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SUPPLEMENTARY SECTION 1: THEORY OF ELECTRIC FIELD GRADIOME-

TRY WITH NV CENTERS

In this section, the xyz coordinate system is taken as the NV center’s coordinate system to

simplify notation. The correction to the resonance frequencies (up to second order) for the

ground state NV Hamiltonian subject to magnetic and electric fields is given by [1, 2]:

ω± = ω
(0)
± + 2πk‖Ez ±

[
Ω( ~B, ~E, ~ξ)− Ω( ~B, 0, ~ξ)

]
, (S1)

Ω( ~B, ~E, ~ξ) =

[
(γeBz)

2 + (2πk⊥E⊥)2 − γ2eB
2
⊥

D
k⊥E⊥ cos(2ϕB + ϕE) +

γ4eB
4
⊥

4(2πD)2

]1/2
. (S2)

ω
(0)
± is derived in Section 1.3, γe = 2π× 28 GHz/T is the gyromagnetic ratio of the electron,

k‖ and k⊥ are the on- and off-axis coupling for electric fields, ~E = ~E + ~ξ is the combination

of electric fields and strains (~ξ is the strain written in units of volts per meter), tan(ϕB) =

By/Bx and tan(ϕE) = Ey/Ex. Additionally, E⊥ =
√
E2x + E2y and B⊥ =

√
B2
x +B2

y . With

Bz = 0 and 2πD � γeB⊥ � 2πk⊥E⊥, Ω( ~B, ~E, ~ξ) can be simplified into:

Ω(B⊥, ~E, ~ξ) =
γ2eB

2
⊥

4πD
− 2πk⊥E⊥ cos(2ϕB + ϕE). (S3)

For a general ac electric signal at frequency f , the vector components of E will look like ~E =

~Edc + ~Eac sin(2πft). We assume that any dc component is solely attributed to internal strain

(~Edc = ~ξ) as the dc electric field from the sample is entirely screened. The ac component,

however, is solely attributed to the sample’s signal (~Eac = xosc∂r ~E) since there is no ac strain.

Moreover, the quantum phase acquired during an ac measurement is φ± =
∫ τ
0
g(t)∆ω±(t)dt,

where ∆ω±(t) = ω±(t)− ω(0)
± is the detuning. Next, we will show that in the low strain and

high strain limits, it is possible to further simplify the expressions for the acquired phase.

1.1. Small strain relative to electric field

For small ~ξ compared to the electric field signal we can simplify E⊥ (electric field magnitude)

and Ey/Ex (related to the electric field angle) to get:

ω±(t)− ω(0)
±

2π
= k‖xosc∂rEz sin(2πft)∓ k⊥Eac| sin(2πft)| cos (2ϕB + ϕEac(t)) (S4)
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where Eac takes on its definition from the main text and ϕEac(t) is a piecewise function,

ϕEac(t) =

arctan (∂rEy/∂rEx) if sin(2πft) ≤ 0

arctan (∂rEy/∂rEx) + π if sin(2πft) > 0.
(S5)

While the square root term involving ∂rEx and ∂rEy produces a | sin(2πft)| term, the

absolute value is canceled by the changing electric field angle inside the cosine term. When

the two-dimensional vector [∂rEx sin(2πft), ∂rEy sin(2πft)] passes through the origin (when

sin(2πft) = 0), ϕEac(t) changes by π radians so the cosine term changes by a factor of −1.

The on-axis coupling term k‖ can be dropped as it is weak compared to k⊥. As a result, the

acquired phase for a general ac measurement sequence becomes

φ± = ∓
∫ τ

0

g(t)2πk⊥Eac cos (2ϕB + ϕEac) sin(2πft)dt, (S6)

where we have dropped the absolute term and let ϕEac = arctan (∂rEyNV
/∂rExNV

). Specifi-

cally for a gradiometry spin-echo sequence (equivalently CPMG-1 from ref. [3]), the phase

is

φ± = ±4k⊥Eac cos(2ϕB + ϕEac) sin2(πfτ/2)/f, (S7)

since
∫ τ
0
g(t) sin(2πft)dt = −2 sin2(πfτ/2)/(πf) when the integral is centered on the zero

crossing of the sine term. This equation is precisely what is shown in the main text. For

multi-period gradiometry [3], the phase is

φ± = ∓4k⊥Eac cos(2ϕB + ϕEac)τ. (S8)

1.2. Large strain relative to electric field

For large strains we get a different result from simplifying the electric field signal magnitude

and angle expressions. From Eq. S1, we arrive at

ω±(t)− ω(0)
±

2π
= k‖ξz ∓ k⊥xosc

ξx∂rEx + ξy∂rEy
ξ⊥

sin(2πft) cos (2ϕB + ϕξ) . (S9)

The numerator of the fraction on the right hand side in the equation above is equivalent

to a two-dimensional dot product (~ξ2D · ∂r ~E2D = ξx∂rEx + ξy∂rEy = ξ⊥Eac

xosc
cos(ϕξ − ϕEac)).

With this expression, we can simplify Eq. S9 to

ω±(t)− ω(0)
±

2π
= k‖ξz ∓ k⊥Eac cos(ϕξ − ϕEac) cos(2ϕB + ϕξ) sin(2πft). (S10)
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The acquired phase for a general ac measure sequence becomes

φ± = ∓
∫ τ

0

2πg(t)k⊥Eac cos(ϕξ − ϕEac) cos(2ϕB + ϕξ) sin(2πft)dt, (S11)

and for the gradiometry spin-echo sequence, the phase is

φ± = ±4k⊥Eac cos(ϕξ − ϕEac) cos(2ϕB + ϕξ) sin2(πfτ/2)/f, (S12)

In the high strain limit, it is possible to sense electric fields that are oriented along the

direction of the perpendicular strain vector [ξx, ξy], where | cos(ϕξ − ϕEac)| is maximized.

Effectively, the angular dependencies have shifted from cos (2ϕB + ϕEac) for small strains

to cos(ϕξ − ϕEac) cos (2ϕB + ϕξ) for large strains. Remarkably, the sensitivity remains the

same, but there is a change in the direction in which the best sensitivity is achieved. An

optimal scanning setup would orient the magnetic field angle to maximize cos(2ϕB + ϕξ).

1.3. Off-axis magnetic field transition frequencies

In the absence of electrical field and with a magnetic field applied in the NV center’s xy-

plane, the three-level ground state Hamiltonian [2] (with ~ = 1) is,

H =


2πD γe√

2
B⊥e

−iϕB 0

γe√
2
B⊥e

iϕB 0 γe√
2
B⊥e

−iϕB

0 γe√
2
B⊥e

iϕB 2πD

 (S13)

where Bx ± iBy = B⊥e
±iϕB . The resulting energy eigenequation is (λ− 2πD)(λ2 − 2πDλ−

γ2eB
2
⊥) = 0, where λ are the eigenfrequencies. Solving this polynomial gives the energy levels

corresponding to the eigenstates |0〉, |−〉, and |+〉. The eigenfrequencies are

λ0 =
2πD −

√
(2πD)2 + (2γeB⊥)2

2

λ− = 2πD

λ+ =
2πD +

√
(2πD)2 + (2γeB⊥)2

2
,

(S14)

and the resonance frequencies ω
(0)
± (given by ω

(0)
− = λ− − λ0 and ω

(0)
+ = λ+ − λ0) are

ω
(0)
− =

2πD +
√

(2πD)2 + (2γeB⊥)2

2
≈ 2πD + γ2eB

2
⊥/(2πD)

ω
(0)
+ =

√
(2πD)2 + (2γeB⊥)2 ≈ 2πD + γ2eB

2
⊥/(πD),

(S15)

where an approximation was made for γeB⊥ � 2πD.
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SUPPLEMENTARY SECTION 2: ELECTRIC FIELD GRADIENT PROFILES

Here, we will formulate simplified expressions for the electric field (and electric field gradient)

near ferrorelectric domains, starting from the electric field from a constant charged sheet.

From Coulomb’s law, the electric field from a finite charged sheet with surface charge density

σ that extends from a0 to a1 in the x-direction and b0 to b1 in the y-direction is

Ex(x, y, z) =
σ

4πε0

[
ln

(√
(x− a1)2 + (y − b1)2 + z2 − (y − b1)√
(x− a1)2 + (y − b0)2 + z2 − (y − b0)

)

− ln

(√
(x− a0)2 + (y − b1)2 + z2 − (y − b1)√
(x− a0)2 + (y − b0)2 + z2 − (y − b0)

)]
, (S16)

Ey(x, y, z) =
σ

4πε0

[
ln

(√
(x− a1)2 + (y − b1)2 + z2 − (x− a1)√
(x− a0)2 + (y − b1)2 + z2 − (x− a0)

)

− ln

(√
(x− a1)2 + (y − b0)2 + z2 − (x− a1)√
(x− a0)2 + (y − b0)2 + z2 − (x− a0)

)]
, (S17)

Ez(x, y, z) =
σ

4πε0

[
arctan

(
(x− a1)(y − b1)

z
√

(x− a1)2 + (y − b1)2 + z2

)

− arctan

(
(x− a1)(y − b0)

z
√

(x− a1)2 + (y − b0)2 + z2

)

− arctan

(
(x− a0)(y − b1)

z
√

(x− a0)2 + (y − b1)2 + z2

)
+ arctan

(
(x− a0)(y − b0)

z
√

(x− a0)2 + (y − b0)2 + z2

)]
.

(S18)

A domain wall can be constructed out of two charged sheets that meet at x = 0, propagate

along the y direction and have opposite surface charge densities. For symmetry we will set

b0 = −ly and b1 = ly (which will be useful in the limit of large ly). Additionally, we can

ignore the terms far away from x = 0, and focus on the xz-plane where y = 0. Here, the

electric field at the domain wall is
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Ex(x, 0, z) =
σ

2πε0
ln

(√
x2 + l2y + z2 + ly√
x2 + l2y + z2 − ly

)

Ey(x, 0, z) =
σ

2πε0
ln

(√
x2 + l2y + z2 − x√
x2 + l2y + z2 − x

)
= 0

Ez(x, 0, z) =
−σ
πε0

arctan

(
xly

z
√
x2 + l2y + z2

)
.

(S19)

2.1. Monopole charge sheet domain wall

Simplifying the x and z components of Eq. S19 in the limit of large ly, we arrive at

Emono
x =

σ

2πε0
ln

(
1 +

4l2y
x2 + z2

)
Emono
z =

−σ
πε0

arctan
(x
z

)
.

(S20)

While Eq. S20 is significantly simpler than Eq. S19, the logarithmic dependence on the

length ly is unwanted. However, if the spatial derivative is taken (along either the x- or

z-direction), the dependence on ly is removed (in the approximation for very large ly). After

taking the derivative in x and simplifying further, the electric field gradients are

∂

∂x
Emono
x =

−σ
πε0

x

x2 + z2

∂

∂x
Emono
z =

−σ
πε0

z

x2 + z2
.

(S21)

2.2. Dipole charge sheet domain wall

Starting with Eq. S19, a surface of charged dipoles can be constructed by the addition of

another monopole charge sheet domain wall with opposite charge at a distance d above the

original. Succinctly, this can be represented as

~Edipo = ~E(x, 0, z;σ) + ~E(x, 0, z − d;−σ). (S22)

It is important to note that the original sheet is located at height of z′ = 0, the new sheet

is located at z′ = d and the NV center (where the electric field is measured), is located at

z � d. Thus, the distance between the NV and the bottom sheet is z and the distance
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between the NV and the top sheet is z − d. With analogous derivations and simplifications

as those shown in the previous section, the electric field components are

Edipo
x =

−σd
πε0

z

x2 + z2

Edipo
z =

σd

πε0

x

x2 + z2
,

(S23)

and the electric field gradients in the x-direction are

∂

∂x
Edipo
x =

σd

πε0

2xz

(x2 + z2)2

∂

∂x
Edipo
z =

σd

πε0

z2 − x2

(x2 + z2)2
.

(S24)

The difference in functional form between Eqs. S21 and S24 makes it possible to distin-

guish the type of surface charge distribution, despite the fact that one version includes an

additional scaling parameter (d, the dipole length).

SUPPLEMENTARY SECTION 3: SENSITIVITY OF NV ELECTROMETRY

In a four-phase measurement [3, 4] the collected NV photoluminescence (PL) counts Ci are:

Ci = C0

(
1− 1

2
[ε+ ετ cos(φ+ Φi)]

)
, (S25)

where C0 is the number of counts for the |0〉 state, ε is the optical contrast (or Rabi contrast),

ετ is the dephased optical contrast after time τ , φ is the acquired quantum phase over the

evolution time τ and Φi is the final microwave π/2-pulse phase (i = {x, y,−x,−y}). From

the four Ci measurements the acquired phase can be computed as

φ = arctan

(
±(C−y − Cy)
±(C−x − Cx)

)
, (S26)

where the ± in the numerator (denominator) is taken for even or odd number of πy-pulses

(πx-pulses). Gaussian error propagation of Eq. S26 provides one method of estimating

sensitivity.

First, we note that the best sensitvity is achieved by using multi-pulse measurements se-

quences and exploiting the increased sensor coherence time they provide [5]. Our best-effort

sensitivity measurement use a dynamical decoupling XY8-3 sequence (24 decoupling π-pulses
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in total) where phase was accumulated over 12 oscillation periods at f ∼ 196 kHz (equiva-

lently τ ∼ 61µs). With Eqs. S26 and S8 (setting the angular term to unity) the uncertainty

in our NV electrometry measuement is

σEac =
1√

32k⊥τ

√
Cx + C−x + Cy + C−y

(Cx − C−x)2 + (Cy − C−y)2
. (S27)

Then, by normalizing that uncertainty by measurement time (following the T−1/2 shot-noise

measurement time scaling) we can estimate the sensitivity (Extended Data Fig. 3a,b).

We can also estimate the uncertainty by subtracting subsequent line scans (Extended Data

Fig. 3c,d). In principle, taking the difference between neighboring pixels removes the electric

field signal while amplifying the measurement noise by a factor of
√

2. Measurement time

normalization is also needed here to produce a sensitivity estimate. The uncertainty esti-

mates in Extended Data Fig. 3b,d are extracted from Gaussian fits and produce sensitivities

(0.24 kV cm−1 Hz−1/2 and 0.29 kV cm−1 Hz−1/2, respectively) that agree well with each other.

SUPPLEMENTARY SECTION 4: IMPROVEMENTS TO SPATIAL RESOLUTION

AND IMAGING SPEED

Improvements in both the spatial resolution and imaging speed of NV electrometry are

enabled by (i) increasing the measurement sensitivity, (ii) reducing the NV-sample distance,

and (iii) increasing the signal at the NV center. By combining the improvements proposed

below, it should be possible to perform NV electrometry with improved spatial resolution

by a factor of two and a speed increase by an order of magnitude compared to our present

work.

The sensitivity of the gradiometric detection scheme is improved by prolonging the evolution

time τ (Eq. S27) while maintaining large optical contrast ετ (Eq. S25). This is achievable

by using higher frequency oscillators and dynamical decoupling sequences with more π-

pulses. With an oscillation frequency f ∼ 500 kHz and a spin contrast which decays

as ετ = ε exp

[
−
(

τ
T2n2/3

)3]
, Ref. [5], where T2 is the spin-echo coherence time, n is the

number of π-pulses and τ = n/(2f) is the total evolution time, sensitivities of ηEac <

0.1 kV cm−1 Hz−1/2 are feasible with current scanning NV centers probes [3]. This alone can

improve measurement speed by a factor of at least 5× compared to our current sensitivity, as
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the minimum detectable signal (which defines the noise level in SNR) decreases proportional

to one over the square root of the pixel integration (or measurement) time (T−1/2).

Spatial resolution is primarily determined by the NV-sample distance. That distance is

composed of the NV implantation depth (from the tip surface to the NV) which should be

approximately 5 − 10 nm and the tip-sample distance (from the tip surface to the sample

surface) that is determined by forces arising from our dynamic frictional (shear mode) AFM

operation and feedback parameters. During gradiometry, we additionally retract the tip by

∼ 20 nm to minimize tip-sample interaction that can affect the oscillation amplitude and

phase of the tip [3]. This produces a total NV-sample distance of z ∼ 100 nm. The retrack

distance is non-optimal and can be eliminated through the use of AFM techniques that fix the

oscillation amplitude and phase, such as frequency modulated (FM)-AFM [6]. Additionally,

by tuning AFM feedback parameters, it is also possible to decrease the tip-sample distance

by 10’s of nanometers. Thus, gradiometry with NV-sample distances z ≤ 50 nm should be

possible, which would lead to an improvement in spatial resolution by 2×.

Both the use of higher oscillation frequencies and smaller NV-sample distances increase the

signal at the NV center. While the increase in signal via a reduction in surface screening

at higher frequencies is clearly demonstrated by our failure to image electric fields with dc

protocols, the increase in electric field signal by decreasing the NV-sample distance is slightly

more complicated to understand since the oscillation amplitude linearly affects the measured

phase and is limited by the standoff distance (xosc ≤ z) to prevent spatial averaging [3]. The

naive expectation is that the signal decreases with decreasing z. However, from Eqs. S21

and S24 it can be shown that the electric field signal maxima remains constant for monopole

domains (for example xosc∂xE
mono
z ∝ z2

x2+z2
∼ 1 at x = 0 with decreasing z) and increases for

dipole-like domains (for example xosc∂xE
dipo
z ∝ z3−x2z

(x2+z2)2
∼ 1/z at x = 0 with decreasing z).

For example, decreasing z from 100 to 50 nm would increase the electric field signal (and

SNR as well) of our PZT sample by a factor of 2×.

SUPPLEMENTARY SECTION 5: THE NV REFERENCE FRAME

There are two common definitions for the NV reference frame. One reference frame defines

ẑNV as pointing from the nitrogen atom to the vacancy (N-to-V) and the second reference

frame instead defines ẑNV as pointing from the vacancy to the nitrogen (V-to-N). In both
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cases, the x̂NV and ŷNV are defined the same way, where x̂NV points from the vacancy

to one of the three nearest carbon atoms (while being perpendicular to ẑNV) and ŷNV =

ẑNV× x̂NV. In purely magnetic sensing applications, there is no practical difference between

these definitions, since magnetic interactions can only determine the NV center’s major

symmetry axis (the zNV axis), but not the ẑNV direction along that axis [7]. However, only

the N-to-V definition should be adopted when translating NV electrometry measurements

into the laboratory frame. This is because the electric field coupling constants (k‖ and k⊥),

which are defined to be positive, were derived following the N-to-V convention [1, 2, 7].

The definition of ẑNV directly affects the definitions of x̂NV and ŷNV, which has a major

impact in the analysis of electric field data. For illustrative purposes, and without loss of

generality, we choose to align ẑNV to point along the [111] crystal direction. Using the N-to-V

definition the three nearest carbon atoms from the vacancy point along [1̄11], [11̄1], and [111̄]

which would result in possible x̂NV definitions of 1√
6
[−2, 1, 1], 1√

6
[1,−2, 1], or 1√

6
[1, 1,−2] and

corresponding ŷNV definitions of 1√
2
[0,−1, 1], 1√

2
[1, 0, 1], or 1√

2
[−1, 1, 0]. Switching to the V-

to-N definition (and keeping ẑNV along [111]) results in the three nearest carbon atoms

from the vacancy to instead point along [11̄1̄], [1̄11̄], and [1̄1̄1]. This effectively inverts the

resulting x̂NV and ŷNV definitions compared to the N-to-V definition. Consequently, the

projection of the magnetic bias and electric fields onto the NV center’s xy-plane differs by

180◦ (or π radians) and the acquired signal (proportional to cos(2ϕB + ϕE)) thus differs

by a minus sign. Therefore, laboratory frame electric fields with different polarities can be

deduced by using different (and incorrect) NV reference frames. Careful attention is required

for proper analysis and, for example, to correctly identify a given charge model.

Lastly, the specific choice of any of the three x̂NV possibilities (and corresponding ŷNV) has

no impact on the reconstruction of the laboratory frame electric field. Switching between

different x̂NV choices is equivalent to a 120◦ (or 2π/3 radians) rotation around the zNV

axis and the NV center’s C3ν symmetry results in the same NV behaviour. Specifically,

the angular modulation term on the measured signal, cos(2ϕB + ϕE), is invariant when the

magnetic bias field and electric field are shifted by 120◦ (or 2π/3 radians).

SUPPLEMENTARY SECTION 6: ADDITIONAL FIGURES
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θB= 95°

phase φ
−  (rad.)

Figure S1. NV electrometry on PZT with misaligned polar magnetic field angle. Com-

pared to the off-axis image (Fig. 2b of the main text) the signal amplitude is decreased and a large

static offset is introduced by the 5◦ misaligned in the bias field. Scale bar, 1 µm.

a bE-mode gradiometry

E (kV/cm
)

B (µT)

B-mode gradiometry

c dright NV resonance (φ+) left NV resonance (φ-)

E (kV/cm
)

E (kV/cm
)

E (kV/cm
)

e

Figure S2. Additional NV electrometry on YMnO3. a, Subsection of Fig. 4 of the main text.

b, Gradiometry recorded with an on-axis bias field imaged over the same region in panel a. Here,

the NV is sensitive to magnetic fields and none are detected. White scale bar, 5 µm. c-d, NV

electrometry that simultaneously measured both transition frequencies (ω±), showing ferroelectric

domains and charge accumulation with inverted contrast. Black scale bar, 1 µm. Panels a-d were

recorded with tip #2. e NV electrometry recorded with tip #1 (used in Figs. 2 and 3 of the main

text). This image reveals a similar domain structure to that of images recorded with tip #2, but

different overall contrast compared to panel a.
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a b cϕB = 115.6º d

e f g h

E
 (kV/cm

)

xNV

yNV

ϕB = 106.6º ϕB = 93.3º ϕB = 70.6º

i j k l

ϕB ϕB ϕB ϕBxNV

yNV
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yNV

xNV

yNV

(arb.)

Figure S3. NV electrometry with varying azimuthal (in-plane) magnetic field angle.

a-d, NV electrometry images taken over the pattern square domain shown in Fig. 2d of the main

text with different in-plane magnetic field angles. The in-plane magnetic field angles are listed

above. e-h, Schematics of the in-plane NV axes showing the magnetic bias field vector (gray) and

detection axis (purple). i-l, Simulations of panels a-d. Scale bar, 1 µm.
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Figure S4. Atomic force microscopy on YMnO3. AFM simultaneously acquired with the

PFM image in Fig. 4b of the main text. Topographic contrast across domains is a result of the

chemo-mechanical polishing, which is polarization dependent. Some colour-clipped regions (white)

are examples of topographic crosstalk which produce artefacts in the PFM signal. Scale bar, 5 µm.
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