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Expression, puri�cation, cryoEM analysis and Alphafold modelling of the human Retriever complex. 
(A) Schematic for the biGBac cloning approach used to co-express Retriever in insect cells. (B) Representative Coomassie stained SDS-PAGE gel of the isolation of 
recombinant Retriever from Sf21 insect through a�nity puri�cation of VPS29-6xhis. Eluate fractions were combined and subjected to gel �ltration. (C) Gel �ltration 
pro�le of his-puri�ed Retriever. Retriever was gel �ltrated using a Superdex200 column. Fractions corresponding to A280 peaks were analysed by running SDS-PAGE gel 
and stained with Coomassie. Full Retriever complex corresponds to Peak 1. (D) Native PAGE of puri�ed Retriever. (E) Negative stain electron microscopy analysis of 
Retriever revealed the elongated ‘footprint’-like morphology. Representative 2D classi�cation classes of negatively stained Retriever. Scale bar represents 15 nm. (F) 
Representative motion-corrected micrograph. (G) Representative single particle cryoEM 2D class averages of Retriever. Note that only a ‘front’ view of the complex is 
visible in 2D classes. Scale bar represents 10 nm. (H) Data processing used to obtain a low resolution cryo-EM reconstruction of Retriever. (I) Angular projections of 
Retriever particles used for the �nal 3D reconstruction, indicating preferential orientation of the particle. Heat map calculated in CryoSPARC displaying the number of 
particles per viewing orientation. (J) Directional FSC plots and sphericity values for the Retriever reconstruction. These data were generated using a 3D-FSC server 
(https://3dfsc.salk.edu/). (K) AlphaFold2 prediction of Retriever with associated PAE plots for the top 2 ranked models.

Methods S1. 
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Expression, puri�cation, and characterisation of recombinant COMMD complexes in E. coli. 
(A) Design of co-expression vector for isolation of COMMD complexes from E. coli. Left gene cassettes were ordered from Gene Universal in pUC57 vectors and sequentially 
cloned in a pST39 vector for simultaneous expression. This vector included 3 proteins with a�nity tags COMMD1-FLAG, COMMD5-StrepII, and COMMD10-His. From this 
initial vector, 4 vectors were generated that contained only a single His tag on COMMD1, COMMD2, COMMD5 and COMMD10. Right shows pRSF-Duet-1 vectors that express 
the individual COMMD subcomplexes. (B) Puri�cation of protein using di�erent His tag locations lead to the proteomic identi�cation of subcomplex A, subcomplex B, and 
subcomplex C. (C) This result was also con�rmed by western blot with only COMMD5 and COMMD10 His able to enrich for COMMD9. (D) Mass photometry con�rmed that 
the masses of subcomplexes generally agreed with the expected values (A, 74 kDa (74); B, 86 kDa (88); C, 93 kDa (92)). (E) Comparison of the AlphaFold 2 (AF2) prediction 
shows good agreement with the 3.3 Å crystal structure of subcomplex C.
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Expression, puri�cation, and characterisation of recombinant CCC complexes in insect cells. 
(A) Schematic of the engineering of pbiGbde-CCC from Gibson assembly of individual polygene cassettes. (B) Coomassie and western analysis of strep-actin a�nity 
puri�ed human CCC complex from baculovirus infected insect cells. (C) Gel �ltration of the a�nity puri�ed CCC complex and western analysis of the puri�ed human CCC 
complex. (D) Native PAGE of puri�ed CCC complex. (E). Mass spec analysis of puri�ed CCC complex establishing the presence of all twelve proteins. Data is from one of two 
independent experiments. (F) Representative motion-corrected 10 Å lowpass �ltered micrograph of vitri�ed, cross-linked CCC complex on graphene oxide coated 1.2/1.3 
Quantifoil™ grids. Scale bar represents 20 nm. (G) Single-particle 2D cryo-EM classes, generated in cryoSPARC, revealing the globular, ring-like structure of the CCC complex. 
Scale bar represents 10 nm.



Cryosparc data processing flow chart
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Cryo-EM data analysis of the CCC complex in cryoSPARC. 
Flow chart of the data processing strategy using CryoSPARC to obtain a 3.12 Å 
reconstruction of the CCC complex. Curved arrows represent iterative rounds of 
classi�cation and class selection. Red boxes and text indicate inputs into the 
subsequent RELION4.0 processing strategy.



RELION 4.0 data processing flow chart
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Cryo-EM data analysis of the CCC complex in RELION4.0. 
(A) Flow chart of the data processing strategy using 
RELION4.0 to obtain a 3.53 Å reconstruction of the CCC 
complex. Red text indicates inputs from processing the 
data in CryoSPARC. (B) Representative snapshots of 
cryoSPARC and RELION reconstructions from ChimeraX. 
Whilst the cryoSPARC reconstruction has a core of higher 
resolution, the RELION reconstruction contains better 
resolved densities for �exible regions. 
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CCDC22 and CCDC93 heterodimeric coiled-coil share similarity with various IFT subunits of the intra�agellar transport machinery. 
(A) AlphaFold2 models of full length CCDC22 and CCDC93 (top) as well as truncated CCDC22 and CCDC93 in complex with Retriever (bottom) show the formation of a highly 
conserved coiled-coil structure able to interact with Retriever. (B) Highlights the similarity between CCDC22 and CCDC93 and IFT proteins. Each of these proteins contain a 
calponin homology (CH) domain (red) and an extended coiled-coil region. Previously CH domains have been shown to bind both actin and microtubules which could 
suggest a similar function for the CH domains of CCDC22 and CCDC93.



The COMMD1-10 ring is tethered between the CCDC proteins and Retriever, binding extensively to the linkers between 
the CCDC CH domains and the coiled-coil regions. The CH domain of CCDC22 binds to the C-terminal coiled-coil region 
adjacent to Retriever, and this maintains the overall complex in a relatively compact state. The COMMD1-10 ring would 
be expected to be relatively �exible in its orientation, essentially free to rotate around the �exible pivots on either side. 
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Work�ow for assembling the complete Commander complex combining experimental structures and AlphaFold2 modelling. 
A �ow chart showing the various methodologies used to assemble the Commander complex. We used a combination of AlphaFold2 modelling, X-ray crystallographic 
structures and cryoEM to establish models of Retriever and the CCC complex. Using AlphaFold2 it was possible to model CCDC22 and CCDC93, which act as a bridge 
between the two complexes. The �nal model reveals that the COMMD1-10 ring is tethered between the CCDC proteins and Retriever, binding extensively to the 
linkers between the CCDC CH domains and the coiled-coil regions. The CH domain of CCDC22 binds to the C-terminal coiled-coil region adjacent to Retriever, and this 
maintains the overall complex in a relatively compact state. The COMMD1-10 ring would be expected to be relatively �exible in its orientation, essentially free to 
rotate around the �exible pivots on either side. As outlined in the text, all key interfaces have been experimentally validated by mutagenesis, co-immunoprecipitation 
and cellular rescue studies.


