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1 CDF calculation

1.1 Exact algorithms

Ruben’s Ruben [1] showed that the cumulative distribution function (CDF) of a linear combi-
nation of χ2 distributed random variables with positive coefficients can be expanded as an infinite
series

∞∑
k=0

ak Fχ2
m+2k

(c/β) ,

with Fχ2
m+2k

the CDF of a χ2 distribution with m + 2k degrees of freedom and β > 0 an arbitrary
constant. For ak ≥ 0 and

∑
k ak = 1 the above sum constitutes a so-called (infinite) mixture

representation. In particular, every β ≤ λmin yields such a mixture representation, with λmin

denoting the smallest coefficient of the linear combination of χ2 distributed random variables. Ruben
showed that in the mixture case, the truncation error, and so the precision ϵ, can be bounded by∣∣∣∣∣1−

K−1∑
k=0

ak

∣∣∣∣∣ Fχ2
m+2K

(c/β) ≤ ϵ ,

with K the number of terms kept. Thereby, the coefficients ak can be determined recursively, with
the number of terms to be summed for ak growing exponentially with k, but finite for given desired
precision ϵ.

A first implementation of Ruben’s algorithm can be found in [2] and an improved version by
Farebrother in [3]. In particular, Farebrother improved numerical details and proposed to use a β
which does not yield a mixture presentation, but has an improved rate of convergence. Namely,

β =
2λminλmax

λmin + λmax
.

However, one should note that Farebrother still used the above mixture bound, and not the bound
Ruben derived for general β. For both choices of β, the error bound at order k of the expansion
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contains a factor of (λmax

λmin
− 1)k. Hence, if λmax ≫ λmin the series converges very slowly.

Davies’ Davies’ algorithm [4, 5] is based on the numerical inversion of the characteristic function of
a linear combination of χ2 distributed random variables. It is more general than Ruben’s algorithm,
as it allows for negative coefficients and an additional normal distributed random variable. It also
offers superior performance in specific regions of parameter space.

The number of integration terms for a given set of parameters can be estimated as follows. Since
it will be sufficient for our purposes, we restrict the following discussion to the χ2 case without the
additional normal distributed term.

The relevant error bound of Davies for the summation reads in this case

c∏N
i=1(1 + 4(K + 1

2 )
2∆2λ2i )

1
4

<
ϵ

2
,

with c = 10
π , K the number of terms, ∆ the integration interval and ϵ the desired accuracy. A weaker

bound can be obtained by setting λi = |λ|min. In this case we have

c

(1 + 4(K + 1
2 )

2∆2|λ|2min)
N
4

<
ϵ

2
,

and infer
1

2∆|λ|min

√
(2c)4/N

ϵ4/N
− 1− 1

2
< K .

From this we can approximate that Davies’ algorithm needs at most K > (2c)2/N ϵ−2/N

2∆|λ|min
integration

terms. It remains to discuss ∆.
Davies fixes ∆ as follows [4]

∆ =
2π

|ψ′(u∗)− I|
,

with I the evaluation point of the CDF and ψ the logarithm of the moment generating function,

ψ(u) = −1

2

N∑
j=1

log(1 + 2uλj) ,

such that

ψ′(u) =

N∑
j=1

λj
1 + 2uλj

.

The precise point u∗ is not of importance for us, as we can estimate under the mild assumption
2u∗λmin > −1 via the logarithmic inequality x

1+x ≤ log(1 + x) ≤ x that

ψ′(u) ≤
∑
j

λj .

Hence,

∆ ≥ 2π

|I −
∑

j λj |
,
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and we arrive at the estimate of the number of integration terms K needed to obtain precision ϵ

|I −
∑

j λj |(2c)2/N ϵ−2/N

4π|λ|min
≤ K . (1)

We conclude that for sufficiently large N Davies’ algorithm scales favorably due to the ϵ−2/N

dependence. However, for small N at high precision other algorithms may be preferred.

1.2 Approximations

A variety of approximations to the distribution Ξ of a linear combination of χ2 distributed random
variables exists, see for instance [6].

Satterthwaite-Welch One of the more well known methods is the Satterthwaite-Welch approxi-
mation [7, 8], which matches the first two moments to a Gamma distribution Γ. In detail [9],

Ξ ≈ g χ2
h ∼ Γ(h/2, 2g) ,

with

g :=

∑
i diλ

2
i∑

i diλi
, h :=

(
∑

i diλi)
2∑

i diλ
2
i

.

As before λ denote the coefficients of the linear combination and di denotes the ith degree-of-freedom
parameter of the ith χ2. In our application, all di = 1.

Imhof-Pearson’s Following Pearson’s work [10], Imhof presented the following 3rd order approx-
imation to the cumulative density function of a linear combination of N χ2

1 distributed random
variables [11]:

cdfΞ(x) ≈ cdfχ2
h
(y) ,

with

h =
c32
c23
, y = (x− c1)

√
h/c2 + h , cj =

N∑
i=1

λji .

Note that Imhof presented a more general approximation formula, capturing the non-central and
arbitrary degree of freedom case. For our purposes, however, the above simplified version is sufficient.
In order not to confuse this approximation with Imhof’s exact solution, we will refer to this third
order approximation as Imhof-Pearson method, or often just as Pearson’s method.

Saddle-point The saddle-point method uses the entire cumulant generating function and approx-
imates the cumulative probability density function by, c.f., [12],

cdfΞ(x) ≈
1

2

(
1 + erf

(
w + 1

w log
(
v
w

)
√
2

))
,

with erf the error function and

w = sgn(ζ̂)

√
2(ζ̂x−K(ζ̂) , v = ζ̂

√
K ′′(ζ̂) ,

3



K(ζ) = −1

2

N∑
i=1

log (1− 2ζλi) , K ′(ζ) =

N∑
i=1

λi
1− 2ζλi

, K ′′(ζ) = 2

N∑
i=1

λ2i
(1− 2ζλi)2

.

Note that it is required that ζ < 1
2miniλ

−1
i . The evaluation point ζ̂ is the saddle-point determined

by the solution of K ′(ζ̂) = x. In our implementation, we determine ζ̂ numerically via the Newton-
Raphson method. The saddle-point method becomes numerically unstable for

∑
i λi ≈ x [12]. We

therefore do not utilize the method if
∣∣∣∣∑i

λi−x

x

∣∣∣∣ < 10−5.

Remark Note that the approximation solutions above are not suitable to approximate the cumu-
lative distribution function of the product-normal distribution, which is the core ingredient of the
cross-GWAS coherence test introduced in [13]. The reason being that in the case of the product-
normal the sum over odd powers of λi vanishes, and therefore the above approximations are not well
defined.

To our knowledge, the quality of the above approximations at very small p-values (below double
precision) has not been evaluated in the literature, c.f., [6]. We will fill this gap in the following
section 1.3.

1.3 Implementation details and correctness verification

In order to have sufficient internal precision for our purposes, the implementation of Ruben’s and
Davies’ algorithm in PascalX supports, besides standard float64, also float128 and multi-precision
arithmetic at 100 digits, making use of the Boost C++ libraries [14].

Since to our knowledge there is no other implementation which is able to evaluate the CDF of a
linear combination of χ2 random variables to such high precision, we verified the correctness of our
implementation via cross-checking Ruben’s and Davies’ algorithm against each other.

In detail, we uniformly random sampled the number of linear combination terms from [5, 500],
coefficients from [0.01, 1] and evaluation point from [0.1, 1000]. In total, we took 10, 000 samples. We
evaluated for each sample one of the algorithms at set given requested precision, and verified with
the other algorithm at higher requested and internal precision, up to requested accuracy of 10−32.
The results are shown in figure 1, confirming the correctness and accuracy of the CDF calculation.

In order to verify the correctness at higher levels of precision, we in addition cross verified the
two algorithms against each other at 100 digits internal precision. The results are illustrated in
figure 2, confirming accuracy up to ∼ 2× 10−96.

Finally, we also compared the exact calculation against the above discussed approximate solu-
tions, see figures 3 and 4. We observe that the approximation solutions of Satterthwaite-Welch and
Imhof-Pearson systematically over estimate − log10 transformed p-values, with magnitude increas-
ing with decreasing number of linear combination terms in the CDF. In contrast, the saddle-point
method yields an excellent approximation, also at small N and for very small p-values.

1.4 Automatic algorithm selection

PascalX invokes a simple heuristic to select between Ruben’s and Davies’ algorithm, which we will
refer to as auto mode. The heuristic is as follows.
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Since the required precision is not known up front, the CDF is first approximated via Imhof-
Pearson’s method. The resulting p-value determines the initial requested precision. The number of
needed integration terms for Davies’ algorithm is estimated via relation (1), and the ratio λmax/λmin

is determined. If the ratio is larger than a preset number, and there are more than a specified
number of terms in the CDF, and the number of integration terms is smaller than a preset amount
at a specific precision level, then Davies’ algorithm is used, otherwise Ruben’s. If the evaluation fails
the required precision or number of integration terms is increased and the evaluation is repeated for
a given number of tries.

2 Gene and Pathway scoring

2.1 Trait data

Our analysis of the performance of PascalX is based on eight common GWAS traits, listed in table
1. For links to the utilized public GWAS summary statistics and the used trait abbreviations we
refer to the “Data availability” section further below. Note that three of the considered GWAS
(Inflammatory bowel disease, Rheumatoid arthritis and Alzheimer) have ∼ 10M SNPs, while the
other GWAS are considerably smaller with ∼ 2M SNPs.

2.2 PascalX settings

Per default settings, PascalX considers all SNPs in a window extending 50kb from the gene tran-
scription start and end positions. Minor allele frequency threshold for inclusion of a SNP is taken
to be 0.05 and eigenvalue cutoff is set to keep 99% of total gene variance. We considered all protein
coding genes taken from Ensembl Biomart (https://www.ensembl.org/).

2.3 Weighted Pascal

The test statistic given in equation (1) of the main text can be generalized by introducing additional
weights wi to the SNP contributions, i.e.,

Tw
G =

NG∑
i=1

wi z
2
i ,

with NG denoting the number of SNPs in the region corresponding to the gene G. We require that
all wi > 0. Recall from the main text that we assume that z ∼ N (0,ΣG) with ΣG the SNP-SNP
covariance matrix inferred from a reference population. Introducing a diagonal weight matrix W ,
we can write equivalently,

Tw
G = ztWz = (W 1/2zt) (W 1/2z) := ẑtẑ .

From the affine transform property of the multivariate normal distribution we infer that

ẑ ∼ N
(
0, (W 1/2) ΣG (W 1/2)

)
.
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Similar as in the original derivation of the unweighted case, c.f. [15], we can conclude that

Tw
G ∼

∑
i

λ̂i [χ
2
1] , (2)

with λ̂i the eigenvalues of Σ̂G := (W 1/2) ΣG (W 1/2).

2.4 Regularisation

The SNP-SNP covariance matrix ΣG can be poorly conditioned. This is of particular concern if a
gene region contains more SNPs than samples are available to calculate ΣG. However, an advantage
of the sum of χ2

1 based statistic utilized in this work is that regularization can easily be achieved by
introducing an eigenvalue cutoff in the weighted χ2

1 expansion (2). In our implementation, we drop
vanishing or negative eigenvalues and keep only eigenvalues up to a user specified total variance
(99% by default). We tested the impact of varying reference panel size and observe that the impact
is relatively minor for significant p-values compared to the impact of approximating the cumulative
distribution function with the best moment based method, see figure 8.

2.5 Exact vs. approximate solutions

We tested for a panel of standard GWAS, listed in table 1, how well the approximate CDF calculation
performs for gene scoring. We used the PascalX default settings stated in the previous subsection
2.2 and considered only protein coding genes. We observe that the moment based methods of
Satterthwaite-Welch and Imhof-Pearson in general overestimate the − log10 transformed gene p-
values, as visible from the plots in figure 9. In contrast, the saddle-point approximation yields
p-values well calibrated to the exact calculation. In order to see if also the relative order of the
genes is impacted, we calculated the Spearmann correlation between the exactly and approximately
calculated gene p-values for different p-value ranges. The results are listed in table 11. The ranking
is not fully preserved under approximation via the moment based methods for p-values below 10−16.
In contrast, the saddle-point method preserves very well the ordering of genes, also for small p-values.

We also verified that under pathway aggregation the saddle-point approximation is best calibrated
to the exact computation, see figure 11 (we tested against all pathways of MSigDB v7.4). In
addition, we confirmed via calculating Spearman correlations that the ranking of pathways for
smaller p-values is impacted by the moment based approximation methods, while for the saddle-
point method the impact is minor, c.f., table 12.

2.6 Run-time evaluation

For the benchmarking of computation time the PascalX settings detailed in section 2.2 have been
used. All experiments have been conducted on a server equipped with two Intel Xeon Gold 5220
CPUs (2.2 GHz, 18 cores each), 512 GB RAM, NVIDIA RTX A5000 GPU (24 GB RAM), a RAID
0 of four Samsung 970 EVO Plus NVME drives for storage of reference panel and GWAS data, and
Ubuntu 18.04.6 LTS as operating system. Since we cannot rule out that other users might have
used the server during the benchmarking, the results below should be taken as an indicative upper
bounds rather than as absolute estimates.
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2.6.1 Generalities

The gene scoring computation can be split into three distinct parts. First, loading of genotype
reference data for a gene window from disk. Second, linear algebra operations to calculate the gene
window SNP covariance matrix and corresponding eigenvalue decomposition. Third, calculation of
the corresponding weighted χ2 CDF. Note that the reference panel size N only enters via disk IO
with scaling O(N ∗ S) and in the covariance matrix calculation, scaling O(N ∗ S2), with S the
number of SNPs in the gene window. The runtime of the third part only depends on S and scales
O(S3). Hence, linear algebra operation runtime is mainly determined by the number of SNPs in the
gene window under consideration. Therefore, we expect that we profit most of GPU acceleration
for highly imputed GWAS. The runtimes and throughputs in genes per second stated in this work
always refer to the complete computation, covering all three parts sketched above.

Note that the system level BLAS/LAPACK libraries invoked on our testing server are multi-
threaded and make already use by itself of the high core count of the server. The presented CPU
benchmarks for varying parallel setting are therefore biased.

Memory consumption of PascalX is determined by the size of the GWAS summary statistics
considered and the size of reference panel used (number of SNPs included). PascalX keeps a SNP
to disk position index in memory per active chromosome. We therefore recommend to have at least
4GB of memory for each CPU core in use.

2.6.2 Gene scoring

Run-times of PascalX for gene scoring using exact and approximate CDF calculation for various
levels of parallelization and GPU utilization are given in tables 2,3, 4 and 5 in genes per second, and
illustrated for absolute runtimes in figure 13.

For each algorithm and setting tested we plot the run-times as bar plot generated from the
individual run-times of the 8 GWAS listed in table 1. We observe that the exact calculation possesses
significantly longer and more varied run-times compared to the approximation methods. This is
likely due to the fact that for a small subset of genes both Ruben’s and Davies’ algorithm struggle
to converge as they are not well suited for the corresponding CDF calculation. We observe that the
mean run-time decreases with increasing parallelization and that there is a significant improvement in
mean run-time with GPU utilization. The best results are obtained for the approximation methods
with GPU acceleration and parallel setting of eight. Due to GPU memory being a limiting factor,
we did not try a higher parallel setting with a single GPU.

2.6.3 X scoring

Results for the benchmarking of the cross coherence scorer of PascalX are listed in table 6 and
illustrated in figure 14. Cross scores can only be calculated exactly via Davies’ method. We tested
each setting at hand of all unique pairs of GWAS given in table 1. As for the gene scoring above, we
observe that GPU acceleration of linear algebra operations gives a noticeable performance boost.

2.6.4 Pathway scoring

Benchmarking results for pathway scoring (with gene fusion) are given in tables 7 and 8, and are
summarized in figure 15.
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Trait # Subjects # SNPs Reference
Alzheimer 63,926 9,046,216 Kunkle, B. et al. (2019) [20]
Body mass index 249,796 2,407,537 Speliotes, E. et al. (2010) [21]
Coronary artery disease 194,427 2,420,294 CARDIoGRAMplusC4D (2013) [22]
Height 183,727 2,469,114 Lango, A. et al. (2010) [23]
Inflammatory bowel disease 86,640 11,553,259 IIBDGC [24, 25]
Rheumatoid arthritis 25,500 2,554,113 Stahl, E. et al. (2010) [26]
Schizophrenia 150,064 10,694,907 PGC (2014) [27]
Type-II diabetes 69,033 2,473,390 Morris, A. et al. (2012) [28]

Table 1: List of GWAS used with population size, number of SNPs and reference to original study.

Gene scoring: Auto (exact)
Trait p=1 p=2 p=4 p=22 p=1

gpu
p=2
gpu

p=4
gpu

p=8
gpu

ALZ 1.9 2.1 2.0 2.3 2.2 2.8 2.9 3.1
BMI 7.2 10.6 16.1 18.2 11.4 23.3 39.5 58.2
CAD 8.3 12.3 16.0 20.6 11.1 23.5 42.7 69.4

H 6.5 10.3 14.9 16.8 11.1 20.7 39.7 58.9
IBD 2.0 2.1 2.2 2.5 3.9 5.2 6.4 6.8
RA 2.2 2.4 2.4 2.7 2.5 2.8 3.0 3.1
SCZ 4.1 5.3 5.6 6.0 8.8 16.7 27.2 41.2
T2D 8.3 12.6 16.0 18.7 12.7 23.3 41.7 68.3

median 5.3 7.8 10.3 11.4 10.0 18.7 33.4 49.7
mean 5.1 7.2 9.4 11.0 8.0 14.8 25.4 38.6

Table 2: Throughput in genes per second for PascalX gene scoring with the auto (exact) method.
p=n denotes the number of cores to use set for PascalX and gpu denotes usage of GPU for acceleration
of linear algebra operations. Trait codes are defined in the section “Data availability”.

Gene scoring: Satterthwaite
Trait p=1 p=2 p=4 p=22 p=1

gpu
p=2
gpu

p=4
gpu

p=8
gpu

ALZ 4.3 5.9 6.5 7.6 7.2 11.1 18.9 28.3
BMI 8.4 13.1 18.8 23.8 10.8 16.4 30.4 54.1
CAD 8.5 13.3 18.7 24.1 11.1 16.9 30.6 54.9

H 8.2 13.3 8.4 18.6 10.8 12.2 30.4 54.5
IBD 4.4 5.8 6.6 7.4 7.3 11.2 19.1 28.6
RA 8.0 12.9 18.1 23.0 10.7 16.5 30.1 53.0
SCZ 3.7 5.9 6.7 7.8 7.3 11.0 18.9 28.6
T2D 8.5 13.3 20.0 23.4 11.1 16.9 18.1 54.4

median 8.1 13.0 13.2 20.8 10.7 14.3 24.6 53.5
mean 6.7 10.4 13.0 17.0 9.5 14.0 24.6 44.6

Table 3: Description as for table 2, but with Satterthwaite method.
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Gene scoring: Pearson
Trait p=1 p=2 p=4 p=22 p=1

gpu
p=2
gpu

p=4
gpu

p=8
gpu

ALZ 4.0 5.8 7.2 10.1 6.5 11.4 18.6 28.2
BMI 7.8 12.6 18.7 31.3 9.3 17.3 29.8 53.0
CAD 7.9 12.7 18.8 31.5 9.5 17.8 30.6 53.7

H 7.5 12.5 18.8 30.9 9.7 16.9 29.4 52.2
IBD 4.1 5.8 7.2 9.8 6.1 11.9 18.7 27.7
RA 7.7 12.0 18.2 29.4 9.5 17.3 29.0 52.0
SCZ 3.9 5.6 7.2 10.1 6.1 11.0 17.5 27.8
T2D 7.8 12.7 19.3 32.1 9.5 17.7 31.4 53.3

median 7.6 12.3 18.5 30.2 9.4 17.1 29.2 52.1
mean 6.3 10.0 14.4 23.1 8.3 15.2 25.6 43.5

Table 4: Description as for table 2, but with Pearson method.

Gene scoring: Saddle
Trait p=1 p=2 p=4 p=22 p=1

gpu
p=2
gpu

p=4
gpu

p=8
gpu

ALZ 4.3 5.7 6.4 7.5 6.7 11.8 19.9 29.5
BMI 8.1 12.6 18.3 23.1 10.0 18.0 31.9 57.1
CAD 8.2 12.9 18.6 23.9 10.1 18.0 32.9 58.7

H 8.0 12.2 18.3 23.0 10.0 17.9 32.3 57.8
IBD 4.3 5.7 6.5 7.7 6.8 11.8 20.0 29.3
RA 8.0 12.5 17.9 22.6 10.0 17.7 31.9 56.5
SCZ 4.3 5.8 6.5 7.6 6.7 11.7 19.4 29.7
T2D 8.1 13.0 18.6 24.1 10.2 18.1 32.7 58.2

median 8.0 12.4 18.1 22.8 10.0 17.8 31.9 56.8
mean 6.6 10.0 13.9 17.5 8.8 15.6 27.6 47.1

Table 5: Description as for table 2, but with Saddle method.
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Cross scoring: Davies
Trait p=4 p=8 p=22 p=4

gpu
p=8
gpu

ALZ – CAD 23.1 34.9 35.8 32.3 64.3
ALZ – RA 26.8 38.6 42.2 34.0 65.1
ALZ – SCZ 11.3 13.8 12.8 19.2 35.1
ALZ – IBD 9.3 10.1 10.8 15.4 29.6
ALZ – T2D 31.0 52.5 63.0 36.3 76.9
CAD – RA 26.9 40.6 44.6 33.5 63.5
CAD – SCZ 25.5 36.3 40.0 31.3 58.
CAD – IBD 23.5 36.6 38.8 31.0 68.4
CAD – T2D 31.3 53.6 66.8 36.8 78.5
RA – SCZ 27.8 41.6 49.2 32.6 63.2
RA – IBD 24.8 39.2 49.1 31.3 59.9
RA – T2D 25.4 42.7 41.7 33.5 65.7
SCZ – IBD 10.6 14.0 13.4 17.9 32.3
SCZ – T2D 30.4 47.6 68.2 35.3 63.2
IBD – T2D 30.9 46.1 60.3 35.5 64.2
median 25.5 39.2 42.2 32.6 63.5
mean 23.9 36.5 42.5 30.4 59.2

Table 6: Throughput in genes per second for cross scoring based on Davies method. p=n denotes
the number of cores to use set for PascalX and gpu denotes usage of GPU for acceleration of linear
algebra operations. Trait codes are defined in the section “Data availability”.

Pathway scoring: Auto (exact)
Trait p=22 p=4

gpu
p=8
gpu

ALZ 0.5 0.3 0.3
BMI 8.3 10.8 14.9
CAD 6.4 12.3 16.6

H 5.8 5.6 6.8
IBD 0.4 0.2 0.3
RA 0.1 0.1 0.1
SCZ 2.0 5.7 7.7
T2D 7.7 8.7 17.6

median 3.9 5.7 7.3
mean 3.9 5.5 8.1

Pathway scoring: Satterthwaite
Trait p=22 p=4

gpu
p=8
gpu

ALZ 2.6 4.1 6.6
BMI 10.6 12.1 17.5
CAD 10.4 12.0 17.1

H 10.4 11.9 17.8
IBD 3.1 7.3 9.5
RA 9.2 12.1 18.0
SCZ 2.2 5.7 7.1
T2D 11.1 8.2 17.7

median 9.8 10.0 17.3
mean 7.4 9.2 13.9

Table 7: Throughput in pathways per second for pathway scoring with the auto (exact) method
(left table) and Satterthwaite method (right table). p=n denotes the number of cores to use set for
PascalX and gpu denotes usage of GPU for acceleration of linear algebra operations. Trait codes are
defined in the section “Data availability”.
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Pathway scoring: Pearson
Trait p=22 p=4

gpu
p=8
gpu

ALZ 3.8 7.2 8.8
BMI 11.5 13.0 18.5
CAD 11.7 12.9 19.2

H 11.5 12.9 17.4
IBD 4.3 7.9 10.1
RA 11.2 12.8 18.9
SCZ 3.5 7.0 8.8
T2D 11.5 12.1 19.2

median 11.4 12.5 18.0
mean 8.6 10.7 15.1

Pathway scoring: Saddle
Trait p=22 p=4

gpu
p=8
gpu

ALZ 3.3 6.9 9.1
BMI 11.5 12.9 19.0
CAD 11.2 12.9 18.9

H 11.6 12.3 18.2
IBD 4.3 7.8 10.2
RA 10.9 12.5 18.8
SCZ 3.5 6.8 8.9
T2D 11.8 13.0 19.2

median 11.1 12.4 18.5
mean 8.5 10.6 15.3

Table 8: Description as in table 7, but with Pearson method (left table) and Saddle method (right
table).

For the approximation methods we observe that GPU usage yields a significant performance
boost. Interestingly, we do not observe such a boost for the exact calculation. Furthermore, the
exact calculation takes significantly longer to complete than the approximation methods. A likely
explanation is that in the pathway calculation we have far more (meta)-genes for which the exact
CDF calculation takes very long to converge, outweighing the GPU speedup of the linear algebra
operations.

2.7 Benchmark against previous implementation

We compare our new PascalX implementation against the original weighted χ2 Pascal implementa-
tion of [15]. Note that we used for this analysis the reference panel and gene annotation delivered
with the original Pascal also for PascalX. We used the default original Pascal setting, but set the
original Pascal to use all SNPs in the genome region, as is the case for PascalX. As gene scoring
method we used the saddle point approximation for PascalX. The results for weighted χ2 based
genescoring are shown in figure 16. We clearly observe that the original Pascal starts to break down
around a − log10 p-value of 12. Below that double precision induced threshold, we observe a very
good concordance between Pascal and PascalX calculated p-values. A runtime comparison can be
found in table 9. We observe that in the single core setting PascalX is more than twice as fast
as the original Pascal implementation. With GPU acceleration we are almost three times as fast.
Increasing the core count, we can easily achieve more than a factor of ten. Note that the results
presented in table 9 are not directly comparable to the benchmarking presented for just PascalX, as
the latter is based on a larger (sample wise) and more extensive (SNP wise) reference panel.

Pathway scores are plotted against each other in figure 17. Corresponding qq-plots can be found
in figure 18. We observe that the new PascalX implementation appears to yield less inflated results
than the original Pascal implementation. Furthermore, we observe at hand of the highly powered
GWAS for Alzheimer and Rheumatoid arthritis that PascalX’s ability to resolve gene scores at higher
precision impacts the pathway scores. Note that the importance of being able to compute highly
significant genes is also visible in figure 11. In this figure we observe as well for Rheumatoid arthritis
that the pathways using gene scores computed via the saddle point approximation seem to deviate
more than usual from the pathways computed with the exact gene scores. The reason being that
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Trait Pascal PascalXp=1 PascalXp=1
gpu PascalXp=8 PascalXp=8

gpu

Alzheimer 3.0 10.4 17.0 13.8 56.5
Body mass index 15.3 26.7 33.6 48.1 161.3

Coronary artery disease 13.4 25.8 33.4 49.0 155.3
Height 10.6 26.5 33.5 47.8 165.2

Inflammatory bowel disease 2.7 9.8 16.8 13.4 55.6
Rheumatoid arthritis 11.3 25.2 32.9 45.8 159.4

Schizophrenia 4.1 11.3 18.3 14.9 61.8
Type-II diabetes 13.4 26.6 33.5 49.8 163.7

median 11.0 25.5 33.2 46.8 157.4
mean 9.4 20.3 27.4 35.3 122.4

∆ mean (%) +116 +192 +276 +1202

Table 9: Benchmark of weighted χ2 based genescoring of original Pascal implementation against
PascalX. Results are given in genes per second. The ∆ mean row gives the difference to the original
Pascal in %. p=n denotes the number of cores to use set for PascalX and gpu denotes usage of GPU
for acceleration of linear algebra operations. Note that for this analysis the reference panel of the
original Pascal has been used (1K Genome Project phase 1, GRCh37).

this GWAS has a significant number of genes above the exact computation threshold of 100 digits.
As the saddle point methods is able to resolve the gene ordering above 100 digits, we expect that
pathway scores are impacted. Note also, that as an immune system related trait, it is expected that
significant genes of RA are more commonly found in pathways.

3 List of tables

1. List of GWAS used.

2. Gene scoring throughput for Auto method.

3. Gene scoring throughput for Satterthwaite method.

4. Gene scoring throughput for Pearson method.

5. Gene scoring throughput for Saddle method.

6. Cross scoring throughput.

7. Pathway scoring throughput for Auto and Satterthwaite methods.

8. Pathway scoring throughput for Pearson and Saddle methods.

9. Gene scoring benchmark of original Pascal implementation against PascalX.

10. Pathway scoring benchmark of original Pascal implementation against PascalX.

11. Spearman correlations between exact and approximate calculation of gene scores.

12. Spearman between exact and approximate calculation of pathway scores.
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Trait Pascal PascalXp=1 PascalXp=1
gpu PascalXp=8 PascalXp=8

gpu

Alzheimer 0.1 0.3 0.8 0.5 1.8
Body mass index 0.5 1.5 1.4 2.2 9.1

Coronary artery disease 0.5 1.4 1.7 2.4 9.2
Height 0.4 1.5 2.0 2.0 9.3

Inflammatory bowel disease 0.1 0.3 0.8 0.4 1.7
Rheumatoid arthritis 0.5 1.4 1.9 2.6 8.4

Schizophrenia 0.1 0.4 0.9 0.6 2.2
Type-II diabetes 0.6 1.5 2.0 2.7 9.3

median 0.5 1.4 1.6 2.1 8.8
mean 0.4 1.0 1.4 1.7 6.4

∆ mean (%) +150 +250 +324 +1500

Table 10: Benchmark of weighted χ2 based pathway scoring of original Pascal implementation
against PascalX. Results are given in pathways per second. The ∆ mean row gives the difference to
the original Pascal in %. p=n denotes the number of cores to use set for PascalX and gpu denotes
usage of GPU for acceleration of linear algebra operations. Note that for this analysis the reference
panel of the original Pascal has been used (1K Genome Project phase 1, GRCh37).

4 List of figures

1. Cross verification of Davies’ and Ruben’s algorithm with control.

2. Cross verification of Davies’ and Ruben’s algorithm at 100 digits precision.

3. Approximative methods against exact solution under varying number of linear combination
terms.

4. Approximative methods against exact solution.

5. Gene scores for fixed window versus cS2G SNP to gene linking.

6. Pathway scores for fixed window versus cS2G SNP to gene linking.

7. QQ-plots for pathway scores based on fixed window and based on cS2G SNP to gene linking.

8. Gene score differences under varying reference panel and method.

9. Exact against approximate gene score calculation.

10. QQ-plots for different gene scoring methods.

11. Exact against approximate pathway score calculation.

12. QQ-plots for different pathway scoring methods.

13. Gene scoring performance benchmark.

14. X scoring performance benchmark.

15. Pathway scoring performance benchmark.

16. Gene scores for original Pascal implementation against PascalX.
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17. Pathway scores for original Pascal implementation against PascalX.

18. QQ-plots for original Pascal and PascalX based pathway scores.

Code availability

We used PascalX v0.0.4 available from Zenodo [16] and on GitHub under the url
https://github.com/BergmannLab/PascalX. For the comparison with the original Pascal implemen-
tation of [15] we used the code available at https://www2.unil.ch/cbg/index.php?title=Pascal.

Data availability

Gene annotation We considered only protein coding genes. Gene annotation can be downloaded
from Ensemble BioMart https://www.ensembl.org/ (we used release 104).

Reference panel For this work we used the European subpopulation of the 1K Genome Project
[17] as reference panel to estimate the SNP-SNP correlations. The data can be obtained from
https://www.internationalgenome.org/. We mainly used the 632 european samples of the 30x high
coverage GRCh38 release of [18], but for the comparison to the original Pascal implementation we
used the GRCh37 phase 1 release with 379 european samples.

Pathway set We used the MSigDB v7.4 database to perform pathway enrichment tests. The data
can be downloaded at https://www.gsea-msigdb.org/gsea/msigdb/.

cS2G The SNP to gene linking data of the cS2G method of [19] can be downloaded at
https://alkesgroup.broadinstitute.org/cS2G/cS2G_1000GEUR/.

GWAS The GWAS summary statistics used in this work have been published by the authors of
the cited original studies, and have been retrieved from the following websites:

Alzheimer (ALZ): [20]
https://www.ebi.ac.uk/gwas/studies/GCST007511

Body mass index (BMI): [21]
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

Coronary artery disease (CAD): [22]
http://www.cardiogramplusc4d.org/data-downloads/

Height (H): [23]
https://www.ebi.ac.uk/gwas/publications/20881960

Inflammatory bowel disease (IBD): [24, 25]
https://www.ibdgenetics.org/downloads.html
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Rheumatoid arthritis (RA): [26]
https://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/

Schizophrenia (SCZ): [27]
https://www.med.unc.edu/pgc/download-results/

Type-II diabetes (T2D): [28]
http://www.diagram-consortium.org/downloads.html
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Figure 1: Cross verification of the CDF calculation of a linear combination of χ2
1 distributions. Com-

bination coefficients are randomly sampled from the range [0.01, 1], evaluation point from [0.1, 1000]
and number of coefficients from [5, 500]. We took 10000 samples and kept only data points where
both algorithms successfully converged error free under 100000 iterations. The left plots show −log10
transformed p-values plotted against each other. The right plots absolute errors. Top two rows: Con-
trol with float128. Bottom two rows: Control with multi-precision arithmetic at 100 digits.
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Figure 2: Cross verification of CDF calculation as in figure 1, but both algorithms at 100 digits
precision (no control at higher precision available). Left: −log10 p-values plotted against each other.
Right: Absolute error.
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Figure 3: From left to right: Satterthwaite-Welch, Imhof-Pearson’s and Saddle-point approximation
against Ruben’s algorithm for different number of terms in the linear combination of χ2

1 random
variables. Sampling as for figure 1, but with fixed number of coefficients, evaluation point sampled
from [0.1, 2000] and 1000 samples in total. Ruben has been run with multi-precision arithmetic at
100 digits. − log10 transformed p-values are plotted against each other.
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Figure 4: Sampling as for figure 1, but evaluation point from [0.1, 2000]. Ruben has been run with
multi-precision arithmetic at 100 digits. − log10 transformed p-values are plotted against each other.
For the error plot on the right hand side showing the % deviation from Ruben we only considered
p-values > 1e−96 and < 0.99 under the exact calculation. The maximum observed error of the saddle
method is ≈ 1.5%.
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Figure 5: Gene p-values (− log10 transformed) computed for SNPs in gene transcription side plus
50kb window on both sides (x-axis), and via the cS2G SNP to gene linking of [19] (y-axis). In both
cases we used the saddle point approximation method to evaluate the cumulative distribution func-
tion. For cS2G we incorporated the given linking score by utilizing the weighted statistic introduced
in section 2.3.
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Figure 6: MSigDB pathway p-values (− log10 transformed) computed for SNPs in gene transcription
side plus 50kb window on both sides (x-axis), and via the cS2G SNP to gene linking of [19] (y-axis).
In both cases we used the saddle point approximation method to evaluate the cumulative distribution
function. For the cS2G we incorporated the given linking score by utilizing the weighted statistic
introduced in section 2.3.
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Figure 7: QQ-plots for the MSigDB pathway p-values given in figure 2.3. We observe that for some
of the traits biological pathways (Height, Inflamatory bowel disease and Schizophrenia) appear to
be significantly more enriched under cS2G.
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Figure 8: Difference (in %) for gene scores (− log10 transformed p-values) computed with different
reference panel size (randomly sub-sampled, 150 samples) and method (Pearson) plotted against
base line given by full reference panel (632 samples) and saddle point method.
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Figure 9: Gene p-values (− log10 transformed) computed via Satterthwaite-Welch (green), Imhof-
Pearson (blue) and Saddle-point (orange) approximation plotted against the exact solution for the
GWAS listed in table 1. Default settings of PascalX have been used.
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Figure 10: QQ-plots for the PascalX computed gene p-values given in figure 9.
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Figure 11: MSigDB pathway p-values (− log10 transformed) computed via Satterthwaite-Welch
(green), Imhof-Pearson (blue) and Saddle-point (orange) approximation for the GWAS listed in
table 1. The results are plotted against the exact calculation. Default settings of PascalX have been
used.
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Figure 12: QQ-plots for the PascalX computed pathway p-values given in figure 11.
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Figure 13: PascalX gene scoring performance for different levels of multi-threading and with or with-
out utilization of a GPU for linear algebra operations (pink box-plots: no GPU; green box-plots:
with GPU). The box plots are based on the 8 genome wide association studies listed in table 1.
We show the results for the exact calculation (auto), and the approximation based on the methods
of Satterthwaite-Welch and Imhof-Pearson, and the Saddle-point method. The mean run-times are
indicated with orange markings.
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Figure 14: PascalX cross-scoring performance for different levels of multi-threading and with or
with-out utilization of a GPU for linear algebra operations (pink box-plots: no GPU; green box-
plots: with GPU). The box plots are based on the cross scoring execution run time for each unique
pair of 6 genome wide association studies listed in table 1. Mean run-times are marked in orange
and outliers with circles.
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Figure 15: PascalX pathway scoring performance for different levels of multi-threading and with or
with-out utilization of a GPU for linear algebra operations (pink box-plots: no GPU; green box-
plots: with GPU). The box plots are based on the 8 genome wide association studies listed in table1.
We show the results for the exact calculation (top plot), and the approximation based methods of
Satterthwaite-Welch and Imhof-Pearson, and the Saddle-point method (bottom plots). All pathways
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Figure 16: Gene scores (− log10 transformed p-values) for PascalX and the original Pascal imple-
mentation plotted against each other. r2 value calculation includes only datapoints with a PascalX
gene score < 12. As is evident, the original weighted χ2 based Pascal implementation starts to
break down around a −log10 p-value of 12. PascalX scores have been calculated with a saddle point
approximation.
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Figure 17: Pathway scores (− log10 transformed p-values) for PascalX and the original Pascal im-
plementation plotted against each other. As in figure 16 we used the saddle point approximation for
PascalX. We considered the Biocarta, KEGG and Reactome pathway subset of MSigDB included in
the original Pascal package (1077 pathways). Merge distance for gene fusion was set to 1 Mb. We
observe that for the highly powered Alzheimer and Rheumatoid arthritis GWAS there is an impact
onto the pathway scores despite QQ normalization. That is, being able to resolve the ordering of
significant p-values matters.
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Figure 18: QQ-plot for pathway scores given in figure 17. Note that the new PascalX implementation
yields less inflated results.
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