases except for genome summary, which had only 13 features. 
We used the scikit-learn 1.0.2 package for fitting all the models (66). 

The number of species with values for ecological, genome-wide summary statistics, and 
window-based metrics varied, and so we ran two types of models: “individual” and “composite” 
models using 5-fold cross-validation for model selection. First we ran “individual” models 
including all species available for each dataset (table S5). The individual models help us evaluate 
the utility (i.e. predictive performance) of genomic variables as predictors of conservation status 
while leveraging all the data available for each metric. The method of imputation had an impact 
on predictive power, with imputation based on phylogeny showing superior performance over 
imputation based on median across all species regardless of taxonomic order (table S5). The 
model including only ecological variables across all available species had the best predictive 
AUROC (median across 5 training-test replicates was 0.88), while the models with genomic 
features had lower, but still good predictive power. Genomic window-based metrics varied in 
their predictive power, with AUROC ranging from 0.69-0.82 (table S5). The median AUROC 
values across five training-test replicates were 0.69 for the model with the proportion of 
missense substitutions, 0.70 for the proportion of conserved missense substitutions, 0.78 for 
RoH, 0.79 for heterozygosity, 0.74 for all window-based metrics combined, and 0.82 for the 
model with three window-based features combined (RoH, heterozygosity, and mean phyloP). 
The results suggest that windows of mean phyloP across substitutions, RoH, and heterozygosity 
were relatively more predictive than the other window-based features. Genome-wide summary 
variables were also somewhat predictive of threatened status, with a median AUROC of 0.68. 
There was little variance in model performance across the five training-test replicates for each 
individual model (mean coefficient of variation across models = 0.07, range=0.01-0.22; fig. 
S11).  

To compare the effect of combining ecological and genomic variables on classification, we 
ran “composite” models, testing genomic (genome-wide summary and window-based) features 
and ecological features in the set of species for which both data were available (tables S4 and 
S6). We used the best performing window-based features derived from feature selection among 
the window-based features alone, and imputed missing data by phylogeny, which showed 
superior performance in the “individual” models. There was little variance in model performance 
across the five training-test replicates for each composite model (mean coefficient of variation 
across models = 0.08, range=0.03-0.21; fig. S12-S13). Models for 210 species with ecological 
variables and genomic summary statistics combined (median AUROC=0.85) modestly 
outperformed those with ecological variables alone (median AUROC=0.83). Among all 52 
variables included in these models, there were three genomic variables that consistently appeared 
among the top 20 predictive features across replicates, 1) historical Ne (five replicates), 2) 
proportion of heterozygous missense variants in IMPC lethal genes (four replicates), and 3) 
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proportion of substitutions at conserved sites (three replicates) (fig. S14).  Models including 
window-based features never outperformed models with ecological variables alone (table S6).  

Our evaluation suggests that genomic variables provide reasonable predictive performance, 
demonstrating the utility of using genomic variables when ecological variables are unavailable. 
We note caveats to our models: the species included in the model affect the results, as AUROC 
differs between independent and composite models (tables S5 and S6); our sample size is small 
and including additional observations and species will likely improve predictions and decrease 
this stochasticity. Our study is a pilot that demonstrates the potential usefulness of genomic data 
for triaging data deficient species, and motivates further studies exploring larger datasets and 
with feature transformation (e.g. using principal components) for improved predictive 
performance.  

 
Predicting conservation status of Data Deficient species 

For the three species that are IUCN classified as "Data Deficient", we used both the 
regression and the random forest models to predict their probability of having a threatened status 
(Fig. 3D). The ordinal regression models generate predictions for each specific IUCN category; 
however, given the reduced power to distinguish between IUCN threatened categories due to 
small sample sizes in each, we focused on the broader classification of threatened versus non-
threatened. From the regression models overall, the Upper Galilee Mountains blind mole rat 
(Nannospalax galili) is least likely to be a threatened species, with probabilities estimated at 12% 
and 14%. (Note there were not enough Rodentia species classified as threatened to do an order 
specific model). The Java lesser chevrotain (Tragulus javanicus) is also predicted to be a 
threatened species; however, probability estimates ranged from 27-63%. The higher risk 
prediction is from the within-order models. A killer whale (Orcinus orca) from the Norwegian 
herring-eating population (87), is likely to be in a threatened category, with probability estimates 
ranging from 62-68%.  

Random forest model predictions for Data Deficient species differed somewhat from the 
regression-based predictions, but the relative likelihoods of threat for the three species were 
nonetheless consistent to the regression model predictions (Fig. 3D). All genomic feature-only 
models consistently predicted Nannospalax galili as the least likely to be threatened (median 
probability: 0.18, range: 0.11-0.44). Tragulus javanicus had a higher probability of being 
threatened, but was more likely to be classified as not threatened (median probability: 0.32, 
range: 0.24-0.49). Orcinus orca was the most likely to be threatened (median probability: 0.48, 
range: 0.35-0.61).  
  



 
 

 
 

46 

 
 
 
Figure S1.  
Overview of methods for estimating heterozygosity, historical Ne, and genetic load across individual 
mammalian genomes. (A) For each species in the Zoonomia alignment, homozygous derived substitutions were 
estimated relative to the reconstructed sequence of the closest ancestral node in the phylogeny. Heterozygous 
variants were estimated from the short-read data mapped to the reference genome. (B) Mean heterozygosity and 
proportion of the genome in runs of homozygosity (fRoH) were estimated from the distribution of 50-kb genomic 
windows. (C) Historical effective population size (Ne) was estimated over time and summarized by the harmonic 
mean (dashed line). (D) Genetic load was inferred from the evolutionary conservation (measured by phyloP) of 
mutated positions, assuming that mutations at sites conserved across placental mammals are likely deleterious, and 
from the predicted impact of mutations in protein-coding genes, including single-copy genes with associated 
phenotypes in knockout mouse lines. Genetic load was estimated from the proportion of homozygous derived 
substitutions that were deleterious (fixed drift load), and the proportion of heterozygous variants that were 
deleterious (segregating mutational load), relative to total mutations of each type.  
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Figure S2.  
Distribution of genomic variables of demography, diversity and genetic load in species across IUCN threat 
categories. All variables (except Ne/Nc) were used in regression and machine learning models to predict threatened 
and non-threatened IUCN status (see tables S2 and S4). 
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Figure S3.  
Effective population sizes (Ne) were significantly smaller in threatened compared to non-threatened species 
within two of three taxonomic orders with enough samples in both threat categories to test: Cetartiodactyla 
(phylolm, p=0.023) and Carnivora (p=2.4e-5), but not Primates (phylolm, p=0.31). 
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Figure S4.  
Contrasting patterns of drift load based on conserved sites across the genome and missense substitutions in 
genes. A) Ne was negatively correlated with the proportion of homozygous substitutions that were at evolutionarily 
conserved sites (phylolm, p=9.6e-3, β=-0.0011, where a 10-fold increase in Ne corresponds to a decrease in 
proportion of 0.0011). B) Ne was negatively correlated with the proportion of homozygous missense substitutions 
that were at evolutionarily conserved sites (phylolm, p=7.76e-5, β= -0.020, where a 10-fold increase in Ne 
corresponds to a decrease in proportion of 0.020). Lines show coefficients estimated with phylogenetic correction 
using phylolm. C) Species that had proportionally fewer homozygous substitutions at evolutionarily conserved sites 
across the genome were more likely to be threatened (phyloglm; p=1.38e-05; β= -0.52). D) Species that had 
proportionally more homozygous missense substitutions in protein-coding genes were more likely to be threatened 
(phyloglm;  p=0.002; β= 0.23). 
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Figure S5.  
Proportion of heterozygous loss of function (LoF), heterozygous missense, and homozygous missense 
mutations in protein-coding genes classified as lethal, subviable or viable in knockout mice as a function of 
harmonic mean Ne across species. For most IMPC categories, proportions of heterozygous and homozygous 
missense alleles were negatively correlated with harmonic mean of Ne, but heterozygous LoF alleles were generally 
not. P-values and coefficients were estimated using phylogenetic correction in phylolm.  
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Figure S6.  
Proportion of heterozygous LoF, heterozygous missense, and homozygous missense mutations in protein-
coding genes classified as lethal, subviable or viable in knockout mice for non-threatened and threatened species. 
For most IMPC categories, species with proportionally more heterozygous and homozygous missense alleles were 
more likely to be threatened. P-values shown were estimated using phylogenetic correction in phyloglm. β 
coefficients indicate the change in odds of being threatened with a 1% increase in deleterious mutations. 
Phylogenetically corrected means did not significantly differ (all p>0.15).  
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Figure S7.  
Proportionally fewer missense mutations in genes associated with lethal phenotypes. Missense mutations were 
less frequent in genes classified as IMPC lethal relative to genes classified as IMPC viable (ANOVA, p<2e-16 and 
p=4.42e-9 for homozygous and heterozygous mutations, respectively). The difference between the two categories 
for heterozygous LoF alleles was not significant (p=0.19). 
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Figure S9.  
Predictive metrics for Carnivora A) Plots of Ne through time estimated from PSMC and used to calculate 
historical Ne.  B) Historical Ne is significantly lower in threatened species (ordinal regression, p=0.0055).  C) The 
proportion of heterozygous variants that were loss of function in genes categorized as viable (het. LOF V) is 
significantly lower in threatened species (ordinal regression, p=0.0064).  D) PCA space of the most significant PCs 
(PC1, p=0.075; PC4, p=0.040) of genomic predictor variables in PC regression models. Vectors indicate variable 
loading with the two most significant variables from ordinal regression models shown in red.  Dots represent species 
and show their scores in PCA space. Colors in all panels represent the IUCN category of the species. SoH=runs of 
homozygosity.  
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Figure S10.  
Predictive metrics for Primates A) PhyloP kurtosis is significantly lower in threatened species (phylolm, 
p=0.003).  B) Probability of IUCN categories for phyloP kurtosis score in the ordinal regression model (p=0.01).  C) 
PCA space of genomic predictor variables showing PC1 (p=0.62) and the most significant predictor in the PC 
regression model PC4 (p=0.063). Vectors indicate variable loading, with PhyloP kurtosis (shown in red) as the 
major contributor to PC4. Dots represent species and show their scores in PCA space. Colors in all panels represent 
the IUCN category of the species. SoH=runs of homozygosity.  
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Figure S11.  
Performance measurements (AUROC) across five training-test replicates of “individual” models that included 
window-based metrics and/or genome-wide summary statistics (table S5; see table S4 for data descriptions).   



 
 

 
 

57 

 
Figure S12.  
Performance measurements (AUROC) across five training-test replicates of “composite” models that included 
genome-wide summary statistics, ecological variables, or both (table S6; see table S4 for descriptions).  
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Figure S13.  
Performance measurements (AUROC) across five training-test replicates of “composite” models that included 
genomic window-based metrics, genome-wide summary statistics, ecological variables, or combinations of these 
data types (table S6; see table S4 for descriptions).   
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Figure S14.  
Top 20 most important features in random forest models to predict conservation status. Most important 
features from the model including 13 genomic summary variables and 40 ecological variables across 
(AUROC=0.85). Feature importance was averaged across five test-training replicates. Genomic features are 
highlighted in white and ecological features from PanTHERIA are in dark gray.  
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Figure S15.   
Distribution of fRoH values for A) all species with fRoH estimates and B) species represented by a wild caught 
individual only.  
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Table S1. Data for the 241 Zoonomia species analyzed, including species name, taxonomic order, diet classification, 
wild or captive status of the sequenced sample, IUCN Red List category, NCBI accession numbers, genome 
contiguity statistic (contig N50), generation time, census size (Nc), and values for 13 genomic summary statistics 
used in analyses.  
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odel results indicate if the variable w
as dropped from

 the final m
odel (and the reason it w

as dropped) or the p-values and 
untransform

ed coefficients for the final m
odel.  Bold values indicate the variable w

as significant in the m
odel at the p=0.05 threshold. 

 variable 
nam

e 
variable description 

transfor
m

 
sam

pl
e size 

logistic 
regression 

ordinal 
regression 

C
arnivora 

ordinal 
regression 

C
etartiodactyla 

ordinal 
regression 

Prim
ate 

ordinal 
regression 

historical N
e  

harm
onic m

ean of tem
poral 

estim
ates of N

e  from
 PSM

C 
log 

210 
p=3.8e-05, 
coefficient=-1.42 p=0.009, 

coefficient=-0.85 p=0.29, 
coefficient=-1.17 dropped (p=0.40) dropped (p=0.14) 

heterozygosity genom
e-w

ide heterozygosity 
none 

209 
dropped 
(correlated) 

dropped (p=0.18) dropped (p=0.22) dropped (p=0.25) dropped (p=0.32) 
outbred 
heterozygosity m

ode of heterozygosity in non-
RoH

 regions 
log 

209 
p=0.25, 
coefficient=-0.33 dropped (p=0.17) p=0.68, 

coefficient=0.52 
dropped (p=0.33) dropped (p=0.69) 

fRoH
 

percentage of the genom
e in 

RoH
 

square 
root 

208 
p=0.028, 
coefficient=-0.63 dropped (p=0.97) dropped (p=0.83) p=0.084, 

coefficient=0.88 
dropped (p=0.56) 

hom
. 

conserved 
proportion of hom

ozygous 
substitutions w

ith phylop>2.27 
log 

241 
p=0.19, 
coefficient=-0.31 p=0.99, 

coefficient=-
0.0055 

dropped (p=0.31) dropped (p=0.27) dropped (p=0.80) 
phyloP 
kurtosis 

tailedness of phylop distribution 
across substitutions 

none 
241 

dropped (p=0.33) dropped (p=0.33) dropped (p=0.47) dropped (p=0.70) p=0.023, 
coefficient=-1.06 

hom
. m

issense 
conserved 

proportion of hom
. m

issense 
that are at sites w

ith 
phylop>2.27 

none 
239 

dropped 
(correlated) 

dropped 
(correlated) 

dropped (p=0.30) dropped (p=0.47) dropped (p=0.38) 

het. m
issense 

L 

in lethal genes, the proportion 
of heterozygous coding variants 
that are m

issense 
log 

190 
dropped (p=0.12) dropped 

(correlated) 
p=0.18, 
coefficient=2.23 

dropped (p=0.76) dropped (p=0.98) 

het. m
issense 

V
 

in viable genes, the proportion 
of heterozygous coding variants 
that are m

issense 
log 

196 
dropped (p=0.16) p=0.40, 

coefficient=-0.23 p=0.99, 
coefficient=0.008
6 

dropped (p=0.28) dropped (p=0.59) 

het. LoF L 

in lethal genes, the proportion 
of heterozygous coding variants 
that are LoF 

log 
(+0.01) 

190 
p=0.41, 
coefficient=-0.15 dropped (p=0.56) dropped (p=0.81) p=0.60, 

coefficient=-0.29 dropped (p=0.55) 

het. LoF V
 

in viable genes, the proportion 
of heterozygous coding variants log 

(+0.001) 
196 

dropped (p=0.62) dropped (p=0.77) p=0.067, 
coefficient=-1.15 dropped (p=0.32) dropped (p=0.14) 
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that are LoF 

hom
. m

issense 
L 

in lethal genes, the proportion 
of hom

ozygous coding variants 
that are m

issense 
log 

239 
dropped 
(correlated) 

dropped 
(correlated) 

dropped (p=0.65) dropped (p=0.37) dropped (p=0.53) 

hom
. m

issense 
V

 

in viable genes, the proportion 
of hom

ozygous coding variants 
that are m

issense 
none 

239 
p=0.38, 
coefficient=0.25 

p=0.59, 
coefficient=-0.17 dropped (p=0.55) dropped (p=0.26) dropped (p=0.28) 

order 
taxonom

ic order 
N

A
 

241 
N

A
 

p=0.023, 0.045, 
0.41, 0.93; 
coefficients=-
2.12, -1.67, 0.62, 
0.058 

N
A

 
N

A
 

N
A

 

diet 
diet type (herbivore, om

nivore, 
carnivore) 

N
A

 
241 

p=0.014, 0.64; 
coefficienth =1.46
, coefficiento =0.28 p=0.0037, 0.86; 

coefficienth =1.88
, coefficiento =0.11 dropped (rank-

deficient) 

p=0.15, 0.034; 
coefficienth =1.59
, coefficiento =4.07 dropped (rank-

deficient) 

w
ild 

sam
ple from

 w
ild or captive 

population 
N

A
 

225 
p=0.020, 
coefficient=-0.97 p=0.96, 

coefficient=-0.20 dropped (p=0.34) p=0.93, 
coefficient=0.099 dropped (p=0.30) 
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Table S3.  Loadings for genomics summary statistics of the first five principal components (PCs; accounting for 
>80% of total variance) used in models to predict threatened status of species across all orders. P-values are reported 
for PCs that significantly predicted threatened status. Summary statistics are described in table S2. 5 
 

 PC1 (p=0.0038) PC2 
PC3  
(p=5.6e-4) PC4 PC5 

hom. conserved 0.215 0.305 -0.302 0.403 -0.080 
phyloP kurtosis -0.122 -0.282 0.317 -0.483 0.171 
historical Ne -0.306 0.091 -0.384 0.191 0.125 
heterozygosity -0.242 0.419 -0.118 -0.244 -0.056 
outbred 
heterozygosity -0.229 0.416 -0.004 -0.273 0.023 
fRoH 0.124 -0.455 -0.082 0.322 -0.027 
hom. missense 
conserved 0.386 0.283 0.096 0.104 0.039 
het. missense L 0.347 -0.167 -0.258 -0.24 -0.066 
het. missense V 0.375 -0.148 -0.112 -0.216 0.048 
het. LoF L 0.111 -0.044 -0.431 -0.392 -0.644 
het. LoF V 0.107 -0.025 -0.517 -0.221 0.713 
hom. missense L 0.384 0.264 0.177 -0.062 0.047 
hom. missense V 0.371 0.248 0.26 -0.089 0.103 
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Table S4. Genomic and ecological variables used in machine learning models to predict IUCN status in mammalian 
species. Genomic window-based variables were estimated within 50KB homologous windows lifted over to the 
human genome. Genomic summary variables are genome-wide summary statistics. Ecological variables were 
obtained from the PanTHERIA database. 
 Genomic window-based  

variables 
Description 

1 Heterozygosity Mean heterozygosity in homologous 50KB windows 

2 RoH Mean RoH in homologous 50KB windows 

3 Mean phyloP Mean phyloP across substitutions in homologous 50KB windows 

4 Missense conserved substitutions Proportion of homozygous missense substitutions in homologous 50KB windows 
that are at evolutionarily conserved sites (phyloP>2.27) 

5 Missense substitutions Proportion of homozygous coding substitutions in homologous 50KB windows that 
are missense 

 Genomic summary variables  

1 Historical Ne Harmonic mean of historical effective population size 

2 Heterozygosity Mean genome-wide heterozygosity 

3 Heterozygosity (non-RoH) Mean heterozygosity outside of RoH 

4 fRoH Proportion of the genome in RoH 

5 Conserved homozygous Proportion of homozygous that are at evolutionarily conserved sites (phyloP>2.27) 

6 PhyloP kurtosis Kurtosis of phyloP across homozygous 

7 Missense homozygous at conserved 
sites 

Proportion of missense homozygous that are at evolutionarily conserved sites 
(phyloP>2.27) 

8 Heterozygous missense lethal Proportion of heterozygous coding variants in IMPC lethal genes that are missense 

9 Heterozygous missense viable Proportion of heterozygous coding variants in IMPC viable genes that are missense 

10 Heterozygous LoF lethal Proportion of heterozygous coding variants in IMPC lethal genes that are LoF 

11 Heterozygous LoF viable Proportion of heterozygous coding variants in IMPC viable genes that are LoF 

12 Homozygous missense lethal Proportion of homozygous coding variants in IMPC lethal genes that are missense 

13 Homozygous missense viable Proportion of homozygous coding variants in IMPC viable genes that are missense 

 Ecological variables  

1 X5 1 Adult Body Mass g Mass of adult (or age unspecified) live or freshly-killed specimens (excluding 
pregnant females) using captive, wild, provisioned, or unspecified populations; male, 
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female, or sex unspecified individuals; primary, secondary, or extrapolated sources; 
all measures of central tendency; in all localities 

2 X13 1 Adult Head BodyLen mm Total length from tip of nose to anus or base of tail of adult (or age unspecified) live, 
freshly-killed, or museum specimens using captive, wild, provisioned, or unspecified 
populations; male, female, or sex unspecified individuals; primary, secondary, or 
extrapolated sources; all measures of central tendency; in all localities 

3 X2 1 Age at Eye Opening d Age at which both eyes are fully open after birth using captive, wild, provisioned, or 
unspecified populations; male, female, or sex unspecified individuals; primary, 
secondary, or extrapolated sources; all measures of central tendency; in all localities 

4 X3 1 Age at First Birth d Age at which females give birth to their first litter (eutherians), or their young attach 
to teats (metatherians) or hatch out (monotremes), using non-captive, wild, 
provisioned, or unspecified populations; primary, secondary, or extrapolated 
sources; all measures of central tendency; in all localities 

5 X18 1 Basal Met Rate mL O2 hr Basal metabolic rate of adult (or age unspecified) individual(s) using captive, wild, 
provisioned, or unspecified populations; male, female, or sex unspecified 
individuals; primary, secondary, or extrapolated sources; all measures of central 
tendency; in all localities. Metabolic rate was measured when individual(s) were 
experiencing neither heat nor cold stress (i.e. are in their thermoneutral zone); are 
resting and calm; and are post–absorptive (are not digesting or absorbing a meal) and 
data were only accepted where there was also a measure of body mass for the same 
individual(s) 

6 X5 2 Basal Met Rate Mass g Mass of individual(s) from which the basal metabolic rate was taken 

7 X6 1 Diet Breadth Number of dietary categories eaten by each species measured using any qualitative 
or quantitative dietary measure, over any period of time, using any assessment 
method, for non-captive or non-provisioned populations; adult or age unspecified 
individuals, male, female, or sex unspecified individuals; primary, secondary, or 
extrapolated sources; all measures of central tendency; in all localities. Categories 
were defined as vertebrate, invertebrate, fruit, flowers/nectar/pollen, 
leaves/branches/bark, seeds, grass and roots/tubers 

8 X9 1 Gestation Len d Length of time of non-inactive fetal growth, using captive, wild, provisioned, or 
unspecified populations; male, female, or sex unspecified individuals; primary, 
secondary, or extrapolated sources; all measures of central tendency; in all localities. 
Gestation was measured between specified start and end points as follows: Start 
points – conception, fertilization, first observed copulation, fertilization, 
implantation, laying, palpably pregnant, removal of pouch young, capture (except 
marsupials) or unspecified. End points – birth, hatching or unspecified 

9 X12 1 Habitat Breadth Number of habitat layers used by each species measured using any qualitative or 
quantitative time measure, for non-captive populations; adult or age unspecified 
individuals, male, female, or sex unspecified individuals; primary, secondary, or 
extrapolated sources; all measures of central tendency; in all localities. Categories 
were defined as above ground dwelling, aquatic, fossorial and ground dwelling 

10 X22 1 Home Range km2 Size of the area within which everyday activities of individuals or groups (of any 
type) are typically restricted, estimated by either direct observation, radio telemetry, 
trapping or unspecified methods over any duration of time, using non-captive 
populations; male, female, or sex unspecified individuals; primary, secondary, or 
extrapolated sources; all measures of central tendency; in all localities 

11 X22 2 Home Range Indiv km2 Size of the area within which everyday activities of individuals are typically 
restricted, estimated by either direct observation, radio telemetry, trapping or 
unspecified methods over any duration of time, using non-captive populations; male, 
female, or sex unspecified individuals; primary, secondary, or extrapolated sources; 
all measures of central tendency; in all localities 

12 X14 1 Inter birth Interval d The length of time between successive births of the same female(s) after a successful 
or unspecified litter using non-captive, wild, provisioned, or unspecified populations; 
primary, secondary, or extrapolated sources; all measures of central tendency; in all 
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localities 

13 X15 1 Litter Size Number of offspring born per litter per female, either counted before birth, at birth or 
after birth, using captive, wild, provisioned, or unspecified populations; male, 
female, or sex unspecified individuals; primary, secondary, or extrapolated sources; 
all measures of central tendency; in all localities 

14 X16 1 Litters Per Year Number of litters per female per year using non-captive, wild, provisioned, or 
unspecified populations; male, female, or sex unspecified individuals; primary, 
secondary, or extrapolated sources; all measures of central tendency; in all localities 

15 X17 1 Max Longevity m Maximum adult age measured either through direct observation, capture-recapture 
estimates, projected from physical wear or unspecified, using captive, wild, 
provisioned, or unspecified populations; male, female, or sex unspecified 
individuals; primary, secondary, or extrapolated sources; in all localities 

16 X5 3 Neonate Body Mass g Mass of live or freshly-killed specimens of infants at either a near term embryonic 
stage, birth, immediately after birth or up to an age of seven days after birth, using 
captive, wild, provisioned, or unspecified populations; male, female, or sex 
unspecified individuals; primary, secondary, or extrapolated sources; all measures of 
central tendency; in all localities 

17 X21 1 Population Density n km2 Number of individuals per square kilometer, estimated with either direct, indirect or 
unspecified counts, measured in any area size within a human, ecological or 
unspecified boundary, over any duration of time, using non-captive, non-provisioned 
populations; male, female, or sex unspecified individuals; primary, secondary, or 
extrapolated sources; all measures of central tendency; in all localities 

18 X10 1 Population Grp Size Number of individuals, adults or definition unspecified in a group that spends the 
majority of their time in a 24 hour cycle together, measured over any duration of 
time, using non-captive populations; male, female, or sex unspecified individuals; 
primary, secondary, or extrapolated sources; all measures of central tendency; in all 
localities 

19 X23 1 Sexual Maturity Age d Age when individuals are first physically capable of reproducing, defined as either 
physically sexually mature, age at first mating or unspecified (males and females), 
age at first estrus or age at first pregnancy (females only), age at spermatogenesis or 
age at testes descent (males only), using captive, wild, provisioned, or unspecified 
populations; male, female, or sex unspecified individuals, primary, secondary, or 
extrapolated sources; all measures of central tendency; in all localities 

20 X10 2 Social Grp Size Number of individuals, adults or definition unspecified in a group that spends the 
majority of their time in a 24 hour cycle together where there is some indication that 
these individuals form a social cohesive unit, measured over any duration of time, 
using non-captive populations; male, female, or sex unspecified individuals; 
primary, secondary, or extrapolated sources; all measures of central tendency; in all 
localities 

21 X24 1 Teat Number Total number of teats present, using captive, wild, provisioned, or unspecified 
populations; male, female, or sex unspecified individuals; primary, secondary, or 
extrapolated sources; all measures of central tendency; in all localities 

22 X25 1 Weaning Age d Age when primary nutritional dependency on the mother ends and independent 
foraging begins to make a major contribution to the offspring’s energy requirements, 
measured as either weaning/lactation length, nutritionally independent, first solid 
food, last observed nursing, age at first flight (bats only), age at pouch exit or length 
of teat Attachment (marsupials only) or unspecified definition, using captive, wild, 
provisioned, or unspecified populations; male, female, or sex unspecified 
individuals; primary, secondary, or extrapolated sources; all measures of central 
tendency; in all localities 

23 X5 4 Weaning Body Mass g Mass of live or freshly-killed specimens of weanlings, using captive, wild, 
provisioned, or unspecified populations; male, female, or sex unspecified 
individuals; primary, secondary, or extrapolated sources; all measures of central 
tendency; in all localities 
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24 
X16 2 Litters Per Year EXT Species medians of the consolidated values 

25 
X26 1 GR Area km2 Total extent of a species range with a global equal-area projection 

26 
X26 2 GR Max Lat dd Maximum latitudinal extent of each species range calculated using a global 

geographic projection (decimal degrees) 

27 
X26 3 GR Min Lat dd Minimum latitudinal extent of each species range calculated using a global 

geographic projection (decimal degrees) 

28 
X26 4 GR Mid Range Lat dd Median latitudinal extent of each species range calculated using a global geographic 

projection (decimal degrees) 

29 
X26 5 GR Max Long dd Maximum longitudinal extent of each species range calculated using a global 

geographic projection (decimal degrees) 

30 
X26 6 GR Min Long dd Minimum longitudinal extent of each species range calculated using a global 

geographic projection (decimal degrees) 

31 
X26 7 GR Mid Range Long dd Median longitudinal extent of each species range calculated using a global 

geographic projection (decimal degrees) 

32 
X27 1 Hu Pop Den Min n km2 Minimum human population density (persons per km2) using the Gridded Population 

of the World (GPW) (CIESIN and CIAT 2005) for 1995 

33 
X27 2 Hu Pop Den Mean n km2 Mean human population density (persons per km2) using the Gridded Population of 

the World (GPW) (CIESIN and CIAT 2005) for 1995 

34 
X27 3 Hu Pop Den 5p n km2 5th percentile human population density (persons per km2) using the Gridded 

Population of the World (GPW) (CIESIN and CIAT 2005) for 1995 

35 

X27 4 Hu Pop Den Change Mean rate of increase in human population density using the Gridded Population of 
the World (GPW) (CIESIN and CIAT 2005) for 1990 and 1995 as: (1995–
1990)/1990 

36 
X28 1 Precip Mean mm Mean monthly precipitation (mm) calculated using data from 

ftp://ftp.ngdc.noaa.gov/Solid_Earth/Ecosystems/GEDII_a/datasets/a03/lc.htm 

37 
X28 2 Temp Mean 01 deg C Mean monthly temperature (0.1°C) calculated using data from 

ftp://ftp.ngdc.noaa.gov/Solid_Earth/Ecosystems/GEDII_a/datasets/a03/lc.htm 

38 

X30 1 AET Mean mm Mean monthly AET (Actual Evapotranspiration Rate) from 1920 to 1980 (mm) 
calculated using the Global Resource Information Database of UNEP and is 
available from 
http://www.grid.unep.ch/data/grid/gnv183.php) 

39 

X30 2 PET Mean mm Mean monthly PET (Potential Evapotranspiration Rate) from 1920 to 1980 (mm) 
calculated using the Global Resource Information Database of UNEP and is 
available from 
http://www.grid.unep.ch/data/grid/gnv183.php) 

  


