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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This manuscript offers a novel and combinatorial approach using data science and machine learning 

for prediction and classification of ionic liquids with optimised properties, which are then used as 

property enhancers in solid state electrolytes for lithium-metal batteries. Although the concept 

behind this work is promising and widely applicable, I personally believe that this research needs 

further work before reaching the publication stage, even if this is a Communication and not a full 

Research Article. If this Communication is to be published, I would recommend that, at a minimum, 

the comments below be addressed. 

 

- What are the noteworthy results? 

 

The strong advantage of this work is the combination of computational and experimental studies. It 

is very common in the Materials Chemistry field for the researchers to focus either on strictly 

theoretical or experimental studies, and a work showcasing the complementarity of the two is an 

excellent idea. The development of ionic polymer electrolytes incorporating ionic liquids as 

enhancers of their mechanical or physicochemical processes is currently a hotspot of scientific 

interests, with a plethora of papers being published every day. However, the authors of this work 

have managed to create an algorithm which can predict and classify the ionic liquids with the desired 

set of properties (something which is directly expandable to other research fields), but also actually 

create a set of fuel cells with very promising behaviour. 

- Will the work be of significance to the field and related fields? How does it compare to the 

established literature? If the work is not original, please provide relevant references. 

While the idea behind the simultaneous classification/prediction machine learning algorithm is 

brilliant, I am not convinced that this work will be of great significance for the field. The main reason 

for this is the absence of adequate validation of their predictions, which makes then their 

classification ambiguous. The authors are using a machine learning algorithm to predict the 

properties of interest in their system (here conductivity and electrochemical window), which 

however is at no point compared to literature data for the same compounds. I understand that since 

the studied dataset comes as a result of ion combinations, some of those ionic liquids are not 

commercially available, or maybe they have never been reported at all. But a comparison on a 

selected subset of ionic liquids is crucial. 

Regarding the experimental data, from a pool of 40 recommended ionic liquids the authors select 4 

to use in their fuel cells. However, I believe that the selection of ionic liquids is not in agreement 

with the scope of the work. All 4 selected ionic liquids are commercially available and I believe that 

they were chosen so that the authors avoid synthesising their own compounds. The whole point of 

 



this work is to discover an optimised selection of ions for this application, but then the authors 

decide to work with 1-ethyl-3-methylimidazolium triflate and tetrafluoroborate, which are ‘old’ ionic 

liquids and they have been used since the 1990’s for electrochemical applications. I believe that as a 

proof of concept they should have tried at least one ‘unconventional’ combination of ions from their 

list. The results they obtain on their fuel cells are indeed very promising, but for an expert on the 

ionic liquid electrochemistry field it is not surprising or unexpected. 

 

- Does the work support the conclusions and claims, or is additional evidence needed? 

 

The experimental investigation is thorough and their results well-explained. The prediction and 

classification algorithm part though needs further work and validation in order to prove that the 

algorithm works properly. As I mentioned in the previous section, there is no cross-reference for the 

prediction accuracy of the calculated properties. This should definitely be amended before 

publishing this article. 

 

- Are there any flaws in the data analysis, interpretation and conclusions? - Do these prohibit 

publication or require revision? 

 

During the ‘supervised learning’ section the authors introduce an additional filter to validate their 

data, by calculating the interaction energy between the anions and the cations. Figure 3c and 

Supplementary Table 1 show the results of these Energy calculations. To my opinion these 

calculations are problematic and they need revisiting. According to their formula, the energy values 

should be negative because the energy of the ion pair (E[+][-]) should be more negative than the 

individual energies of the ions. However, all the energies that are shown in Supplementary Table 1 

are positive. The values of E[+][-], E+ and E- should also be shown in the ESI, for comparison reasons. 

Moreover, from my experience, the scale of those energies is unexpected, as I would expect the 

interaction energies in the range of minus a few hundreds kJ/mol. Depending on the geometry 

optimisation process the interaction energy can differ, so the graph shown in Figure 3c is expected 

to have an error bar of ±50 kJ/mol, which makes it impossible to extract certain results from it, as 

the two box plots mostly overlap. Before the article is considered for publication, the authors need 

to revisit their calculations, explain properly their calculation methodology and answer questions 

such as what convergence criteria they use, specify grid accuracy, did they check for absence of 

imaginary frequencies etc? 

Finally, something that is not so much of a flaw in the data analysis but more a part that needs 

further clarification is the part about the ion exchange with the ionic liquid electrolyte (rows 232-

235). It is not clear to me why the incorporation of Li to the IPE is done with LiFSI and not with Li salt 

with the corresponding anion as the IPE (LiOTf and LiBF4 accordingly) and also why the ion exchange 

happens in [C3mpyr][FSI]? I assume that the authors have tried different solvents and have a reason 

 



for performing the ion exchange in another IL and not in a conventional volatile molecular solvent, 

but this should be clearly explained in the text. 

 

- Is the methodology sound? Does the work meet the expected standards in your field? 

Generally, the methodology of the work follows a reasonable pipeline, although some gaps exist 

(they are extensively discussed in the previous sections). These gaps need revising before 

considering this work for publication. 

 

I am not convinced where the novelty and the importance of this work lies. There are many 

published articles on both ML algorithms for property prediction and conductive ionogels. I think 

that the authors need to add a paragraph (probably in the conclusions) highlighting the novelty of 

their work, what are the advantages of their algorithm compared to others and why their 

methodology/IPEs is superior to others reported in the literature. 

 

- Is there enough detail provided in the methods for the work to be reproduced? 

 

Yes, apart from the quantum chemistry calculations discussed above, the rest of the methodology is 

adequately explained and can be reproduced. 

Regarding the ML algorithm, and while not being an expert on the field, I believe that the algorithm 

is sound and reasonable. I am not convinced that one could reproduce the algorithm just by reading 

the article’s methodology section, since there are several gaps on the actual coding, but since the 

code is available on GitHub one could use the pre-made code. 

  

- General Comments 

1. There are several grammatical/syntax errors throughout the text, language needs to be corrected. 

2. The company selling the ionic liquids is IoLiTec (in the text it is written as IoLiTech). 

3. The authors refer to their setup as full cell in several points in the text. I believe it is supposed to 

be fuel cell. 

4. The authors need to amend their abbreviations for their ionic liquids. For example 1-ethyl-3-

methylimidazolium triflate, here it is abbreviated as C2mimTFO, the established abbreviation for 

that is either [Emim][OTf] or [C2C1im][OTf]. The authors need to correct their ILs abbreviations 

according to the literature. 

5. Figure 4. The embedded photos are too small for anyone to see them properly. 

 



6. Row 52. ‘Large population of ion pairs’ is wrong. It should be a large population of IL candidates 

7. Row 52. Here they use the abbreviation ML but they define it later in text. 

8. Row 181. Geometric not gyometric. 

9. Row 232. If the authors claim that their films are mechanically strong, they need to perform a 

tensile stress analysis. 

10. Row 350. The Machine Learning methodology needs to be more detailed in order to be more 

reproducible. 

11. Row 360. The quantum chemistry calculations methodology needs more details to be 

reproducible. 

12. Rows 365-373. The purity/water content of the purchased ionic liquids needs to be stated. Is 

Canrd in row 373 correct? 

13. Rows 389. The thickness/diameters of the electrodes need to be stated. 

14. Row 534. The github link is not working. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In this manuscript, machine learning approaches are applied to discover ionic liquids with high ionic 

conductivity and electrochemical window. Some of the top candidates are blended with a polymer 

and a Li salt. Experiments are conducted to assess the performance of the ionic polymer electrolyte. 

Given the tremendous interest in Li-ion batteries and favorable attributes of ionic liquids as 

electrolytes, the topic of the manuscript has broad appeal. Developing electrolytes based on ionic 

liquids requires careful tuning of properties such as ionic conductivity, electrochemical window, 

viscosity etc., which are probed in this manuscript. Furthermore, machine learning approaches are 

becoming mainstream in the field of ionic liquids, so the manuscript holds special interest. 

 

Although the topic of the manuscript is of great importance, there are several aspects of the 

manuscripts which deserve attention and substantial revisions. 

 

- Very few details on the development of machine learning models are provided. I also find the 

development of the three machine models rather problematic as the data set is not split into a 

training and test data set making it difficult to assess the predictive capability of the model. This is 

 



especially concerning as it has been pointed out in the manuscript that the models tend to overfit 

due to over-representation of one or more cation/anion types. 

- RDKit generates a large number of molecular descriptors for a given ionic liquid. Please include a 

description of how the total number of features was reduced to 60. Also specify if the cation and 

anion in an ionic liquid pair were modeled with different set of descriptors. 

- Provide a reasoning for the basis set selection. Please include the level of theory for electronic 

structure calculations, 

- Why was a particular threshold of ionic conductivity and ECW selected? 

- It is confusing that output properties from models such as ionic conductivity and electrochemical 

windows are listed as features. 

- It is not clear that spherical anions will yield liquids/solid from Figure 3a. In fact, there does not 

seem to be a correlation between the sphericity of the anions and phase. 

- How were top 10 important features determined? 

- The results on 20 ILs is not enough to establish the correlation. For 1000 ILs, it is not difficult to 

conduct quantum calculations. I would recommend at least 20% of the ILs on which these 

calculations are carried out ensuring that cation types and anions are well represented. 

- Why is it necessary to choose hydrophillic ionic liquids for Li-ion batteries? In fact, this property will 

actually be detrimental to the performance of batteries if water is absorbed. 

- Provide the rationale for using PBDT as a liquid crystalline polyelectrolye. 

- The Github link is not provided. 

- Provide a caption for Supplementary Table 2. Include units for ECW and ionic conductivity. Specify 

the temperature at which ionic conductivity is predicted. For many of the ionic liquids, measured 

ionic conductivities are available from the NIST ILThermo Database. A comparison must be made 

between predictions and the measurements. 

 

 



Response to Reviewer #1’s Comments 

Statement: This manuscript offers a novel and combinatorial approach using data 
science and machine learning for prediction and classification of ionic liquids with 
optimised properties, which are then used as property enhancers in solid state 
electrolytes for lithium-metal batteries. Although the concept behind this work is 
promising and widely applicable, I personally believe that this research needs further 
work before reaching the publication stage, even if this is a Communication and not a 
full Research Article. If this Communication is to be published, I would recommend 
that, at a minimum, the comments below be addressed. 

Response: We thank the reviewer for recognizing the potential importance of this work. 
The comments proposed by the reviewer are significant and insightful. Thus, we hope 
that the substantial revision to this manuscript based on the comments will be 
satisfactory.  

Comment #1: What are the noteworthy results? The strong advantage of this work 
is the combination of computational and experimental studies. It is very common in 
the Materials Chemistry field for the researchers to focus either on strictly theoretical 
or experimental studies, and a work showcasing the complementarity of the two is an 
excellent idea. The development of ionic polymer electrolytes incorporating ionic 
liquids as enhancers of their mechanical or physicochemical processes is currently a 
hotspot of scientific interests, with a plethora of papers being published every day. 
However, the authors of this work have managed to create an algorithm which can 
predict and classify the ionic liquids with the desired set of properties (something 
which is directly expandable to other research fields), but also actually create a set of 
fuel cells with very promising behaviour. 

Response: Thanks again to the reviewer for recognizing the uniqueness of our work. In 
terms of the noteworthy results of this work, the developed machine learning protocol 
not only relieves the issue of data scarcity, but also confirms the importance of machine 
learning in materials design and optimization. In addition, this work also emphasizes 
the development of materials from experimental perspective; meanwhile, proposing 
great potential of the developed IPEs in functional devices. For example, the assembled 
LMBs using IPEs coupled with commercial LiFePO4 cathode (with high loading 
10.3mg cm-2) and bare Li metal anode deliver outstanding capacity retention for > 350 
cycles (> 96% with 0.5 C at RT; > 80% with 2 C at 50 ° C), fast charge/discharge 

 



capability (146 mAh g-1 with 3 C at 80 ° C) and ultrahigh coulombic efficiency (> 
99.92%). This performance is rarely reported by any single-layer polymer electrolytes 
without any organic plasticizers/oligomers for LMBs. (Please refer to Comment #2 for 
more details about the performance compared to the state-of-the-art literature).  

More importantly, this work provides an open-source machine learning model that 
can be simply reproduced and modified to screen ILs with characteristic parameters for 
related research areas. The implemented open-source tools, for example RDKit, Psi4, 
Pytorch and Pytorch Geometrics are all freely available. Through the high-throughput 
calculation, we can build a collection of databases that serves as an indispensable 
component in applying ML to materials science.  

Comment #2: Will the work be of significance to the field and related fields? 
How does it compare to the established literature? If the work is not original, please 
provide relevant references. 

Response: We appreciate the reviewer for raising these concerns. We will illustrate the 
significance and compare this work to the literatures from two perspectives, including 
the machine learning model and the experimental performance, correspondingly.  

In terms of the machine learning model, this work is original and complementary. 
First, as mentioned by the reviewer, these is plenty of published work based on ML 
and ionic liquids. However, it is still difficult to predict the ionic conductivity for ILs 
accurately because of the data scarcity issues. Most of the published work is based on 
the ILthermo Database, which contains properties for diverse IL based on previous 
literatures.1,2 However, the dataset usually show highly scattered datapoints and 
contain duplicate datapoints for individual IL. Especially when the model is mainly 
based on the geometric structure of the cations and anions, datapoints for the same ILs 
at varying temperatures will artificially increase the training efficiency of the model 
and cause the issue of overfitting.1,2 In this work, we are only focusing on unique 
and commercially available cations and anions from IoLiTec company instead of 
widely used and scattered NIST ILThermo database. This helps the research work 
better aligning with the commercially available products, we believe this is also 
significant for practical research and new materials design in the future. The second 
point we would like emphasis is the unique design of this screening steps based 
on a combination of unsupervised learning and multistep supervised learning. 
This is essential to improve the efficiency to target promising ILs for practical 
applications. Compared to previous literatures, instead of focusing on individual 

 



properties and predicting the absolute physical properties of the IL pairs purely, for 
example, melting point3, viscosity4 and ionic conductivity2, we first combine the 
factor of ionic conductivity with the electrochemical window, which are critical 
properties for battery electrolytes. This novel conceptual design is also insightful 
and can be easily applied for related research areas.   

In terms of the material development and performance evaluation, the promising 
experimental results reported in this work represent the performance of the state-of-
the-art polymer electrolytes for Li metal batteries. We conclude a comparison to 
recent literatures [1-7] as shown in Table R1. Overall, the IPEs reported in this 
work outperform from a comprehensive perspective, including the current 
density, the cell cycling life and especially the high cathode loading required for 
practical applications. 

In summary, this work is original in terms of the machine learning model, the 
quantum chemistry computational approach, the design of the materials and the 
excellent performance achieved in LMBs. 

Modifications to the manuscript and supplementary information:  

(1) We added a paragraph (Page 25, Line 409 – 431) in the end of the manuscript to 
emphasis the novelty and importance of this work from the two perspectives.  

(2) We inserted Table R1 in the main manuscript as Table 2.  

 

Table R1. Comparison of the LMB cells in this work to recent literatures.  

Materials Testing temp 
(℃) 

Cathode 
Loading 
(mg cm-2) 

Current 
density 
(mA cm-2) 

Cycle 
number  

References  

LiFePO4- FMC-
ASPE-Li-Li 

70 1-2 0.07-0.14 400 1 (2022) 
Nature 
communications5 

LiFePO4- FEC-SPE -
Li 

22 12 0.36 60 2 (2022) 
Nature 
Nanotechnology6 

LiFePO4- PI/PEO -Li 40 6.9 0.08 60 3 (2019) 
Nature 
Nanotechnology7 

LiFePO4- Li-Cu-CNF 
-Li 

rt 4.5-7.5 0.15 200 4 (2021) 
Nature8 

LiFePO4- PEO/LSTZ 45 3.5 0.15 350 5 (2019) 

 



-Li Proceedings of 
the National 
Academy of 
Sciences9 

LiFePO4- CPE-
05MC -Li 

55 5 0.5 100 6 (2021) 
Journal of the 
American 
Chemical 
Society10 

LiFePO4- HSE-
EMIM-PP13 -Li 

rt 6.5 0.18 50 7 (2022) 
Nature 
Nanotechnology11 

LiFePO4- IPEs -Li rt 10.3 0.83 350 This work 
LiFePO4- IPEs -Li 50 10.3 3.32 350 This work 
 

Comment #3: While the idea behind the simultaneous classification/prediction 
machine learning algorithm is brilliant, I am not convinced that this work will be of 
great significance for the field. The main reason for this is the absence of adequate 
validation of their predictions, which makes then their classification ambiguous. The 
authors are using a machine learning algorithm to predict the properties of interest in 
their system (here conductivity and electrochemical window), which however is at no 
point compared to literature data for the same compounds. I understand that since the 
studied dataset comes as a result of ion combinations, some of those ionic liquids are 
not commercially available, or maybe they have never been reported at all. But a 
comparison on a selected subset of ionic liquids is crucial. 

Response: We thank the reviewer for raising these concerns. To validate our prediction 
results, we compared the predicted ionic conductivity of all the 992 unique liquid ILs in 
this work to the experimental results stored in ILthermo database. The ILthermo 
Database contains 523 unique ILs with measured ionic conductivity values. As shown 
in Figure R1, though only 17 ILs are overlapped between our test data and the 
ILThermo Database at 25 °C, we observe that there is high consistency between the 
predicted results and the ILthermo results. The R2 value is 0.76. The mean absolute 
error (MAE) is 2.03 mS cm-1. Thus we conclude that the model can perform well in 
predicting the ionic conductivity of ILs.  

 



 

Figure R1. Comparison of the predicted σ to literature reported σ of the overlapped 17 
ILs between the test dataset and the NIST ILThermo Database at 25 °C. 

The electrochemical window (ECW) is another popular topic as discussed in the 
literatures. The ECW value in this manuscript is calculated based on the 
HOMO/LUMO theory rather than predicted values from the ML model. We note that 
the ECW is not provided by the ILthermal Database. Thus, we directly compare the 
calculated ECW with the results scrapped from IoLiTec. In Figure R2, the mean 
absolute error (MAE) between the calculated results and the experimental results are < 
1.1 V. As we know, it is still challenging to estimate ECW for ILs accurately in the 
field. 12 Besides, the measured ECW values are highly dependent on experimental 
conditions, thus we believe that the accuracy of the calculated ECW is overall 
satisfactory and of significant reference to the field. .  

 

Figure R2. Comparison of ECW based on IoLiTec to ECW based on HOMO/LUMO 
theory for the cation(blue) and anion(red) types, correspondingly. 

 



 

Modifications to the manuscript and supplementary information:  

(1) We added Figure R1 and Figure R2 in the manuscript as Figure 3d and Figure 2 
c,d.  

(2) We added more discussion about the validation of predicted ionic conductivity 
(Page 13, Line 238 -245) and calculated ECW (Page 10, Line 177 – 185) in the 
main manuscript.  

 

Comment #4: Regarding the experimental data, from a pool of 40 recommended 
ionic liquids the authors select 4 to use in their fuel cells. However, I believe that the 
selection of ionic liquids is not in agreement with the scope of the work. All 4 
selected ionic liquids are commercially available and I believe that they were chosen 
so that the authors avoid synthesising their own compounds. The whole point of this 
work is to discover an optimised selection of ions for this application, but then the 
authors decide to work with 1-ethyl-3-methylimidazolium triflate and 
tetrafluoroborate, which are ‘old’ ionic liquids and they have been used since the 
1990’s for electrochemical applications. I believe that as a proof of concept they 
should have tried at least one ‘unconventional’ combination of ions from their list. 
The results they obtain on their fuel cells are indeed very promising, but for an expert 
on the ionic liquid electrochemistry field it is not surprising or unexpected. 

Response: We thank the reviewer for mentioning these concerns. The ultimate goal of 
this work is to facilitate the screening of ILs for IPEs with excellent performance 
through ML and finally develop a class of IPEs with promising long cycling and fast 
charge/discharge performance for Li metal battery instead of fuel cells. (This is also 
applied to Comment #13) The selected 4 ILs are all hydrophilic, which is required to 
form homogeneous and high modulus films with PBDT. Specifically, the excellent 
performance exhibited by IPEs in this work is not only determined by ionic liquids, but 
also the liquid crystalline polyelectrolyte PBDT. PBDT is fully hydrophilic, and it has 
been indicated that PBDT aqueous solution can be ion exchange with hydrophilic IL to 
form ionogel. However, there is no guideline for selection of ILs previously. It is 
observed that PBDT can offer mechanical integrity to suppress lithium dendrites, 
meanwhile significantly reduces the interfacial resistance and improves the charge-
transfer kinetics.  

 



As suggested by the reviewer, we also successfully tried one unconventional ionic 
liquid diethylmethylsulfonium bis(trifluoromethuldulfonyl)imide [Dems][TFSI] from 
the final recommendation list to fabricate the IPE by changing the solvent from H2O to 
H2O/DMF mixture, we found that this “unconventional” IL is also very promising. We 
added this IL in the Figure 4 of the manuscript as shown below in Figure R3. The 
detailed experimental performance is summarized in Figure R4. We are still 
conducting in depth investigation on this IL for future work. There are many interesting 
ILs in the final recommendation list. However, we cannot cover all the combinations 
experimentally. Above all, we believe this screening method is significant and inspiring 
for related research areas.  

 

Figure R3. We added the new ILdata in Figure 4 of the main manuscript.  

 



 

Figure R4. (a) Cell voltage versus time for a symmetric Li||Li cell at current densities 
(J) from 0.1 to 6 mA·cm-2 with changes in J every 10 cycles at room temperature (each 
cycle lasts 1 h). (b) Cycling performance of Li|IPEs|LiFePO4 cell at 0.5C (0.83 mA cm-

2) at RT. The blue circles show the specific discharge capacity as a function of the 
increasing cycle number. The black circles display the CE for each cycle 
correspondingly. (c) The voltage-capacity profiles for the main cycles in (d). 

Modifications to the manuscript and supplementary information:  

(1) We updated the Figure 4 in the manuscript with Figure R3 by inserting the new 
results based on IL Dems TFSI.   

(2) We added Figure R4 in the Supplementary Fig. 6 to support the efficiency of this 
IL screening workflow. 

 

Comment #5: Does the work support the conclusions and claims, or is additional 
evidence needed? The experimental investigation is thorough and their results well-
explained. The prediction and classification algorithm part though needs further work 
and validation in order to prove that the algorithm works properly. As I mentioned in 
the previous section, there is no cross-reference for the prediction accuracy of the 
calculated properties. This should definitely be amended before publishing this article. 

Response: Thanks again for these important suggestions. We believe we have included 
the answer for these comments in our responses to previous Comments. We have 

 



included the cross-reference in our manuscript. Please also refer to our responses to 
Comment #3. 

 

Comment #6: Are there any flaws in the data analysis, interpretation and 
conclusions? - Do these prohibit publication or require revision? During the 
‘supervised learning’ section the authors introduce an additional filter to validate their 
data, by calculating the interaction energy between the anions and the cations. Figure 
3c and Supplementary Table 1 show the results of these Energy calculations. To my 
opinion these calculations are problematic and they need revisiting. According to their 
formula, the energy values should be negative because the energy of the ion pair 
(E[+][-]) should be more negative than the individual energies of the ions. However, 
all the energies that are shown in Supplementary Table 1 are positive. The values of 
E[+][-], E+ and E- should also be shown in the ESI, for comparison reasons. 
Moreover, from my experience, the scale of those energies is unexpected, as I would 
expect the interaction energies in the range of minus a few hundreds kJ/mol. 
Depending on the geometry optimization process the interaction energy can differ, so 
the graph shown in Figure 3c is expected to have an error bar of ±50 kJ/mol, which 
makes it impossible to extract certain results from it, as the two box plots mostly 
overlap. Before the article is considered for publication, the authors need to revisit 
their calculations, explain properly their calculation methodology and answer 
questions such as what convergence criteria they use, specify grid accuracy, did they 
check for absence of imaginary frequencies etc? 

Response: We greatly appreciate the reviewer for indicating this error in the manuscript. 
Yes, we totally agree that the interaction/binding energy between the cation and anion 
should be negative. We revisit the calculation and append the corrected results and 
calculation details below. We initially optimize the structure of the cations and anions 
separately, then the cation-anion pairs are further optimized based on the optimized 
structure of the cations and anions. The geometry optimization and frequency check are 
completed with B3LYP/6-311g** with dispersion correction of DFT-D3. The energy 
calculations are based on M062X/6-311+G(2d, p). The convergence criteria are set by 
the Gaussian 09 software with default values. (Note, here we choose the commercially 
available Gaussian instead of Psi4, because Gaussian shows better performance in 
optimizing the geometry of structure.) Instead of random selection, we select 91 ion 
pairs, including representative 7 cations and 13 anions from the main cation and anion 
types in the dataset to validate our prediction results. Among the 91 ion pairs, there are 
19 ILs with known phase from IoLiTec. The corresponding average value of the 
binding energies for the labeled solid and liquid clusters are shown in Figure R5 and 

 



Table R2 and Table R3. The lower binding energy (~ - 400 kJ mol-1) of the solid 
further confirm our conclusion that the binding energy of the solid ion pair usually 
shows lower binding energy, which means strong interactions between cations and 
anions.  

 In terms of the prediction results for the remaining 72 ILs, as shown in Figure R3, we 
divide the predicted results into categories, including liquid and solid-x, where x (x = 1, 
2, 3) is the number of ML models with prediction results being in solid phase, thus the 
higher the number, the larger possibility for the IL being in solid phase. We observe that 
the predicted liquid cluster showing the highest average binding energy. As x increases, 
we observe lower average binding energies that further confirms our demonstration. 

Modifications to the manuscript and supplementary information:  

(1) Figure R5 was added to the main manuscript. More discussion was added to 
(Page 11, Line 200 - 216) in the manuscript. 

(2) Table R2 and Table R3 were added to the Supplementary Table 1 and Table 2.  

 

Figure R5. Blue columns show the binding energy for the ILs with labeled phases. 
Red columns show the binding energy for the ILs with predicted phases, including 
liquid and solid-x/3, where x (x = 1, 2, 3) is the number of ML models (SVM, RF, 
XGB) with prediction results being in solid phase for the ILs. 

Table R2. The calculated binding energies for selected cations and anions pairs (19) 
labeled with phase at RT from IoLiTec. 

cation anion Eopt[-] 
(Hartee) 

Eopt[+] 
(Hartee) 

Eopt[+][-] 
(Hartee) 

Ebinding 

(kJmol-1) 
State 

IoliTec 
1-methyl-1-
propylpyrrolidiniu
m 

chloride -460.27 -370.14 -830.55 -385 solid 

1-butyl-1-
methylpiperidiniu chloride -460.27 -448.75 -909.16 -389 solid 

 



m 
1-ethyl-3-
methylimidazoliu
m 

chloride -460.27 -344.48 -804.90 -403 solid 

methylammonium nitrate -280.35 -96.19 -376.74 -528 solid 
1-ethyl-3-
methylimidazoliu
m 

nitrate -280.35 -344.48 -624.98 -398 solid 

1-ethyl-3-
methylimidazoliu
m 

tosylate -894.82 -344.48 -1239.46 -407 solid 

1-methyl-1-
propylpyrrolidiniu
m 

triflate -961.56 -370.14 -1331.84 -371 solid 

1-butyl-1-
methylpiperidiniu
m 

triflate -961.56 -448.75 -1410.44 -361 solid 

1-methyl-1-
propylpyrrolidiniu
m 

tetrafluor
oborate -424.56 -370.14 -794.84 -387 solid 

1-butyl-1-
methylpiperidiniu
m 

tetrafluor
oborate -424.56 -448.75 -873.44 -369 solid 

1-ethyl-3-
methylimidazoliu
m 

bis(fluoro
sulfonyl)i

mide 

-
1351.73 -344.48 -1696.35 -358 liquid 

1-ethyl-3-
methylimidazoliu
m 

methane
sulfonate -663.80 -344.48 -1008.44 -415 liquid 

1-ethyl-3-
methylimidazoliu
m 

ethyl 
sulfate -778.33 -344.48 -1122.97 -397 liquid 

1-ethyl-3-
methylimidazoliu
m 

thiocyan
ate -491.10 -344.48 -835.73 -377 liquid 

1-ethyl-3-
methylimidazoliu
m 

triflate -961.56 -344.48 -1306.18 -376 liquid 

1-ethyl-3-
methylimidazoliu
m 

tetrafluor
oborate -424.56 -344.48 -769.19 -387 liquid 

1-methyl-1-
propylpyrrolidiniu
m 

dicyanam
ide -240.49 -370.14 -610.76 -355 liquid 

1-ethyl-3-
methylimidazoliu
m 

dicyanam
ide -240.49 -344.48 -585.11 -369 liquid 

1-ethyl-3-
methylimidazoliu
m 

acetate -228.51 -344.48 -573.16 -440 liquid 

 



Table R3. The calculated binding energies for selected cations and anions pairs (72) 
labeled with predicted phases at RT. 

cation anion Eopt[-] 
(Hartee) 

Eopt[+] 
(Hartee) 

Eopt[+][-] 
(Hartee) 

Ebinding 

(kJmol-1) 
State 

Predict 
1-methyl-1-
propylpyrroli
dinium 

bis(fluorosulf
onyl)imide -1351.73 -370.14 -1722.00 -347 Liquid 

1-butyl-1-
methylpiperi
dinium 

bis(fluorosulf
onyl)imide -1351.73 -448.75 -1800.61 -342 Liquid 

diethylmethy
lsulfonium 

bis(fluorosulf
onyl)imide -1351.73 -556.94 -1908.80 -353 Liquid 

1-ethyl-3-
methylpyridi
nium 

bis(fluorosulf
onyl)imide -1351.73 -366.54 -1718.39 -337 Liquid 

ethyltributylp
hosphonium 

bis(fluorosulf
onyl)imide -1351.73 -893.80 -2245.66 -330 Liquid 

ethyltributylp
hosphonium nitrate -280.35 -893.80 -1174.30 -382 Liquid 

1-ethyl-3-
methylimidaz
olium 

dihydrogen 
phosphate -643.63 -344.48 -988.28 -440 Liquid 

ethyltributylp
hosphonium 

dihydrogen 
phosphate -643.63 -893.80 -1537.60 -435 Liquid 

ethyltributylp
hosphonium 

methanesulf
onate -663.80 -893.80 -1557.76 -400 Liquid 

1-ethyl-3-
methylpyridi
nium 

tosylate -894.82 -366.54 -1261.51 -391 Liquid 

ethyltributylp
hosphonium tosylate -894.82 -893.80 -1788.78 -389 Liquid 

methylammo
nium ethyl sulfate -778.33 -96.19 -874.71 -496 Liquid 

1-methyl-1-
propylpyrroli
dinium 

ethyl sulfate -778.33 -370.14 -1148.62 -385 Liquid 

1-butyl-1-
methylpiperi
dinium 

ethyl sulfate -778.33 -448.75 -1227.23 -389 Liquid 

diethylmethy
lsulfonium ethyl sulfate -778.33 -556.94 -1335.42 -405 Liquid 

1-ethyl-3-
methylpyridi
nium 

ethyl sulfate -778.33 -366.54 -1145.02 -393 Liquid 

ethyltributylp
hosphonium ethyl sulfate -778.33 -893.80 -1672.28 -384 Liquid 

methylammo
nium thiocyanate -491.10 -96.19 -587.47 -466 Liquid 

1-methyl-1- thiocyanate -491.10 -370.14 -861.38 -376 Liquid 

 



propylpyrroli
dinium 
1-butyl-1-
methylpiperi
dinium 

thiocyanate -491.10 -448.75 -939.99 -370 Liquid 

diethylmethy
lsulfonium thiocyanate -491.10 -556.94 -1048.18 -383 Liquid 

1-ethyl-3-
methylpyridi
nium 

thiocyanate -491.10 -366.54 -857.78 -365 Liquid 

ethyltributylp
hosphonium thiocyanate -491.10 -893.80 -1385.04 -354 Liquid 

ethyltributylp
hosphonium triflate -961.56 -893.80 -1855.50 -358 Liquid 

1-ethyl-3-
methylpyridi
nium 

tetrafluorobo
rate -424.56 -366.54 -791.24 -376 Liquid 

1-ethyl-3-
methylimidaz
olium 

tricyanometh
anide -316.69 -344.48 -661.31 -356 Liquid 

diethylmethy
lsulfonium 

tricyanometh
anide -316.69 -556.94 -873.75 -331 Liquid 

1-ethyl-3-
methylpyridi
nium 

tricyanometh
anide -316.69 -366.54 -683.36 -343 Liquid 

ethyltributylp
hosphonium 

tricyanometh
anide -316.69 -893.80 -1210.62 -327 Liquid 

methylammo
nium dicyanamide -240.49 -96.19 -336.85 -452 Liquid 

1-butyl-1-
methylpiperi
dinium 

dicyanamide -240.49 -448.75 -689.37 -355 Liquid 

diethylmethy
lsulfonium dicyanamide -240.49 -556.94 -797.56 -356 Liquid 

1-ethyl-3-
methylpyridi
nium 

dicyanamide -240.49 -366.54 -607.17 -364 Liquid 

ethyltributylp
hosphonium dicyanamide -240.49 -893.80 -1134.43 -349 Liquid 

1-methyl-1-
propylpyrroli
dinium 

acetate -228.51 -370.14 -598.81 -438 Liquid 

1-butyl-1-
methylpiperi
dinium 

acetate -228.51 -448.75 -677.41 -420 Liquid 

diethylmethy
lsulfonium acetate -228.51 -556.94 -785.61 -438 Liquid 

1-ethyl-3-
methylpyridi
nium 

acetate -228.51 -366.54 -595.20 -412 Liquid 

ethyltributylp acetate -228.51 -893.80 -1122.47 -416 Liquid 

 



hosphonium 
ethyltributylp
hosphonium chloride -460.27 -893.80 -1354.22 -387 Solid-1 

methylammo
nium 

bis(fluorosulf
onyl)imide -1351.73 -96.19 -1448.08 -430 Solid-1 

diethylmethy
lsulfonium 

dihydrogen 
phosphate -643.63 -556.94 -1200.73 -448 Solid-1 

diethylmethy
lsulfonium 

methanesulf
onate -663.80 -556.94 -1220.90 -422 Solid-1 

1-ethyl-3-
methylpyridi
nium 

methanesulf
onate -663.80 -366.54 -1030.49 -406 Solid-1 

1-methyl-1-
propylpyrroli
dinium 

tosylate -894.82 -370.14 -1265.11 -380 Solid-1 

1-butyl-1-
methylpiperi
dinium 

tosylate -894.82 -448.75 -1343.71 -356 Solid-1 

diethylmethy
lsulfonium tosylate -894.82 -556.94 -1451.92 -409 Solid-1 

diethylmethy
lsulfonium triflate -961.56 -556.94 -1518.63 -376 Solid-1 

1-ethyl-3-
methylpyridi
nium 

triflate -961.56 -366.54 -1328.23 -368 Solid-1 

1-butyl-1-
methylpiperi
dinium 

tricyanometh
anide -316.69 -448.75 -765.56 -329 Solid-1 

methylammo
nium chloride -460.27 -96.19 -556.65 -525 Solid-2 

1-methyl-1-
propylpyrroli
dinium 

nitrate -280.35 -370.14 -650.64 -385 Solid-2 

1-butyl-1-
methylpiperi
dinium 

nitrate -280.35 -448.75 -729.24 -384 Solid-2 

diethylmethy
lsulfonium nitrate -280.35 -556.94 -837.44 -404 Solid-2 

1-ethyl-3-
methylpyridi
nium 

nitrate -280.35 -366.54 -647.04 -390 Solid-2 

1-ethyl-3-
methylpyridi
nium 

dihydrogen 
phosphate -643.63 -366.54 -1010.33 -425 Solid-2 

1-butyl-1-
methylpiperi
dinium 

Methane 
sulfonate -663.80 -448.75 -1112.70 -398 Solid-2 

methylammo
nium tosylate -894.82 -96.19 -991.20 -501 Solid-2 

diethylmethy
lsulfonium 

tetrafluorobo
rate -424.56 -556.94 -981.64 -389 Solid-2 

 



methylammo
nium 

tricyanometh
anide -316.69 -96.19 -413.03 -404 Solid-2 

1-methyl-1-
propylpyrroli
dinium 

tricyanometh
anide -316.69 -370.14 -686.95 -332 Solid-2 

methylammo
nium acetate -228.51 -96.19 -324.93 -623 Solid-2 

diethylmethy
lsulfonium chloride -460.27 -556.94 -1017.36 -418 Solid-3 

1-ethyl-3-
methylpyridi
nium 

chloride -460.27 -366.54 -826.95 -386 Solid-3 

methylammo
nium 

dihydrogen 
phosphate -643.63 -96.19 -740.03 -575 Solid-3 

1-methyl-1-
propylpyrroli
dinium 

dihydrogen 
phosphate -643.63 -370.14 -1013.93 -416 Solid-3 

1-butyl-1-
methylpiperi
dinium 

dihydrogen 
phosphate -643.63 -448.75 -1092.54 -417 Solid-3 

methylammo
nium 

Methane 
sulfonate -663.80 -96.19 -760.18 -517 Solid-3 

1-methyl-1-
propylpyrroli
dinium 

Methane 
sulfonate -663.80 -370.14 -1034.09 -393 Solid-3 

methylammo
nium triflate -961.56 -96.19 -1057.92 -463 Solid-3 

methylammo
nium 

tetrafluorobo
rate -424.56 -96.19 -520.92 -471 Solid-3 

ethyltributylp
hosphonium 

tetrafluorobo
rate -424.56 -893.80 -1318.50 -369 Solid-3 

 

Comment #7: Finally, something that is not so much of a flaw in the data analysis but 
more a part that needs further clarification is the part about the ion exchange with the 
ionic liquid electrolyte (rows 232-235). It is not clear to me why the incorporation of 
Li to the IPE is done with LiFSI and not with Li salt with the corresponding anion as 
the IPE (LiOTf and LiBF4 accordingly) and also why the ion exchange happens in 
[C3mpyr][FSI]? I assume that the authors have tried different solvents and have a 
reason for performing the ion exchange in another IL and not in a conventional 
volatile molecular solvent, but this should be clearly explained in the text. 

Response: We thank the reviewer for initiating the discussion about the choice of LiFSI 
and C3mpyrFSI. First, it has been reported that the FSI- anion can decompose upon 
electroreduction to form a stable solid-electrolyte interphase (SEI) that enables 
reversible cycling with lithium metal anode, and LiFSI has been reported as a promising 
electrolyte component.13-15 Indeed, we had tried LiTfO as the Li salt for this work, but 

 



LiTfO is almost insoluble in C2mimTfO, C2mimFSI and C3mpyrFSI. In contrast, 
LiFSI has excellent solubility in C3mpyrFSI, we can formulate the ionic liquid 
electrolytes with high Li+ concentrations (3.2 mol kg-1) fairly easily that ensures the 
high Li+ concentration in obtained IPEs after the ion exchange step. In Table 4, we 
observe that the absolute value of the binding energy of LiFSI is significantly smaller 
than that of LiTfO and LiBF4, this explains why the solubility of LiFSI in ionic liquids 
is significantly greater than that of LiTfO.  

Table R4. The binding energies of different lithium salts. 

Lithium salt Binding energy (kJ mol-1) 

LiBF4 -602.39 

LiTfO -603.08 

LiFSI -512.21 

Note: The used theory and basis set is M062X/6-311(+)G(2d,p). 

We avoid using any conventional volatile solvents in the ion exchange procedure, 
because the organic solvents might cause potential safety issues in real application of Li 
batteries. We chose C3mpyrFSI as the ionic liquid electrolyte solvent in the ion 
exchange procedure for two reasons: First, LiFSI has excellent solubility in C3mpyrFSI 
as mentioned previously, whereas LiFSI is almost insoluble in C2mimTfO and 
C2mimBF4. Second, C3mpyrFSI has a wide electrochemical window (5.4 V) and high 
ionic conductivity (9.1 mS cm-1) simultaneously, which is undoubtedly advantageous 
for the preparation of IPEs with excellent performance.(Values from Solvionic)   

Modifications to the manuscript and supplementary information:  

(1) We added Table R4 and more discussion about the solubility of Li salts in the 
Supplementary Note 1. 

(2) We added the explanation about the choice of LiFSI and C3mpyrFSI in the 
manuscript (Page 4-5, Line 80-89) .  

 

Comment #8: Is the methodology sound? Does the work meet the expected standards 
in your field? Generally, the methodology of the work follows a reasonable pipeline, 
although some gaps exist (they are extensively discussed in the previous sections). 
These gaps need revising before considering this work for publication. 

 



Response: Thanks again for these comments. After the careful validation and detailed 
explanation of the models included in our responses to previous Comments. We believe 
that this methodology is suitable and reliable. 

 

Comment #9: I am not convinced where the novelty and the importance of this work 
lies. There are many published articles on both ML algorithms for property prediction 
and conductive ionogels. I think that the authors need to add a paragraph (probably in 
the conclusions) highlighting the novelty of their work, what are the advantages of 
their algorithm compared to others and why their methodology/IPEs is superior to 
others reported in the literature. 

Response: Thanks for this suggestion. We have added the following paragraph to 
conclusion of the manuscript. 

Modifications to the manuscript and supplementary information:  

(1) We added the following paragraph (Page 25, Line 409 – 431) in the end of the 
manuscript to emphasis the novelty and importance of this work from the two 
perspectives.  

 “In summary, we have described a machine learning-guided screening protocol to filter 
promising ILs with high ionic conductivity and wide electrochemical window for 
preparation of IPEs in LMBs. In terms of the machine learning model, through the 
unique design of this screening steps based on a combination of unsupervised learning 
and multistep supervised learning. This comprehensive approach is essential to improve 
the efficiency to target promising ILs for practical applications. Compared to previous 
literatures, instead of focusing on individual properties, for example, melting point, 
viscosity and ionic conductivity, we first combine the factor of ionic conductivity with 
the electrochemical window as the guidelines for selection of battery electrolytes. This 
novel conceptual design is also insightful and can be easily applied for related research 
areas. In addition, though these is plenty of published work based on ML and ionic 
liquids. It is still difficult to predict the ionic conductivity for ILs accurately because of 
the data scarcity issues. This work only focuses on unique and commercially available 
cations and anions from IoLiTec company instead of widely used and scattered NIST 
ILThermo database. This helps the research work better aligning with the commercially 
available products, we believe this is also significant for practical research and new 
materials design in the future. In terms of the electrolyte material development and 
performance evaluation, the promising experimental results reported in this work 

 



represent the performance of the state-of-the-art polymer electrolytes for Li metal 
batteries. We further confirm the rigid-rod liquid crystalline polyelectrolyte PBDT as an 
essential polymer matrix to develop a series of solid-state polymer electrolytes with 
extremely high CE and excellent fast charge and discharge performance at high 
temperature. PBDT rods can serves as the assembly templates not only offering 
mechanical integrity, but also endowing nanoscale structuring in the composite, ensuing 
the fast Li+ transportation.” 

Comment #10: Is there enough detail provided in the methods for the work to be 
reproduced? Yes, apart from the quantum chemistry calculations discussed above, the 
rest of the methodology is adequately explained and can be reproduced. Regarding the 
ML algorithm, and while not being an expert on the field, I believe that the algorithm 
is sound and reasonable. I am not convinced that one could reproduce the algorithm 
just by reading the article’s methodology section, since there are several gaps on the 
actual coding, but since the code is available on GitHub one could use the pre-made 
code. 

Response: We thank the review for raising this concern. We added more details for the 
ML models in the experimental section of the manuscript. We also update the GitHub 
link for the projects. The class object called ILP can be reused and reproduced for 
future research. 

Modifications to the manuscript and supplementary information:  

(1) We added more details about the ML algorithm (Page 26, Line 400 – 454) in the 
manuscript. 

(2) The updated GitHub link is https://github.com/wangyingxie/ILP 

 

Comment #11: There are several grammatical/syntax errors throughout the text, 
language needs to be corrected. 

Response: Thanks for raising these concerns. We have scanned the manuscript again 
and corrected corresponding the grammatical/syntax errors in the manuscript and the 
supplementary information.  

 

Comment #12: The company selling the ionic liquids is IoLiTec (in the text it is 
written as IoLiTech) 

 



Response: We thank the reviewer for pointing out the errors of this work. We have 
corrected this mistake correspondingly. 

Modifications to the manuscript and supplementary information:  

(1) We corrected ‘IoLiTech’ to ‘IoLiTec’ and other related errors in the manuscript.  

 

Comment #13: The authors refer to their setup as full cell in several points in the 
text. I believe it is supposed to be fuel cell. 

Response: We would like to first appreciate the reviewer for raising this point. Please 
allow us to clarify this confusion, the IPEs prepared in this work were applied in Li 
metal batteries rather than fuel cells. The full cell in the manuscript refers to the cell 
setup of Li|IPES|LiFePO4, where Li metal is anode and LiFePO4 is the cathode. Some 
of the protic ionic liquids, for example the [Dema+] based ionic liquids can be 
potentially employed for fuel cell applications, which are under investigation in our 
group.  

 

Comment #14: The authors need to amend their abbreviations for their ionic liquids. 
For example 1-ethyl-3-methylimidazolium triflate, here it is abbreviated as 
C2mimTFO, the established abbreviation for that is either [Emim][OTf] or 
[C2C1im][OTf]. The authors need to correct their ILs abbreviations according to the 
literature. 

Response: We totally agree with the established abbreviations proposed by the 
reviewers for ionic liquids, but in order to keep the abbreviation for ionic liquids 
consistent with our published work16,17 and other literatures18-20, we decided to retain 
our abbreviations for this ionic liquid in this work. In addition, we have given the full 
name of the ionic liquid in the manuscript, so we think that the abbreviations for ionic 
liquids in this work will not cause confusion to the readers. 

 

Comment #15: Figure 4. The embedded photos are too small for anyone to see them 
properly. 

Response: We adjusted all the figures based on the requirements of the journal to 
ensure the readability and quality of the figures.  

 



 

Comment #16: Row 52. ‘Large population of ion pairs’ is wrong. It should be a large 
population of IL candidates. 

Response: We greatly appreciate the reviewer’s comment that improves our work a lot.   

Modifications to the manuscript and supplementary information:  

(1) We corrected ‘a large population of ion pairs’ to ‘a large population of IL 
candidates’ in updated row 52. 

 

Comment #17: Row 52. Here they use the abbreviation ML but they define it later in 
text. 

Response: Thanks for this comment. We have modified the corresponding error in the 
manuscript. 

Modifications to the manuscript and supplementary information:  

(1) We defined ML in row 51 and we also removed the definition of ML in row 53.  

 

Comment #18: Row 181. Geometric not gyometric. 

Response: Thanks for pointing out this error. We have made corresponding corrections 
in the manuscript. 

Modifications to the manuscript and supplementary information:  

(1) We modified ‘gyometric’ to ‘geometric’ in row 181. (updated Line 229) 

 

Comment #19: Row 232. If the authors claim that their films are mechanically 
strong, they need to perform a tensile stress analysis. 

Response: Thanks for this important suggestion. We have supplemented the stress-
strain tests for the IPEs with 10% PBDT and C2mimTfO. As shown in Figure R6a, 
the Yeild strength and Young’s modulus of the membrane are 6.21 MPa and 300 MPa 
(the slope of the linear portion on the curve) correspondingly. The Young’s modulus is 
~ 3000 times higher than that of PEO-based electrolyte (0.1 MPa)21,22. In Figure R6b, 
the dynamic mechanical analysis (DMA) results show that this membrane maintains a 

 



high modulus ＞200 MPa from −50 to 300 °C, which ensures the safety and stability of 
this material as applied to real devices. 

 

Figure R6. (a) The stress-strain curve for IPE with 10% PBDT with C2mim TfO. (b) 
The corresponding DMA curve for IPE with 10% PBDT with C2mim TfO from −50 to 
300 °C. 

Modifications to the manuscript and supplementary information:  

(1) We added Figure R6 to the Supplementary Fig. 3. 

 

Comment #20: Row 350. The Machine Learning methodology needs to be more 
detailed in order to be more reproducible. 

Response: Thanks for this comment.  

Modifications to the manuscript and supplementary information:  

(1) We added more details about the ML algorithm (Page 26, Line 400 – 454) in the 
manuscript. 

 

Comment #21: Row 360. The quantum chemistry calculations methodology needs 
more details to be reproducible. 

Response: Thanks for this comment.   

Modifications to the manuscript and supplementary information:  

(1) We added the calculation details about the quantum chemistry calculation in the 
experimental section. (Page 27, Line 455 – 467) 

 

 



Comment #22: Rows 365-373. The purity/water content of the purchased ionic 
liquids needs to be stated. Is Canrd in row 373 correct? 

Response: We thank the reviewer for these comments. The purity of all the ionic 
liquids purchased from IoLiTec are > 99%. All Ionic liquids were further dried in 
vacuum before moving to glove box. The LiFePO4 cathode with area loading of 10.3 
mg cm-2 and Cu foil were sourced from Canrd New Energy Technology Co.,Ltd.  

Modifications to the manuscript and supplementary information:  

(1) We replaced the “Canrd” mentioned in (Page 28, Line 478) with the company’s 
full name.  

(2) We added the purity of all the ionic liquids purchased from IoLiTec in Line 472-
477.  

 

Comment #23: Rows 389. The thickness/diameters of the electrodes need to be 
stated. 

Response: We thank the reviewer for this important suggestion. The thickness of the Li 
metal counter electrode used in cyclic voltammetry experiment is 180 μm and the 
diameter is 5mm. The thickness/diameter dimension of the working electrodes of 
LiFePO4 is 80 μm/4mm and Cu is 10 μm/4mm. 

Modifications to the manuscript and supplementary information:   

(1) We added the thickness and diameter of the electrodes in (Page 29, Line 495-496, 
499) . 

 

Comment #24: Row 534. The github link is not working. 

Response: We thank the reviewer for pointing out the issue, and we have updated the 
working GitHub link in the manuscript. The updated link is 
https://github.com/wangyingxie/ILP 

 

 

 

 

 



Response to Reviewer #2’s Comments 

Statement: In this manuscript, machine learning approaches are applied to discover 
ionic liquids with high ionic conductivity and electrochemical window. Some of the 
top candidates are blended with a polymer and a Li salt. Experiments are conducted to 
assess the performance of the ionic polymer electrolyte. Given the tremendous interest 
in Li-ion batteries and favorable attributes of ionic liquids as electrolytes, the topic of 
the manuscript has broad appeal. Developing electrolytes based on ionic liquids 
requires careful tuning of properties such as ionic conductivity, electrochemical 
window, viscosity etc., which are probed in this manuscript. Furthermore, machine 
learning approaches are becoming mainstream in the field of ionic liquids, so the 
manuscript holds special interest. Although the topic of the manuscript is of great 
importance, there are several aspects of the manuscripts which deserve attention and 
substantial revisions. 

Response: We appreciate Reviewer #2’s inspiring comments. The manuscript has been 
modified carefully according to the reviewer’s comments. The point-to-point responses 
are attached as follow.   

Comment #1: Very few details on the development of machine learning models are 
provided. I also find the development of the three machine models rather problematic 
as the data set is not split into a training and test data set making it difficult to assess 
the predictive capability of the model. This is especially concerning as it has been 
pointed out in the manuscript that the models tend to overfit due to over-
representation of one or more cation/anion types. 

Response: We thank the reviewer for these comments. We added more details about 
the machine learning models in the experimental section. For the data splitting question, 
we employed the 5-fold cross validation for the three machine learning models to 
prevent the potential overfitting. Cross validation is a resampling method that uses 
different portions of the data to test and train the model. The 5-fold cross validation will 
split the data into 5 parts, every time 4 parts of the data are used to train the model, the 
remaining 1 (20% percentage of the data) is used for the validation dataset. Thus, the 
performance shown in Table 1 in the manuscript is the average of the 5-fold cross-
validation accuracy. In terms of the overfitting issue in other literatures, the reported 
high accuracy usually originates from the duplicate data points. For example, the 
ILthermo Database contains properties for diverse IL based on previous literatures, 
which contains duplicate datapoints for individual IL at varying temperatures. 
Especially when the model is mainly based on the geometric structure of the cations and 

 



anions, datapoints for same ILs at varying temperatures will artificially increase the 
training efficiency of the model and cause the issue of overfitting. 1,2 In this work, to 
prevent this issue, every ionic liquid in the dataset is unique by permutation of the 74 
cations and 30 anions.  

Modifications to the manuscript and supplementary information:  

(1) We added more details about the ML algorithm (Page 26, Line 400 – 454) in the 
manuscript. 

 

Comment #2: RDKit generates a large number of molecular descriptors for a given 
ionic liquid. Please include a description of how the total number of features was 
reduced to 60. Also specify if the cation and anion in an ionic liquid pair were 
modeled with different set of descriptors. 

Response: Thanks for this insightful comment. Basically, we try to include every 
structural property of the cations and anions. Yes, there is very large number of features 
provided by RDKit. We start with the default features based on rdkit.Chem.Descriptors 
module (10) and rdkit.Chem.Descriptors3D module (10) of the cation, anion and 
cation-anion pair provided by RDKit. These two modules are representative and contain 
detailed molecular and geometric properties of the molecules. The cation and anion in 
an ionic liquid pair were modeled with same set of descriptors based on RDkit. We 
agree that feature engineering is very important for machine learning model. The 
multicollinearity issue is very apparent in regular linear regression models. However, 
for SVM, RF and XGboosting models, the multicollinearity will not influence the 
accuracy of the model. We have tried to simplify the number of features by using 
Variance Inflation Factor (VIF) methods. However the performance of the model will 
decreased by removing some of the features. Thus, we decide to keep all of the 
predetermined 60 features in the final model. On the contrary, we can include more 
structural features provided by RDKit. However, more features will only increase the 
complexity and multicollinearity of the model without increasing the accuracy of the 
model, because the higher order structural features are usually the calculated results 
based on the variables we already included in the model.  

Modifications to the manuscript and supplementary information:  

 



(1) We added more details about the ML algorithm (Page 26, Line 400 – 454) in the 
manuscript. Meanwhile, the updated Github Link will show details about the ML 
workflow and ensure the reproducibility of this work.  

 

Comment #3: Provide a reasoning for the basis set selection. Please include the level 
of theory for electronic structure calculations. 

Response: Thanks for this question. We employed the Hartee-Fork (HF) theory along 
with the basis set of 6-311+G** to optimize the geometric structure and followed with 
the calculation of the energy, the highest occupied molecular orbital energy (EHOMO), 
the lowest unoccupied molecular orbital energy (ELUMO) and the molecular dipole 
moment for the cations and anions separately. We also tried to use the popular theory 
B3LYP to optimize and calculate the energy, EHOMO and ELUMO. However, the obtained 
ECW values are unreasonable. As reported in literatures,23 the calculation for ECW 
based on  HOMO/LUMO method heavily relays on the Koopman’s theory, which can 
be well applied with the HF theory; whereas the theory cannot be compatible with the 
B3LYP theory. The basis set with 6-311+G** usually show enough accuracy according 
to previous literatures. Overall, the selection of theory and basis set is based on the 
literatures and the tradeoff between accuracy and cost.  

Modifications to the manuscript and supplementary information:  

(1) We added the calculation details about the quantum chemistry calculation in the 
experimental section. (Page 27, Line 455 – 467) 

(2) We added more discussion in the main manuscript (Page5-6, Line 104-109). 

 

Comment #3: Why was a particular threshold of ionic conductivity and ECW 
selected? 

Response: The selection of the ionic conductivity and ECW is tunable and can be 
predetermined based on the specific requirements of practical applications. It is well 
known that the ionic conductivity of solid-state electrolytes should be > 1 mS cm-1 to 
ensure the performance in real devices.24 The IPEs in this work are assembled with a 
rigid-rod polyelectrolyte, a predetermined lithium salt and ionic liquids (ILs) 
recommended by machine learning. To guarantee the high conductivity of IPEs, the 
utilized ILs usually require a slight higher ionic conductivity according to literatures (> 

 



5 mS cm-1).16,17,25,26 Therefore, 5 mS cm-1 is the ionic conductivity threshold used in 
this model that should be sufficient for the development of state-of-the-art IPEs. 

For the ECW threshold, LiFePO4 cathode coupled with Li metal anode will display a 
charging platform at 3.5V (vs Li+/Li). Based on the assumption of VCL ≥ V Li+/Li, 
3.5V will be the minimum threshold value for EC. If the ILs need to match other 
higher voltage cathodes such as NMC811, LiCoO2 and LiNiMn2O4, the threshold for 
the ECW can be adjusted appropriately. Here we set the threshold to 4V in the 
workflow. Here we expand the threshold to 4V in the updated manuscript to ensure the 
ubiquity.  

Modifications to the manuscript and supplementary information:  

(1) We added the more explanations about the thresholds in the manuscript. (Page 6-7, 
Line 120-137) 

 

Comment #4: It is confusing that output properties from models such as ionic 
conductivity and electrochemical windows are listed as features. 

Response: We thank the reviewer for proposing this comment. In the supervised 
learning, the conductivity and electrochemical window are not listed as features in the 
machine learning models. We believe that the two features mentioned by the reviewer 
only exist in the unsupervised learning, the hierarchical clustering method indeed 
includes the conductivity related factors and the electrochemical window as the input 
features, which are verified to be independent key properties to filter the ILs for 
application in Li batteries. Please refer to (Page 10-11, Line 175 - 189) for more details. 

 

Comment #5: It is not clear that spherical anions will yield liquids/solid from Figure 
3a. In fact, there does not seem to be a correlation between the sphericity of the anions 
and phase. 

Response: We thank the reviewer for proposing this comment. We agree that Figure 3a 
is not clear to show the dependence, so we reevaluate the correlation between the 
sphericity of the anions and the phase of the ILs in Figure R7. We divided the 
predicted ILs into the four categories, including liquid and solid-x, where x (x = 1, 2, 3) 
is the number of ML models with prediction results being in solid phase for the ILs, 
thus the larger the number, the higher possibility for the IL being in solid phase. To 

 



discover the key features, we start with the features indicated by the feature importance 
score of the model one by one, finally we observe that the sphericity index of cation and 
anions will increase with increasing possibility for the cation-anion pair to be solid. The 
ELUMO of the anion seems like another important feature to determine the phase of the 
ILs. Indeed, the explanation of the model is quite challenging since the molecular 
descriptor are highly corelated in the ML models. However, we can still get some basic 
idea about the important features according to the calculated feature importance from 
Random Forest and XGBoosting models. 

Modifications to the manuscript and supplementary information:  

(1) We added Figure R7 in the manuscript as Figure 3b.  

(2) More discussion was added to the main manuscript (Page12, Line 219 – 223) 

 

Figure R7. The key features in the classification of solid/liquid phases of the 
candidates. 

 

Comment #6: How were top 10 important features determined? 

Response: The top 10 importance features can be generated by Random Forest and 
XGBoosting models directly, the calculated importance score indicates the contribution 
of each feature in the model. After careful examination of the model, we found that the 
multicollinearity issue is very severe when we try to explain the importance of the 
features, though it will not influence the accuracy of the model. The ranking of the 
importance is fluctuated, but the critical features are usually stable, which give us clue 
to find the relationship as shown in Figure R7. Thus, to prevent confusion, we decide to 
remove the Figure 3b from the main manuscript.  

 



Modifications to the manuscript and supplementary information:  

(1) We removed original Figure 3b in the manuscript. 

 

Comment #7: The results on 20 ILs is not enough to establish the correlation. For 
1000 ILs, it is not difficult to conduct quantum calculations. I would recommend at 
least 20% of the ILs on which these calculations are carried out ensuring that cation 
types and anions are well represented. 

Response: Thanks for this significant suggestion. We have expanded the pool for the 
calculation. To ensure the representative of the types, we selected 91 ion pairs, 
including 7 cations and 13 anions from the main cation and anion types in the dataset to 
validate our prediction results. The results shown in Figure R5, Table R2 and Table 
R3 strongly confirms the established correlations. Please refer to Comment#6 of 
Reviewer #1 for more details.  

(1) Figure R5 was added to the main manuscript. More discussion was added to 
(Page 11, Line 200 - 216) in the manuscript. 

(2) Table R2 and Table R3 were added to the Supplementary Table 1 and Table 2.  

 

Comment #8: Why is it necessary to choose hydrophillic ionic liquids for Li-ion 
batteries? In fact, this property will actually be detrimental to the performance of 
batteries if water is absorbed. 

Response: We appreciate the reviewer for raising this point. As described in the 
‘Methods’ section of the manuscript, the IPEs were prepared by solvent casting the 
mixture solutions of selected ILs and PBDT. As we know, PBDT can be fully soluble in 
water instead of any other organic solvents. Therefore, hydrophilic ionic liquids can be 
easily mixed with PBDT aqueous solutions, to develop homogeneous IPEs with high 
mechanical strength, meanwhile inhibiting Li dendrite growth and extending the cycle 
life of Li metal batteries assembled with IPEs. On the contrary, ILEs developed by the 
hydrophobic ionic liquids usually show phase separation, the developed materials 
possess a lower mechanical modulus. As the reviewer mentioned, H2O does have a 
detrimental effect on the performance of Li metal batteries. For this reason, the 
developed IPEs were placed in a vacuum oven at 80℃ for more than 24h to adequately 
remove water before assembled in the batteries. The ion exchange process was finished 

 



in an Ar-filled glove box (< 0.01 ppm H2O). Here we mainly need to measure the H2O 
in the dried membrane (10% PBDT C2mim TfO). Here, we used 1H NMR and DSC 
to carefully measure the water content in the membrane. As shown in the 1H NMR 
spectra in Figure R8a, we cannot observe a distinct signal that belongs to H2O, which 
usually appears around 4.9 ppm, for the membrane. As shown in the DSC curve in 
Figure R8b, no significant heat absorption peak for H2O was observed. The excellent 
battery cycling performance in the manuscript also confirms that the effect of H2O can 
be neglected in the IPEs. 

 

Figure R8. (a) 1H NMR spectra for the membrane. The green dashed line shows the 
regular position (4.9 ppm) of H2O peak. (b) DSC curve for the membrane. Notably, 
we observe no apparent heat absorption peaks above 100 °C, which indicates that 
H2O molecules were successfully removed after the vacuum drying step. 

Modifications to the manuscript and supplementary information:  

(1) Figure R8 was added to Supplementary Fig. 4, which is mentioned at (Page16, 
Line 291 – 293) in the manuscript. 

 

Comment #9: Provide the rationale for using PBDT as a liquid crystalline 
polyelectrolye. 

Response: We thank the reviewer for this important question. Our previous work 
has illustrated the importance of PBDT in IPEs (Nature Materials 20.9 (2021): 1255-
1263). Briefly speaking, the local parallel packing of charged PBDT rods can serves 
as the assembly templates not only offering mechanical integrity, but also endowing 
nanoscale structuring in the composite, ensuing the fast Li+ transpotation15. In our 
response to Comment # 2 of Reviewer #1, we conclude a comparison to recent 
literatures as shown in Table R1. Overall, compared to other polymer matrix 
systems, the IPEs based on PBDT reported in this work outperform from a 

 



comprehensive perspective, including the current density, the cell cycling life and 
especially the high cathode loading required for practical applications. 
Furthermore, in our latest study, we found that PBDT at Li metal surface significantly 
reduces the interfacial resistance and improves the charge-transfer kinetics.  

Modifications to the manuscript and supplementary information:  

(1) We added a paragraph (Page 25, Line 409 – 431) in the end of the manuscript to 
emphasis the novelty and importance of this work from the two perspectives.  

(2) We inserted the Table R1 in the main manuscript as Table 2.  

 

Comment #10: The Github link is not provided. 

Response: We thank the reviewer for this important suggestion. We have updated the 
GitHub link in the manuscript. The updated GitHub link is 
https://github.com/wangyingxie/ILP. 

 

Comment #11: Provide a caption for Supplementary Table 2. Include units for ECW 
and ionic conductivity. Specify the temperature at which ionic conductivity is 
predicted. For many of the ionic liquids, measured ionic conductivities are available 
from the NIST ILThermo Database. A comparison must be made between predictions 
and the measurements. 

Response: We thank the reviewer for these comments. As suggested by the reviewer, 
we have added captions for all Supplementary Tables, and supplemented the units of 
ECW and ionic conductivity in the corresponding Supplementary Tables. Meanwhile, 
the ionic conductivity is predicted at 25 °C, which has been added to the manuscript. 
(Line 119) The comparison with the NIST ILThermo databases is also included in the 
Figure R1 in our responses to Comment#3 of Reviewer #1.  

Modifications to the manuscript and supplementary information:  

(1) We added captions for Supplementary Table 1-3, respectively. 
(2) We added the units of ECW and ionic conductivity in Supplementary Table 1-3. 
(3) We added Figure R1 in the manuscript as Figure 3d.  
(4) We added more discussion about the validation of predicted ionic conductivity 

(Page 13, Line 238 -245) in the main manuscript.  
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I would like to thank the authors for addressing my comments and providing detailed answers to all 

of them. Their results are very promising and all the additions have complimented the paper nicely. 

However, there are still some issues regarding the statistical evaluation of the importance of their 

classification/prediction algorithm. 

 

In the previous review round (Comment 3) I asked to see a comparison between the predicted 

properties and experimental measurements available in the literature. The authors kindly did that 

both for conductivity and ECW. Conductivity is an accurate physical property and their comparison 

with the experimental data is not great. I understand that there were problems finding experimental 

data for their ionic liquids (from their 992 predicted ionic liquids, only 17 were on the ILThermo 

Database), which is a very small percentage to be used as an accurate validation. However, even for 

those ionic liquids it seems that the accuracy of their prediction is low. The R2 of the linear 

predicted-to-experimental conductivity is 0.76, but especially for the low conductivities this leads to 

huge deviations. It is in the discretion of the Editor to judge whether the 0.76 R2 factor is satisfactory 

for publication. 

 

Very accurately the authors noted that the ECW cannot be predicted accurately, as it is significantly 

influenced by the experimental process – and for that I completely agree. However, the fact that the 

prediction of ECW is very accurate for some ionic liquids and not for others could be an indication 

that the model is undertrained or overfitted to specific structures. It would be very interesting for 

the authors to prove statistically the nature of this deviation. Also, in Figure R2 they should show the 

number of structures for each ion family studied; for example we see very accurate predictions for 

pyrrolidinium ILs, while not so much for imidazolium. How many pyrrolidinium ILs and how many 

imidazolium ILs have been studied? 

 

Similarly, in Figure R5 and Table R2 where the authors show the average binding energy for the solid 

and the liquid compounds, the authors need to show the statistical significance of their hypothesis. 

Their hypothesis is that they can associate their calculated binding energy with the physical state of 

the ionic liquid. If the population of each category (liquid, solid 1, solid 2, solid 3) was the same, this 

comparison could be done by comparing the standard deviations and see whether they are 

overlapping. However, since the population of each category is different, the authors need to 

perform a t-test to prove the statistical significance of their hypothesis. 

 

 



 

 

Reviewer #2 (Remarks to the Author): 

 

In the revised manuscript, authors have addressed all the comments in great detail. It is 

commendable that they carried out experiments with a not-so-typical ionic liquid to assess the 

performance of ionic liquid-polymer electrolyte. On the theoretical side, the set of ionic liquids for 

which quantum calculations were carried has been expanded. Although I still believe that the 

method concerning selection of features for machine learning has not been described to permit 

reproduction of results on its own, availability of Github code can alleviate this challenge. 

 

Overall, the manuscripts combines machine learning to identify ionic liquids with suitable ionic 

conductivity and electrochemical window. Some of the top performing ionic liquids have been mixed 

with PBDT and promising performance of the solid electrolyte has been reported for Li-ion batteries. 

I recommend the publication of the manuscript. 

 

 



Response to Reviewer #1’s Comments 

Statement: I would like to thank the authors for addressing my comments and 
providing detailed answers to all of them. Their results are very promising and all the 
additions have complimented the paper nicely. However, there are still some issues 
regarding the statistical evaluation of the importance of their classification/prediction 
algorithm. 

Response: We thank the reviewer for complimenting the revisions we made to the 
manuscript. The corresponding comments proposed by the reviewer again are very 
insightful. We hope that the following explanation and revision to this manuscript based 
on the comments will be satisfactory.  

Comment #1: In the previous review round (Comment 3) I asked to see a comparison 
between the predicted properties and experimental measurements available in the 
literature. The authors kindly did that both for conductivity and ECW. Conductivity is 
an accurate physical property and their comparison with the experimental data is not 
great. I understand that there were problems finding experimental data for their ionic 
liquids (from their 992 predicted ionic liquids, only 17 were on the ILThermo 
Database), which is a very small percentage to be used as an accurate validation. 
However, even for those ionic liquids it seems that the accuracy of their prediction is 
low. The R2 of the linear predicted-to-experimental conductivity is 0.76, but 
especially for the low conductivities this leads to huge deviations. It is in the 
discretion of the Editor to judge whether the 0.76 R2 factor is satisfactory for 
publication. 

Response: We thank the reviewer for proposing these concerns based on the R2 factor. 
We appreciate the chance for us to claim the alternative explanations here. R2 value is 
widely used to validate the performance of the models based on the predicted values 
and experimental values. It is actually very difficult to directly correlate the 
performance of the model with the R2 determinant. The R2 value is highly 
dependent on many factors, including the sample size, the data sources and the 
sample uniqueness, thus we have to evaluate case by case.  

 In previous literature,1,2 the reported R2 value can be as high as 0.999, which looks 
dramatically promising. However, the super high R2 usually originates from the 
duplicated input data at various temperatures. As far as we know, most of the related 
literature using machine learning to predict ionic conductivity is based on the ILThemro 

 



database, which contains 7234 entries of ionic conductivity values at varying 
temperatures for only 523 unique ILs, the unique cations and anions are high up to 244 
and 109 correspondingly, indicating the database is highly sparse. In addition, we can 
estimate that there are ~14 (7234/523) records for every unique ionic liquid in the 
dataset, thus there must be a large number of same ILs appearing both in the training 
and testing dataset, which will boost the R2 and lead to the overfitting of the model. 
Besides, the validation reported in the literature usually relays on the ILThermo 
database itself. There is seldom validation work using an external database. We found 
one example, 1 which reports the validation with other literature outside the database 
they use, though the R2 values they reported 0.8 and 63% for the two tasks, the value is 
still based on a wide temperature range from 273 – 303K for same ILs, which will boost 
the reported R2 values. We didn’t find reported R2 in the literature, which compares 
the unique ILs with external database at a single temperature as we reported here.  

 In contrast, we have here is a cross-reference validation between two data sources 
for unique ILs, including IoLiTec and ILThermo. The IoLiTec contains unique IL 
datapoints and the measured properties are based on similar measuring conditions, 
which is more consistent for dataset used for ML models. Besides, the comparison in 
our work is only based on temperature at 25 °C. The comparison is much stricter and 
the 0.76 of R2 factor actually exceed my expectation initially. Imagine if the R2  is high 
up to > 90%, the experimental results will suffer an eclipse and become redundant, 
because we can predict ionic conductivity with enough high accuracy for applications in 
the future; whereas, the experimental measurements in reality usually display high 
variation also. For example, when we do the comparison, we note that some ILs among 
the 18 overlap (instead of 17) in the ILThermo contains more than one record at same 
temperature (note we use the average values for our validation in Figure 2),  as shown 
in the table as follow, 4 ILs contains more than two records, but the variations between 
the records is very high, this uncertainty from the database (experimental values) itself 
will further increase the fluctuation of our validation shown in Figure 2. Thus, we leave 
out this invalid value point for 1-butylpyridinium dicyanamide with a huge 

percentage of difference for the measured values (> 66%), then the R2 increases to 0.82 

and MAE decreases to 1.76. We update the label and insert the error bar of standard 

deviation for the four ILs in the figure as follows. In terms of the data availability, it is 
difficult for us to increase this number now, since we believe the ILThermo is the 
biggest database with record literature values for now and we include all the 
overlaps here without any data bias except the one invalid value we mentioned 

 



above. Even though there are only 18 overlaps between the two datasets, we find 
that the model did a nice job to predict IL especially with high ionic conductivity, 
which is one of our essential targets. Though there is only 18 overlap for validation, 
we instead obtain a large number of unknown samples to explore in the future. Thus, 
we think the importance of the relative higher deviation for the low conductivities will 
be a lower priority in this work. Additionally, the validation of the model is not only 
limited to the conductivity values, we would like to emphasize again that the 
uniqueness of the work here is the unique design of this screening steps based on a 
combination of unsupervised learning and multistep supervised learning. 

 Last but very important is that the ultimate goal of this work is not simply 
optimizing the accuracy of the prediction model, but improving the efficiency to 
screen the suitable ILs for IPEs, which have been verified with excellent 
performance experimentally. As suggested by the reviewer, based on the 
recommendation list of the model, we added the performance based on one non-typical 
IL in our last revision, which further confirms the efficiency of the model. Meanwhile, 
there are still many ILs on the list will deserve more investigation in the future, which 
will be very insightful for other researchers in the field.  

 Above all, we conclude that the model is important and the distinctive R2 value is 
insightful to the field. This also indicates that we can pay more attention to the 
commonly existing bias of database collection and management for future ML 
investigations.  

Modifications to the manuscript and supplementary information:  

(1) We added the following description in the main manuscript about the R2 factor on 
Pages 13-14, Lines 249-256.  

“As shown in Fig. 3d, though only 18 ILs are overlapped between our predicted σ 
and ILThermo database σ at 25 °C (273.15 K), we observe high consistency 
between the predicted results and the ILthermo results, especially for those with 
high σ. The R2 factor is 0.82, and the mean absolute error (MAE) is 1.76 mS cm-1. 
More discussions about the R2 based on this distinctive validation are included in 
Supplementary Note 7. It is also difficult for us to find similar R2 validation 
results in the literature, which compares the unique ILs with external database at a 
single temperature as we reported here. Overall, we conclude that this model can 
perform well in predicting the σ of ILs with high σ.” 

 



(2) We updated the new plot in the Figure 2 of the manuscript and added more 
discussion about the R2 factor as shown above and the following table in 
Supplementary Note 7. 

Table 1.The overlapped ILs between IoLiTec and ILThermo data sources.  

Number Label 

Conductivity (mS cm-1) 
25°C 

Record
1 

Record
2 

Record
3 

1 1-butyl-3-methylimidazolium trifluoroacetate 3.1 3.32 4.55 
2 1-butylpyridinium dicyanamide 8.7 14.8 
3 1-ethyl-3-methylimidazolium methyl sulfate 5.47 6.02 
4 propylammonium acetate 0.43 0.6 
5 1,2-dimethyl-3-propylimidazolium thiocyanate 4.59 
6 1,3-dimethylimidazolium acetate 2.86 
7 1-butyl-2,3-dimethylimidazolium thiocyanate 2.17 
8 1-butyl-3-ethylimidazolium bromide 0.502 

9 1-butyl-3-methylimidazolium dihydrogen 
phosphate 4.19   

10 1-ethyl-3-methylimidazolium trifluoroacetate 10 
11 1-ethylpyridinium dicyanamide 17.18 
12 1-hexyl-3-methylimidazolium dicyanamide 5.17 
13 1-hexylpyridinium dicyanamide 4.6 

14 1-methyl-3-pentylimidazolium dihydrogen 
phosphate 2.43   

15 1-methyl-3-propylimidazolium dicyanamide 17.46 
16 1-propylpyridinium dicyanamide 13.08 
17 1-propylpyridinium tetrafluoroborate 4.01 
18 propylammonium formate 3.6 

 

(d) Comparison of the predicted σ to literature reported σ of the overlapped 17 ILs 
between the test dataset and the ILThermo Database at 25 °C. The red circle is the 
invalid point with large experimental uncertainty. 

 

 



Comment #2: Very accurately the authors noted that the ECW cannot be predicted 
accurately, as it is significantly influenced by the experimental process – and for that I 
completely agree. However, the fact that the prediction of ECW is very accurate for 
some ionic liquids and not for others could be an indication that the model is 
undertrained or overfitted to specific structures. It would be very interesting for the 
authors to prove statistically the nature of this deviation. Also, in Figure R2 they 
should show the number of structures for each ion family studied; for example we see 
very accurate predictions for pyrrolidinium ILs, while not so much for imidazolium. 
How many pyrrolidinium ILs and how many imidazolium ILs have been studied? 

Response: We thank the reviewer for raising these important questions. We believe 
there might be some confusion about the method we obtain for the ECW values. The 
ECW values are not predicted values based on the ML models, but according to the 
HOMO/LUMO theory calculation results. In terms of the uncertainty for different 
cation and anion types, it has been discussed in previous literature.3,4 Overall, the 
inconsistency is highly related to the limitation of this theory for estimating particular 
cation and anion pairs, for example, the C2mimBF4 is usually overestimated with a 
“weak” cation paired with a strong anion. We also emphasize in the manuscript in Line 
313 about the deviation of the BF4 anion. For the cations, the imidazolium type is also 
not very accurate, because the description of the top of the valence band for some of the 
imidazolium-based ILs is not very accurate using the DFT and related approximations, 
especially for the imidazolium ones with BF4 anions.4 However, the overall trend of the 
ECW values is reliable and shows enough accuracy for screening of potential IL in this 
application. Thanks very much for the reviewer’s suggestion about adding the number 
of studied ILs on the plots. We agree that this is very important for us to see the 
distribution of the dataset. There are only 47 ionic liquids with measured ECW in 
IoLiTec. We added the label for each group in the updated plot as below. 

 

 



Modifications to the manuscript and supplementary information:  

(1) We added a comment on (Page 10, Lines 182 – 184) in the manuscript to 
emphasize this deviation for ECW. 

“We observe that the derivations for some cation and anion types are higher. The 
explanation for the uncertainty in groups like imidazolium and BF4 is included in 
Supplementary Note 3.” 

(2) We added the above discussion about the deviation for imidazolium and BF4 type 
ILs in Supplementary Note 3 and updated the plots in the manuscript. 

 

Comment #3: Similarly, in Figure R5 and Table R2 where the authors show the 
average binding energy for the solid and the liquid compounds, the authors need to 
show the statistical significance of their hypothesis. Their hypothesis is that they can 
associate their calculated binding energy with the physical state of the ionic liquid. If 
the population of each category (liquid, solid 1, solid 2, solid 3) was the same, this 
comparison could be done by comparing the standard deviations and see whether they 
are overlapping. However, since the population of each category is different, the 
authors need to perform a t-test to prove the statistical significance of their hypothesis. 

Response: We thank the reviewer for these important suggestions. We highly agree that 
the t-test is a valuable method to further confirm our demonstration. Here, we actually 
use a combination of one-way ANOVA and the two-sample T-test with equal 
variance (The equal variance was confirmed with F-test for all T-tests) to confirm 
our demonstration. The results for the two tests are appended below. We observe a 
significant difference between the groups based on the p-value 0.0045 < 0.05 for the 
one-way ANOVA. However, the null hypothesis for the one-way ANOVA is that there 
are at least two pairs that have significant differences for the means. Thus, as shown in 
table 3, we further performed the t-test for four pairs, including the liquid-solid1/3, 
liquid-solid2/3 and, liquid-solid 3/3 and liquid-solid-all. As shown in the T-test table, 
besides the first pair, the other pairs show significant small p-values < 0.05, thus we 
reject the null hypothesis is that there is no difference between these groups. Thus, we 
can conclude that there is a significant difference between the liquid group and groups 
with two models showing “solid” prediction results. We believe that there will be 
some overlapping between the groups, because the binding energy is not the only one 
important factor to determine the phase, many other factors will also influence the final 

 



state of the ILs. Thus, the ML model will play a very important role to combine every 
factor to give us more reliable results. Similarly, the number in each group has been 
added to the updated plot in the brackets as well shown below. 

 Overall, based on the t-test results, we can conclude that the binding energy is a 
very critical physical property to classify the phase of ILs.  

Table 2. ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 38521.58 3 12840.53 4.77142 0.004459 2.739502 
Within Groups 182997.1 68 2691.134 
Total 221518.7 71         

 

Table 3. The t-test results between the pairs. 
t-test  p-val(one_tail) t_Stat t_Critical df 

Liquid vs. Solid-1/3 0.299 0.53 1.667 48 
Liquid vs. Solid-2/3 0.0057 2.63 1.676 49 
Liquid vs. Solid-3/3 0.00047 3.53 1.678 47 
Liquid vs. Solid-all 0.002559 2.89 1.667 70 

 

Modifications to the manuscript and supplementary information:  

(1) The above two test table results have been added to Supplementary Note 5. More 
description has been added to the main manuscript on Page 12, Line 218 - 224. 

 “To validate statistically, we perform both one-way ANOVA and T-test to 
validate the difference between the liquid cluster as compared to the other three 
solid groups. Both of the hypothesis testing results indicate significant differences 
as shown in Supplementary Note 5. The T-test shows more details and indicates 
significant differences between the liquid and Solid-2/3, Solid-3/3 except for 
Solid-1/3. Thus, we can conclude that there is a significant difference between the 
liquid group and groups with more than 2 models showing solid prediction results.” 

(2) Figure 3a has been updated with the number labels for each group in the main 
manuscript.  

 



Response to Reviewer #2’s Comments 

Statement: In the revised manuscript, authors have addressed all the comments in 
great detail. It is commendable that they carried out experiments with a not-so-typical 
ionic liquid to assess the performance of ionic liquid-polymer electrolyte. On the 
theoretical side, the set of ionic liquids for which quantum calculations were carried 
has been expanded. Although I still believe that the method concerning selection of 
features for machine learning has not been described to permit reproduction of results 
on its own, availability of Github code can alleviate this challenge. 

Overall, the manuscripts combines machine learning to identify ionic liquids with 
suitable ionic conductivity and electrochemical window. Some of the top performing 
ionic liquids have been mixed with PBDT and promising performance of the solid 
electrolyte has been reported for Li-ion batteries. I recommend the publication of the 
manuscript. 

Response: We greatly appreciate Reviewer #2’s comments again. We added more 
description about the selection of features for the ML in the Method section of the 
manuscript, thus ensuring the integrity of the manuscript alone. Additionally, we 
append the GitHub link again for your reference, which has been available to the public 
community since our last revision. We expect to see more insight on the website.   

Modifications to the manuscript and supplementary information:  

(1) We added more details about the selection of ML features on Page 26, Lines 455-
460. 

“Default features based on rdkit.Chem.Descriptors (10) module and 
rdkit.Chem.Descriptors3D (10) module of the cation, anion and cation-anion pair 
were obtained by RDKit. These two modules are representative and contain detailed 
molecular and geometric properties of the molecules. The cation, anion and cation-
anion pair were modeled with the same set of descriptors based on RDkit. The 
remaining 14 features based on Psi4 will be introduced in the quantum chemistry 
calculation as below.” 

(2) The GitHub link is https://github.com/wangyingxie/ILP 
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I thank the authors for replying to my previous comments. I believe this work is now ready for 

publication. 

 



Response to Reviewer #1’s Comments 

Statement: I thank the authors for replying to my previous comments. I believe this work 

is now ready for publication. 

Response: We thank the reviewer for this recommendation. 
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