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Supplementary Figure 1. Microscopy images from the prostate cancer dataset1 of each staining and the 
composite image corresponding to Figure 2b. 
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Supplementary Figure 2. Benchmarking the mixing score (MS) and normalized MS (NMS) using simulated 
images. (A) A set of 11 simulated images. The cell counts of A cells in all images are consistent. The cell count of 
cells of type B increases from left to right. (B) The MS and the NMS calculated with cells of type A as reference 
cells and cells of type B as target cells. As the number of target cells increase, the MS increases, while the NMS 
remains consistent. (C) The MS and NMS calculated with cells of type B as reference cells and A cells as target 
cells. As the number of reference cells increase, the MS increases, while the NMS remains consistent. The NMS 
captures the chances that a target cell type is intermixed among reference cells, given the number of target cells 
present. In contrast, the MS captures the density of target cells surrounding reference cells, and therefore it is 
sensitive to the number of target and reference cells. MS: Mixing Score; NMS: Normalized Mixing Score. Source 
data are provided as a Source Data file.  
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Spatial pattern Example image Example cross K plot Percentage of images with 
positive CKIs 

Obvious immune 
rings 

 
 

99.8 (of 500 images) 

Obvious immune 
rings; immune cells 
within tumor and 
stromal area 

 
 

99.4 (of 500 images) 

Obvious immune 
rings; immune cells 
infiltrating the 
tumor area 

 
 

91.4 (of 500 images) 

Obvious immune 
rings but only one 
layer of immune 
cells in the rings 

 
 

78.6 (of 500 images) 

Few immune cells 
forming not obvious 
rings around tumor 
area 

 
 

28.2 (of 500 images) 

No immune ring, 
immune cells are 
randomly located 
across the image 

 
 

18.8 (of 500 images) 

No clear tumor 
clusters, no immune 
rings 

 
 

10.1 (of 1000 images) 
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No immune ring; 
immune cells are 
randomly 
distributed within 
the tumor area 

 
 

0 (of 500 images) 

Supplementary Figure 3.  The performance of the CKI across various spatial patterns. We describe in Figure 3 
that the CKI captures the presence of immune rings. Here we test the performance of the CKI across distinct 
spatial patterns. We see that the presence of an immune ring leads to a positive CKI in over 99% of cases. We 
note that the CKI value can also give a positive value in the absence of immune rings or when there are no clear 
tumor clusters, we therefore advise the use of multiple complementary spatial metrics to obtain an accurate 
representation of a pattern. The black dot indicates the point of intersection. CKI: Cross-K Intersection. Source 
data are provided as a Source Data file.  
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Supplementary Figure 4. Microscopy images of individual stains and the composite image of samples from 
the MIBI TNBC dataset2 corresponding to Figures 4d and 5c. 
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Supplementary Figure 5. Association between entropy values and cell densities. (A) Simulated images with 
independently located cell types (Cell A and Cell B). From left to right, the ratio of the number of A cells to B cells 
are 7:3, 2:1, 1:1, 2:3, 1:3. The density of cells of type B remains consistent. (B) Entropy grid visualization of the 
corresponding images in panel (A). Each grid is colored based on its entropy value calculated by the number of 
A and B cells within each grid. (C) Density plots of the entropy values of all grid squares in each plot of panel (B). 
As the density of the A cells decreases to the density levels of the cells of type B, the localized entropy increases, 
reaching to a maximum when both densities are equal. After this, further decrease in the density of Cell A causes 
the entropy to decrease, as the relative proportions of A and B cells in the grid squares tend to become more 
dissimilar. Source data are provided as a Source Data file. 
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Supplementary Figure 6. Characterizing cell populations relative to a tissue structure margin with images 
simulated with spaSim. (A) Simulation of images with distinct proportions of infiltrated (top row) and stromal 
(bottom row) cells of type B. SPIAT was used for automatic margin detection and classification of cell populations 
based on location. The calculated proportion of infiltrated (top row) and stromal (bottom row) populations 
matched the expected levels of infiltrated and stromal populations used as input parameters to the simulator. 
(B) Simulated images with various levels of margin clarity showcasing the identification of tissues with clear and 
unclear margins using the R-BC scores. Simulated images without clear margins had higher R-BC scores (top 
row), whereas clear margins were associated with lower R-BC scores (middle and bottom row). Proportions 
shown correspond to the proportion of cells of type B in each location. Blue dotted line around clusters of A cells 
corresponds to the margin. R-BC: Ratio of Border cell count to Cluster cell count. Source data are provided as a 
Source Data file. 
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Supplementary Figure 7. Microscopy images from the prostate cancer dataset1 of each stain and the 
composite image corresponding to Figure 6b, left. 
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Supplementary Figure 8. Microscopy images from the prostate cancer dataset1 of each stain and the 
composite image corresponding to Figure 6b, right. 
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Supplementary Figure 9. Microscopy images from the melanoma dataset3 of individual stains and the 
composite image corresponding to Figure 6c. A closeup ROI of the metastatic sample is shown. 
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Supplementary Figure 10. Single-channel images of individual markers corresponding to Figure 6d from the 
diabetes IMC dataset4.   
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Supplementary Figure 11. Hierarchical clustering algorithm in SPIAT. (A) Diagram of the identification of 
neighborhoods with the hierarchical clustering algorithm. (B) Simulations of clusters with spaSim and (C) their 
identification using our hierarchical clustering algorithm. Less defined clusters are less likely to be separated. 
Source data are provided as a Source Data file. Created with BioRender.com. 
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Supplementary Figure 12. An illustration of the CKI metric. The horizontal axis is the radii used by the cross K 
function between two cell types. The dashed curve is the expected cross K function estimated with a Poisson. 
The black curve is the observed cross K function. The solid point represents the intersection of the observed and 
expected cross K curves. r: Radius, K: cross K function value. 
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Supplementary Figure 13. An illustration of convex hull. (A) A point pattern of an arbitrary shape. (B) Black lines 
outline the convex hull of the point pattern. 
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Supplementary Figure 14. An illustration of the alpha hull. The blue circles are of the same radius, alpha. The 
red points are the ones on the alpha hull representing the bordering cells of the point pattern. These represent 
the bordering cells. 
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Supplementary Figure 15. An illustration of the ray crossing algorithm. Point A is outside of the polygon; the 
rays emitting from A cross the polygon 0 or 2 (even) times. Point B is inside of the polygon; the rays emitting 
from B cross the polygon 1 or 3 (odd) times. 
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Supplementary Figure 16. An illustration of the R-BC metric. R-BC: Ratio of Border cell count to Cluster cell 
count. 
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Supplementary Figure 17. An illustration of ANNI. ANNI: Average Nearest Neighbor Index. 
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Supplementary Table I. Comparison of the capabilities of SPIAT and other spatial analysis 
tools 
 

Tool SIMPLI5 HistoCAT
6 

Cytomapper
7 

Imcyto
8 

Giotto
9 

ImaCytE 
10 

Immunocluste
r11 

CytoMAP
12 

Squidpy 
13 

SPIAT 

Environment Nextflo
w 

Matlab R Nextflo
w 

R MATLAB R MATLAB Python R 

QC 

Y N N N N Y Y N N Y 

Distance-based 
analysis 

Y Y N Y N N N Y Y Y 

Cell 
colocalization 

metrics 

N N N N N 
1 

method N N 
1 

method 
7 

methods 

Automated 
margin 

detection 

N N N N N N N N N Y 

Defining de 
novo cellular 

neighbourhood
s based on cell 

identities 
1 

metho
d 

2 
methods N 

1 
metho

d N/A 
1 

method N 1 method 
1 

method 
3 

methods 

Testing the 
presence of 
pre-defined 

neighbourhood
s 

N N N N N N N N 
1 

method 
1 

method 

Measuring the 
spatial 

heterogeneity 
of cell 

colocalization 

N N N N N N N N N Y 

Colocalization 
independent of 

thresholding 

N N N N N N N N N Y 

Raw image 
processing 

Y Y N Y N/A N N N Y N 
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Cell 
phenotyping 

Y Y Y Y Y Y Y N Y Y 

Benchmarking 

N N N N N N N N N 
Y 

(spaSim) 
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Supplementary Table II. Comparison between spatstat and spaSim simulators  
 

 spatstat spaSim 

Basis 
Point process (based on 
statistical distributions) 

Point process + deterministic 
features (e.g. geometric shapes) 

Multitype Only basic patterns 
Both basic and complex tissue 

patterns 

Multiple structures per image No Yes 

Clustering 
Not representative of 

tissues Representative of tissues 

Simulates tumor and stromal 
clusters No Yes 

Simulates immune rings No Yes 

Simulates immune infiltration No Yes 

Allows generating a range of images 
based on fluctuations of a 

parameter No Yes 
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Supplementary Table III. Summary of benchmarking results of colocalization metrics 
  

 Can distinguish 
stroma and infiltrated 
immune cells 

Can measure 
degree of immune 
infiltration 

Can measure 
distance to 
stromal immune 

Can identify 
immune ring 
formation 

APD Y N Y N 

AMD Y N Y N 

NMS Y N N N 

Cross-K 
AUC 

Y N N N 

CIN Y Y N N 

MS Y Y N N 

CKI N N N Y 
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Note N1 
To showcase the power of SPIAT in characterizing the spatial distribution of cells in tissues, we include 
results from a primary prostate cancer tissue section profiled with 7-color OPAL multiplex IHC stained 
for CD3, CD4, CD8, FoxP3, PD-L1, AMACR and DAPI (Figure N1.1).  
 
As a first step in our image analysis, we phenotyped cells with SPIAT (Figure N1.1A). In this process, 
we defined which cells were positive for each profiled marker based on the density plot of marker 
intensities (Figure N1.1B). The phenotype of cells closely matched the reference IHC stains (Figure 
N1.1A). As expected, the intensity of the CD8 marker in individual cells matched their assigned 
phenotype (Figure N1.1C). SPIAT also implemented dimensionality reduction plots, including UMAP 
and tSNE plots based on marker intensities. Our interactive implementation allows users to identify 
potentially misclassified cells and exclude them from further downstream analysis. A tSNE plot based 
on marker intensities revealed 4 distinct clusters, each corresponding to a distinct population of cells 
(Figure N1.1D). Based on marker combinations, we then defined ‘cell types’ (e.g. CD3+CD8+ cells 
correspond to cytotoxic T cells), exclude undefined cells and calculate the percentage of each within 
the image (Figure N1.1E).  
 
Next, we aimed to obtain a visual understanding of the spatial distribution of cells after phenotyping. 
SPIAT provides multiple options for visualization, including plots by cell type and individual marker 
intensities (Figure N1.1F). The visualization options in SPIAT allowed a quick visual assessment of 
patterns of immune infiltration, with multiple aggregates of immune cells close to some tumor areas, 
and regions where markers co-occur at close locations. 
 
To quantify this, SPIAT can calculate the average minimum distance between cell types which can be 
visualized as a heatmap (Figure N1.1G). SPIAT allows extracting the minimum distances for each cell 
type, which allows a comparison of distributions (Figure N1.1H). For example, the distance of cytotoxic 
T cells to PD-L1+ cells is larger than to helper T cells (two-sided Wilcoxon test p-value < 10-6), suggesting 
that they occupy distinct cellular environments. 
 
In summary, SPIAT allows visualization and basic spatial analysis, including calculation of cell 
percentages and distances between cells, enabling the identification of interacting cell populations. 
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Figure N1.1. Standard analysis performed by SPIAT. (A) Results obtained with automated phenotyping with 
SPIAT. IHC staining for CD8 (left), cells predicted to be positive to CD8 (red dots) (middle), overlay between the 
IHC staining and prediction showing overlap (right). (B) Density distribution of the intensity of the CD8 marker. 
The vertical dotted line corresponds to the threshold identified by SPIAT. Cells to the right of the dotted line 
were classified as positive for the marker. (C) Intensity of the CD8 marker in cells phenotyped as positive and 
negative. The numbers at the top of the boxplots corresponds to the number of cells. (D) A tSNE plot built using 
marker intensities. Each dot corresponds to a cell. Cells were colored by cell type. (E) Percentages of PD-L1+, 
cytotoxic, helper T cells and tumor cells in the image. (F) Visualization of marker intensities. Image obtained with 
the inForm software showing the distinct markers (left), cell type plot showing the distinct phenotyped cells 
(middle), and marker levels of CD8 (right). (G) Average minimum distances between cells (µm) calculated and 
plotted with SPIAT. (H) Minimum distances between cytotoxic T cells and PD-L1+ cells, and cytotoxic and helper 
T cells in SPIAT. Cytotoxic T cells are further from PD-L1+ cells than to helper T cells (two-sided Wilcoxon test p-
value 1.60x10-72). In boxplots, the center line corresponds to the median, the box limits correspond to the first 
and third quartiles (the 25th and 75th percentiles). The upper and lower whiskers extend to the maximum or 
minimum value within 1.5 times the interquartile range, respectively. Data points beyond the whiskers are 
plotted individually. IHC: Immunohistochemistry; t-SNE: t-distributed Stochastic Neighbor Embedding; T_cyto: 
Cytotoxic T cell; T_helper: Helper T cell; Treg: Regulatory T cell;  T_other: CD3+ cells; Dist: Distance; COI: Cell Of 
Interest. Source data are provided as a Source Data file. 
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Note N2 
 
Although one of the utilities of the R package spatstat is to simulate point data in 2D space 
(using spatstat.random v3.0-1), our package spaSim implements a different approach that 
results in several advantages over spatstat. spaSim’s ability to simulate patterns 
representative of structures and clusters found in tissue sections is based on its approach of 
using geometric shapes to present cell spatial patterns on top of background cells generated 
using a point pattern process (see Methods), while spatstat simulates point clusters by 
statistical models. A summary of the main differences can be found in Table SII. 
 
Randomly distributed mixed cell types can be achieved with both spatstat and spaSim (Figure 
N2.1), with some key differences. spaSim implements the Hardcore process simulation from 
spatstat and an intuitive evenly spaced distribution model to simulate background cells in a 
2D space. Next, we use random number sampling to assign a cell type to each background 
cell based on proportions specified by the user. This simulation requires the specification of 
the desired cell types, cell proportions, window size, total cell number, and the minimum 
distance between any two cells. 
 
In contrast, simulating mixed cell types by spatstat can be achieved by using the rmpoispp() 
function which simulates a multitype Poisson process. The simulation needs the specification 
of the intensities of the Poisson processes, the window size and the cell types. The total cell 
count and the proportion of the cell types are controlled by intensities.  
 
The images simulated by spatstat multitype Poisson process (Figure N2.1A) and by spaSim 
mixed background cell simulation (Figure N2.1B) are similar and the proportions of cell types 
generated are both close to the proportions specified. However, two differences emerged in 
the process of simulations. First, spatstat requires users to specify the intensity of each cell 
type to indirectly obtain a certain number of each cell type and total cells, which is not 
intuitive. In spaSim this is done easily by directly specifying the total cell counts and the 
proportion of each cell type. Second, spaSim uses a Hardcore process or an evenly spaced 
distribution model to simulate the cells that result in cells separated from each other. This is 
more realistic for a simulator of tissue images as cells take up volume and therefore there is 
a certain distance between any two cells. 
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Figure N2.1. Simulated images by spatstat package (left) and by spaSim package (right). The desired cell count 
is 4000, where the ratio of Cell A, Cell B and other cells is 2:3:5. The image generated by spatstat has in total 
3979 cells generated with 818, 1169, and 1992 cells for each type. The image generated by spaSim has in total 
4000 cells generated with 779, 1209, and 2012 cells for each type. 
 
The largest differences between spatstat and spaSim comes when simulating more complex 
images, with combinations of cell types following different distributions, and these often 
relative to each other. To showcase this difference, we aimed to simulate a tumor area based 
on what is routinely observed in prostate cancer tissue (Figure N2.2A, Figure N2.2B shows 
tumor cells) with spatstat (Figure N2.2C,D) and spaSim (Figure N2.2E,F). There are several 
cluster models available in spatstat to achieve this. Here we tested both the Thomas and 
Cauchy cluster models. First, we fit the models to the real image data. The parameters 
estimated include kappa (the intensity of the Poisson process of cluster centers), scale (the 
standard deviation of random displacement), and mu (the mean cluster size, which is the cell 
counts in each cluster). Simulations are then conducted by rThomas() and rCauchy() functions 
by applying the estimated parameters (Figure N2.2C,D). Others have previously used the 
Thomas process to simulate cell clusters14. We can observe that the images simulated with 
spatstat have multiple clusters (as their number cannot be specified), tumor cells are less 
aggregated than expected, with no clear tumor area. Generally, spatstat generates 
simulations where clusters are dense in the center, and less compact in the periphery, which 
is generally not a pattern observed in tumor tissues. spatstat cannot simulate the relationship 
between tumor and immune cells. 
 
In contrast, spaSim was able to simulate an image that largely captures the distribution of 
tumor cells present in the original image (Figure N2.2E). Furthermore, spaSim can include  
layers of as many different cell types desired, making it possible to generate simulated images 
that capture realistic patterns of tumor-immune interactions (Figure N2.2F). 
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Figure N2.2. Simulating cell clusters based on a real image. (A) Example prostate cancer composite microscopy 
image. (B) Plot showing the locations of the tumor cells in the real image. (C) A simulated image by rThomas() 
function from spatstat. (D) A simulated image by rCauchy() function from spatstat. (E) Locations of tumor cells 
stimulated by spaSim. The tumor cells form a cluster, similar to (A). (F) A simulated image by spaSim colored by 
cell types. The simulation includes background cells, tumor cluster cells and immune cells. The immune cells 
form a ring, also similar to the original image (A). This type of multitype image with cells having different 
distributions, but being relative to each other, is not possible with spatstat. Source data are provided as a Source 
Data file. 
  

A

C D

E F

B

Tumor

Immune

Others

Cell type

Tumor Immune Others

Cell type

CD4 CD8 AMACR FOXP3 PD-L1 CD3 DAPI



29 
 

Note N3 
 
Here we aim to validate the simulation process of spaSim. The purpose of spaSim is to test 
spatial metrics in a controlled environment across different ranges of spatial patterns to 
understand their behavior in different settings, as we have done in Figures 3, 4, 5 and 6. 
Fundamental to this is spaSim’s ability to capture and replicate specific spatial properties of 
individual images, such as cell co-localization, clustering and cell proportions. We have 
therefore focused our validation on the ability of our simulations to reproduce spatial 
properties of real images, namely (1) cell proportions, (2) co-localization and (3) clustering 
metrics. Table N3.1 includes a breakdown of specific metrics to be validated. 
 
Table N3.1. Spatial metrics to be validated with spaSim 

Spatial 
property 

Symbol Description SPIAT function to calculate metrics 

Cell 
composition 

PTcell types  Proportion of individual cell types 
(beta, non-beta, endothelial, immune 
and other) in the whole image 

 
calculate_cell_proportions() 

Co-localization APD Average pairwise distance between 
islet (beta and non-beta) cells and 
endothelial cells 

calculate_pairwise_distances_between_celltypes(); 
calculate_summary_distances_between_celltypes() 

Co-localization AMD Average minimum distance between 
islet (beta and non-beta) cells and 
endothelial cells 

calculate_minimum_distances_between_celltypes(); 
calculate_summary_distances_between_celltypes() 

Co-localization MS Mixing score between islet and 
endothelial cells 

mixing_score_summary() 

Co-localization NMS Normalized mixing score between islet 
and endothelial cells 

mixing_score_summary() 

Co-localization CIN Cells in Neighbourhood between islet 
and endothelial cells 

average_percentage_of_cells_within_radius() 

Co-localization AUC AUC scores between islet and 
endothelial cells 

calculate_cross_functions(); 
AUC_of_cross_function() 

Clustering R-BC Ratio of Bordering to Clustered cells  R_BC() 

Clustering Nderived-islet-

cells 

Number of cells within islets identify_bordering_cells() 

 
To achieve this, we simulated images based on images from a reference dataset and then 
determined how the spatial metrics from the simulated images compared with those of the 
reference dataset. We used as a reference dataset the 845 real images from the diabetes 
dataset generated by IMC4 due to its large number of images. In this dataset, each image 
contained at least one islet with islet cells (beta and non-beta cells), and immune and 
endothelial cells primarily found in the stromal area. Further details about this dataset can be 
found under the “Datasets” header in the Methods section. Basic metrics were extracted from 
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this dataset using SPIAT (Table N3.2). Finally, using spaSim we generated a ‘paired’ simulated 
image for each of the images of the reference dataset based on the features that were 
extracted.  
 
Table N3.2. Features extracted and estimated from real images 

Feature type Symbol Description SPIAT function for the feature extraction 

Extracted from real 
image 

𝑁!"##$	
 

Total number of cells per image - 

𝑃!"##%&'"$()$#"%$	
 

Proportion of islet cell types (beta 
and non-beta) within islets 

Functions from tissue structure identification: 
identify_bordering_cells() 
define_structure() 
calculate_proportions_of_cells_in_structure() 

𝑃!"##%&'"$($%*+,-	
 

Proportions of stromal area cell 
types (immune, endothelial and 
other) in the stromal area  

As above 

𝑁)$#"%$	
 

Number of islets identify_bordering_cells() 

𝑁)$#"%$(!"##$	 Number of cells within the islets identify_bordering_cells() 

Estimated from 
extracted variables 

𝐷	 Global mean of the density of the 
cells in the reference dataset 

- 

𝐽	 Measure of cell jittering from 
their hexagon vertices (see 
Section 3.2 for details) 

- 

S Size of the image. Estimated from 
D and 𝑁!"##$ 

- 

d Diameter of islets - 
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The simulation procedure 
First, the extracted features from the real images were used to simulate the background cells, 
the islets and the stroma (Table N3.3): 
 
Table N3.3. Features used as input to spaSim 

Symbol Description 

𝑁!"##$	
 

As above 

𝑆	
 

As above 

𝐽	
 

As above 

𝑁)$#"%$	
 

Number of clusters 

𝑁)$#"%(!"##$	 Number of cells within the islets 

𝑃!"##%&'"$($%*+,-	
 

Proportion of immune, endothelial and other cells in the stromal area 

𝑃!"##%&'"$()$#"%$	 Proportion of beta and non-beta cells within the islets 

 
 
Given that spaSim also requires parameters for cell jittering (J) and the diameter of clusters 
(d) but these were not easily extracted from the real images, these were estimated based on 
the extracted values: 

- Since the reference dataset had a variable number of image sizes and numbers of cells, 
while the density of cells remained roughly the same, we adopted the mean of the 
densities (D) of real images as a fixed value for the density of each simulated image. 
We then extracted the number of cells of each real image, and calculated the image 
size S as S = number of cells/density. Figure N3.1 shows the distribution of the 
estimated height and width of images compared to those of the real images, indicating 
that our procedure to derive the image sizes was sensible. The diameter of clusters d 
was then calculated from the area of clusters that was estimated from multiplying D 
and the Nislet-cells extracted from the image.  
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Figure N3.1. Estimated Height and width of estimates used as parameters for simulations. The regression lines 
that represent the relationship between the simulated and real images are plotted. Source data are provided as 
a Source Data file. 
  
 

- To estimate J, we simulated a set of 15 images with jitter values that ranged from 0.25 
to 0.32 by a step of 0.005 for each of the reference images. We then calculated the 
difference between the expected and observed average minimum distance between 
cells. We selected J to be the jitter value that results in the most similar expected and 
observed average minimum distance. 
 

Having all the parameters required to carry out the simulations with spaSim, we first 
simulated background cells using an evenly spaced distribution model using 𝑁!"##$(total 
number of cells per image), 𝑆	(size of image) and 𝐽	(jitter to apply to each cell). See the “Tissue 
spatial simulator (spaSim)” header under the Methods section of the main paper for the 
details of the background simulation models. The proportions of cell types in the stromal area 
were simulated according to the proportions from 𝑃!"##%&'"$($%)*+, by assigning a random 
cell type to each background cell. Note that the locations of one cell type were independent 
of the locations of another cell type.  
 
To simulate islets, we created 𝑁-$#"%$ islet clusters, each with 𝑁-$#"%(!"##$ cells (includes both 
islet and non-islet cells) within each cluster according to the proportions from 𝑃!"##%&'"$(-$#"%$. 
Clusters were assumed to be circles, and the cluster radii were determined by 𝐷, the global 
density of cells in the diabetes images. We assumed the locations of the islets were in the 
center of the images. If there was one islet, the center location was the center of the image, 
if there were more than one islet, the center of the islets was the center of the image and the 
islets were spaced around the center. 
 
 
 
 
 

Real

Width of the image

S
im

ul
at

ed

Real

S
im

ul
at

ed

Height of the image



33 
 

Comparing the metric distribution of the real and simulated paired images 
The simulated images visually captured the properties of the real images (Figure N3.2). 
 

 
Figure N3.2. Example of a real and its paired simulated image generated by spaSim. Source data are provided 
as a Source Data file. 
 
To quantitatively compare these similarities, first, we compared the proportion of cell types 
across the real and simulated images. Note that we segmented the real images into islet and 
stromal regions, and then derived the proportion of beta and non-beta cell types from the 
cells that were specifically in the islet area, and derived the proportion of immune, endothelial 
and other cells from the cells that were specifically in the stromal area. These were then used 
as input to spaSim. Here we show the comparison of the proportion of cell types across the 
entire image (Figure N3.3). There is a strong association between the cell proportion values 
in all cases, with R2 values between 0.89 and 0.97.    
 
 
 

SimulatedReal

Cell type

beta
nonbeta
immune
endothelial
others
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Figure N3.3. Scatterplot of the proportion of cell types across the entire image in real and simulated images. 
R2 for beta cells = 0.97; for non-beta cells = 0.94; for immune = 0.97; for endothelial cells = 0.89; for other cells 
= 0.92. The error band represents the 95% confidence interval of the regression line. Source data are provided 
as a Source Data file. Source data are provided as a Source Data file. 
 
We next focused on validating spaSim’s ability to capture cell co-localization. We compared 
the values obtained for the real and simulated images of the co-location metrics shown in 
Table N3.1 (Figure N3.4). In all cases there is a positive correlation between these values, with 
an R2 of 0.90 for the APD, 0.33 for the AMD with islet cells as reference cells, 0.08 for the AMD 
with endothelial cells as reference cells, 0.52 for the CIN, 0.24 for the AUC scores, 0.47 for the 
MS and 0.49 for the NMS, indicating that the images generated by spaSim generally capture 
the cell co-localization properties of real images. However, it is best at capturing simpler co-
localization metrics, such as the APD, rather than more complex metrics such as the AUC and 
MS. These likely depend more on cell-cell associations and capturing these is currently beyond 
the scope of spaSim as assigning the cell types to cells is done randomly. 
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Figure N3.4. Scatterplot of co-localization metrics of the real and simulated images. Metrics for MS and NMS 
are log scaled. The error band represents the 95% confidence interval of the regression line. Source data are 
provided as a Source Data file. APD: Average pairwise distance; CIN: Cells In Neighbourhood; AUC: Area Under 
the Curve of the Cross-K function; MS: Mixing Score; NMS: Normalized Mixing Score 
 
 
We also compared the ability of spaSim to capture key clustering properties of images, 
namely the number of cells in islets and the RB-C (Figure N3.5) . Note that spaSim does not 
directly take in as a parameter the number of clustered cells, but rather the cluster diameter 
d. We therefore estimated d from D and Nislet-cells, which was then used as input for the 
simulation.  
 
Comparing the number of cells within the islet area in real images and those found in the 
simulated images, we see a correlation with an R2 of 0.65, indicating that our process to 
generate clusters produces clusters of comparable sizes. We also compared the R-BC metrics 
between the real and simulated images, which resulted in an R2 of 0.45.  
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Figure N3.5. Scatterplots of tissue regions-associated metrics of the real and simulated images. The error band 
represents the 95% confidence interval of the regression line. Source data are provided as a Source Data file. R-
BC: Ratio of Bordering cell count to Cluster cell count. 
 
Overall, the simulations generated by spaSim are able to capture co-localization, clustering 
and the cell type proportions found in real images reasonably well. We note that a perfect 
correspondence between the spatial metrics of the real and simulated images is not expected, 
as the simulated images do not include the biological randomness that occurs in real images 
and capturing cell-cell associations is currently beyond the scope of spaSim. This provides a 
clean and controlled environment to understand the behavior of spatial metrics. 
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Note N4 
 
We introduced the Entropy Gradients metric to characterize cell colocalization in Figure 4.  A 
key aspect of the Entropy Gradients is the selection of the reference and target populations, 
as the results are dependent on their relative number. Here, we discuss the behavior of the 
Entropy Gradients metric when selecting different cell types as reference populations, and 
explore other colocalization metrics that can be applied incorporating the concept of 
“Gradients”. 
 
To test the behavior of the Entropy Gradients with different cell types as reference, we 
simulated a set of five images with different proportions of A and B cells with intuitive 
‘Attraction’ (Figure N4.1A). Images 1, 2, and 3 have A cells as the major population (more A 
cells than B cells), Image 4 has roughly the same number of A and B cells, and B cells are the 
major population in Image 5.  
 
First, we performed the Entropy Gradients analysis using B cells as the reference population 
(Figure N4.1B), as we did in Figure 6. As expected, we observe a drop in the slope near radius 
= 0 in the first three images (Figure N4.1B). However, in Image 4 the curve becomes flat as 
there is a similar number of reference and target cells, and finally in Image 5, the slope is 
reversed as there are more target cells than reference cells. Therefore, defining cells as 
“Attracting” based on a negative slope as we have proposed is conditional on selecting the 
minor population as the reference population. 
 
Consistent with this, when using the majority cell type as reference, the trend of the Entropy 
Gradients is reversed. If we perform the Entropy Gradients analysis using A cells (Figure 
N4.1C) as the reference population, we obtain a positive slope near radius = 0 in the first three 
images, followed by a flattening of the curve in Image 4, and then a reversal of the slope in 
Image 5 (Figure N4.1C).  
 
In cases of repulsion between cells, using the majority population of the reference cells adds 
an additional level of complexity. For example, we applied the Entropy Gradients using the 
Cell A as reference to the same set of simulated images as those presented in Figure 4c (Figure 
N4.2A,B). As expected, in cases of attraction (first two images) when the reference population 
is the majority cell type, the first slope is negative (first two images). However, in cases of 
repulsion there is also a negative curve. The key difference here is the change in range of the 
curve. In the case of attraction, the curve sits consistently around 0.8 and quickly flattens 
after the initial slope. On the other hand, in cases of repulsion the curve dramatically 
increases and does not flatten. 
 
Given that using the major population as the reference population would require looking at 
both the slope and curve range to define attraction and repulsion, we opted to use the 
minority population as the reference population in our main results as case study, as this 
provides a more intuitive and tractable understanding of the slopes.  
 
Finally, we also point out that we can use other colocalization metrics, such as NMS instead 
of entropy with the concept of Gradients (Figure N4.2C,D).  
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Figure N4.1. Entropy Gradients analysis on simulated A and B cell type mixed images with different cell types 
as reference. (A) Simulated images by spaSim. (B) Entropy Gradient calculation using cells of type B as reference 
cells. (C) Gradient entropy calculation using A cells as reference cells. Source data are provided as a Source Data 
file. 
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Figure N4.2. Incorporating colocalization metrics with gradients computed over a range of radii. (A) The same 
simulations shown in Figure 4c. The patterns from left to right are mixing cluster, mixing background, separate 
clusters and a ring of Tumor cells, respectively.  (B) Gradient entropy calculation using Tumor cells as reference 
cells (while the calculation in Figure 4c used Immune cells as reference cells). Each plot corresponds to each 
image in panel A. (C) Using the NMS (normalized mixing score) with gradient computing using Immune cells as 
reference cells. (D) Using the NMS in the calculation of gradients using Tumor cells as reference cells. Similar 
results as those with the localized entropy are obtained. When using the Tumor cell population as a reference 
population, a consistent high score across radii is indicative of attraction, whereas a positive slope defined by a 
large increase in the scores at increasing radii is indicative of repulsion. Source data are provided as a Source 
Data file. 
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Note N5 
 
In Figure 6c we identified the tumor bordering cells (which define the tumor margin) and 
defined regions relative to the tumor areas in three melanoma whole-tissue sections (Figure 
N5.1). These samples were taken from the same patient at diagnosis, relapse and metastasis. 
Next, we calculated the proportions of immune populations in each region (Table N5.1), and 
the summary distances of each tumor population to the identified tumor border (Table N5.2).  
 

 
Figure N5.1. Plot cell locations in melanoma images, highlighting the immune populations. The proportions of 
T cells (blue) are higher than other immune populations in all three images. Immune populations are 
concentrated inside of the tumor regions in the primary (left) and metastatic melanoma images (right), while in 
the relapse image (middle), immune populations are concentrated in the stromal area. These observations are 
consistent with the results calculated by SPIAT (Table N5.1). B: B cells; T: T cells, DC: Dendritic Cells. 
 
 
Immune populations in the primary and relapse samples included T cells, B cells, dendritic 
cells (DC), and the metastatic sample included these plus macrophages (Ma). The proportion 
of each immune population in each tumor region (relative to all cells in the respective region) 
is low given the high number of tumor cells. Among all immune cell types, T cells are the most 
common (highlighted in red in Table N5.1). All immune populations are concentrated in the 
inside of the tumor area in the primary and metastatic samples, and concentrated in the 
stomal area in the relapse sample (highlighted in blue in Table N5.1). With SPIAT, we can also 
calculate the distances of infiltrated and stromal immune populations to the tumor margin 
(Table N5.2).  
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Table N5.1. Summary of the proportion of immune populations in each defined region in 
the melanoma samples 
 

Sample name Cell type Relative to Infiltrated Internal 
margin 

External 
margin 

Stromal 

Primary MEL T All cells in the 
structure 

0.0552 0.0657 0.0763 0.0396 

Primary MEL B All cells in the 
structure 

0.0048 0.0050 0.0080 0.0039 

Primary MEL DC All cells in the 
structure 

0.0080 0.0106 0.0233 0.0225 

Primary MEL T, B, DC  All cells in the 
structure 

0.0681 0.0804 0.1052 0.0645 

Primary MEL T T, B, DC cells in the 
structure 

0.8117 0.8164 0.7252 0.6130 

Primary MEL B T, B, DC cells in the 
structure 

0.0699 0.0625 0.0766 0.0609 

Primary MEL DC T, B, DC cells in the 
structure 

0.1184 0.1211 0.1982 0.3261 

Primary MEL T T in the image 0.7266 0.1118 0.0861 0.0754 

Primary MEL B B in the image 0.7134 0.0976 0.1037 0.0854 

Primary MEL DC DC in the image 0.5690 0.0891 0.1264 0.2155 

Relapse MEL T All cells in the 
structure 

0.0372 0.0731 0.1476 0.2027 

Relapse MEL B All cells in the 
structure 

0.0000 0.0001 0.0001 0.0020 

Relapse MEL DC All cells in the 
structure 

0.0151 0.0386 0.0942 0.0615 

Relapse MEL T, B, DC  All cells in the 
structure 

0.0552 0.1118 0.2418 0.2662 

Relapse MEL T T, B, DC cells in the 
structure 

0.7106 0.6538 0.6102 0.7616 

Relapse MEL B T, B, DC cells in the 
structure 

0.0001 0.0008 0.0003 0.0073 

Relapse MEL DC T, B, DC cells in the 
structure 

0.2893 0.3453 0.3894 0.2311 

Relapse MEL T T in the image 0.1573 0.0514 0.0628 0.7285 
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Relapse MEL B B in the image 0.0045 0.0090 0.0045 0.9819 

Relapse MEL DC DC in the image 0.1817 0.0771 0.1138 0.6274 

Metastasis MEL T All cells in the 
structure 

0.0340 0.0308 0.0527 0.0390 

Metastasis MEL B All cells in the 
structure 

0.0029 0.0008 0.0002 0.0014 

Metastasis MEL DC All cells in the 
structure 

0.0036 0.0047 0.0050 0.0033 

Metastasis MEL Ma All cells in the 
structure 

0.0050 0.0036 0.0041 0.0031 

Metastasis MEL T, B, DC, Ma All cells in the 
structure 

0.0441 0.0399 0.0643 0.0490 

Metastasis MEL T T, B, DC, Ma cells 
in the structure 

0.7372 0.7709 0.8190 0.8325 

Metastasis MEL B T, B, DC, Ma cells 
in the structure 

0.0663 0.0208 0.0382 0.0295 

Metastasis MEL DC T, B, DC, Ma cells 
in the structure 

0.0827 0.1179 0.0774 0.0708 

Metastasis MEL Ma T, B, DC, Ma cells 
in the structure 

0.1138 0.0904 0.0653 0.0671 

Metastasis MEL T T in the image 0.6692 0.0433 0.0301 0.2574 

Metastasis MEL B B in the image 0.8372 0.0162 0.0196 0.1270 

Metastasis MEL DC DC in the image 0.7054 0.0622 0.0268 0.2057 

Metastasis MEL Ma Ma in the image 0.7853 0.0386 0.0183 0.1578 
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Table N5.2. Summary of the distances of immune population to the tumor margin in the 
melanoma samples 
 

Sample 
Name 

Cell Type Location of 
cell type  

Min Max Mean Median St.dev 

Primary MEL T, B, DC Tumor_area 12.35 2178.10 821.80 877.82 543.85 

Primary MEL T, B, DC Stroma 13.65 927.61 166.54 102.32 187.99 

Primary MEL T Tumor_area 12.35 2178.10 832.37 916.72 552.58 

Primary MEL T Stroma 13.65 813.80 150.21 90.73 176.63 

Primary MEL B Tumor_area 17.03 2061.18 865.52 950.34 484.28 

Primary MEL B Stroma 17.10 253.84 103.03 80.62 70.00 

Primary MEL DC Tumor_area 17.24 2085.85 724.10 678.80 506.61 

Primary MEL DC Stroma 17.41 927.61 224.51 132.29 221.60 

Relapse MEL T, B, DC Tumor_area 10.31 2909.54 483.53 282.22 528.35 

Relapse MEL T, B, DC Stroma 11.50 6294.39 1148.27 793.01 1140.39 

Relapse MEL T Tumor_area 10.31 2909.54 529.14 305.37 571.90 

Relapse MEL T Stroma 12.02 6294.39 1338.07 998.82 1209.74 

Relapse MEL B Tumor_area 22.21 1108.61 229.03 54.46 431.85 

Relapse MEL B Stroma 24.19 5671.92 1214.18 1036.53 980.95 

Relapse MEL DC Tumor_area 10.55 2735.72 379.43 227.34 392.44 

Relapse MEL DC Stroma 11.50 6266.71 571.39 382.92 611.42 

Metastasis 
MEL 

T, B, DC, 
Ma 

Tumor_area 11.00 4254.09 1247.79 979.39 983.19 

Metastasis 
MEL 

T, B, DC, 
Ma 

Stroma 11.88 4844.54 490.28 345.31 494.27 

Metastasis 
MEL 

T Tumor_area 11.00 4254.09 1182.56 912.14 968.22 

Metastasis 
MEL 

T Stroma 11.88 4451.85 468.51 337.07 445.70 

Metastasis 
MEL 

B Tumor_area 21.10 4027.38 1697.56 1610.94 973.87 
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Metastasis 
MEL 

B Stroma 23.55 4597.79 491.10 406.00 457.42 

Metastasis 
MEL 

DC Tumor_area 14.71 4025.84 1338.36 968.88 1027.44 

Metastasis 
MEL 

DC Stroma 16.98 3519.80 503.29 343.91 586.97 

Metastasis 
MEL 

Ma Tumor_area 15.70 4054.01 1353.77 1183.41 971.06 

Metastasis 
MEL 

Ma Stroma 20.50 4844.54 746.23 437.83 806.31 
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