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Materials and Methods

Data generation

Generation of canonical gene set

All coordinates used in the paper refer to human genome build UCSC hg38 / GRCh38, including
the coordinates for variants in other species. Protein-coding DNA sequences and multiple
sequence alignments of 99 vertebrate genomes with human were downloaded from the UCSC
genome browser for the hg38 build.

(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz1 00way/alignments/knownCanonical.ex
onNuc.fa.gz) (112, 113). For genes with multiple canonical gene annotations, the coding
transcript with the highest conservation score across the MSA was selected. In total, 19,158
transcripts were selected to represent the canonical gene sets used for all the analyses in this

paper.

Human polymorphism data

We downloaded human polymorphism data from genome Aggregation Database v2.1.1, which
collected the whole-exome sequencing data of 125,748 individuals
(gnomad.exomes.r2.1.1.sites.vctf.bgz file) and the whole-genome sequencing of 71,702
individuals from gnomAD v3.0 (http://gnomad.broadinstitute.org/) (28, 29, 125). For the
subsequent analyses using gnomAD dataset, we used a merged variant set between gnomAD
WES and WGS. We also collected variants from 65K TOPMed WGS (77, 78) and 200K UK
Biobank WGS (79, 80) and merged those with gnomAD (after removing 2,404 TOPMed
samples from gnomAD). We excluded variants that failed the default quality control filters as
annotated in VCF files or fell outside canonical coding regions. To avoid effects due to balancing
selection, we also excluded variants from the extended MHC region (chr6: 28,510,120 —
33,480,577) for the subsequent analyses. In total, we obtained 126,873 unique common
missense variants (allele frequency > 0.1%) and 7,306,297 unique rare missenses (allele
frequency < 0.1%), which were included in the benign set for training of primateAl-3D. We also
performed mutation rate correction on gnomAD variants following our previous paper (/7) for
missense : synonymous ratio analyses.

Primate sequencing data

We sequenced and aggregated the whole genomes of 809 primate samples across 233 primate
species, which included samples from Great Ape Genome project (/9) and other previous studies
(20-26, 126). Among these, 783 samples passed quality evaluation and 26 samples failed QC.
The major challenge of variant calling of these samples is that fewer than 60 primate species
have genome builds available and the majority of samples are lack of reference genomes.
Therefore, variant calling is performed using reference genomes from the closest species of
primate samples. We aligned the sequencing data to 32 high-quality genome references (/10),
most of which are derived from long-read sequencing technologies. We adopted multiple hard
filtering steps to remove low quality variants (//0). As variants that are identity-by-state with
human are of primary interest, we derived lift-over chain files between hg38 and each primate
reference species from the multiple species alignment of 50 primate species and 8§ mammal
species (/10) and lifted over the variants of primate samples to hg38. We examined the quality
of coding variants by evaluating several QC metrics, including the number of stop-gained
variants called per sample, the missense : synonymous ratios and the number of indels per
sample.
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Machine learning classifiers of variants

Due to the lack of reference genomes for the majority of primate species, we conducted a
synthetic experiment to evaluate the impact of mapping to reference genomes of closely-related
species on variant calling. We took a gorilla sample and mapped it to both hg38 and the gorilla
genome (/10). Mapping to gorilla and lifting-over to hg38 produced 6.6M variants after hard-
filtering; while mapping to hg38 resulted in 45.4M variants. After hard filtering of low-quality
variants and removing 38M fixed substitutions between hg38 and the gorilla genome, we
observed 4.9M variants were shared between the two sets and 801.3K variants were called
against hg38 but not called against gorilla. These variants are mostly false positives due to
sequencing reads that were mapped to an incorrect region of the human genome or to regions of
the human genome that are duplicated compared to the gorilla genome. It is essential to reduce
these false positive variants substantially.

We developed machine learning classifiers to distinguish these false positive variants from the
high quality variants for each primate sample. To train the classifiers, we used multiple sequence
features per variant: GC content, GC skewness and local composition complexity within +/-
100bp of variants (/27). In addition, we extracted variant features directly from VCF files, such
as allelic count, mapping quality, the p-value of Fisher's exact test to detect strand bias, variant
quality by depth, the symmetric odds ratio to detect strand bias, and genotype quality. We
included the read depth (DP) of the variant normalized by the mean coverage of the primate
sample and the fraction of alternative allele read depth out of the variant coverage. We observed
that existence of indels nearby substantially influences the quality of variants called, thus we
indicated indels within +/- 5bp and 10bp of variants. We also considered variant context features,
including the mean coverage of the flanking regions around the variant normalized by the mean
coverage of the primate sample, e.g., within +/- 100bp or +/- 500bp of the variant. Additionally,
we observed that false positive variants often reside in poorly-mapped regions, which tend to
accumulate overcalled variants. We counted the number of heterozygote SNPs within the
flanking regions of variants (within +/- 100bp or +/- 500bp), which are normalized by the
median counts of variants within the same length regions of the sample. Likewise, we included
the normalized counts of alternative homozygote variants within the flanking regions of variants.

We labelled the 801.3K false positives as poor-quality variants and the remaining 44.6M variants
as good-quality, including the 38M fixed substitutions. We randomly sampled 80% of the variant
set for training and the rest 20% for testing. Various classification methods were evaluated,
including random forest, logistic regression, and multi-layer perceptron network. Random forest
classifiers outperformed other methods with higher area under receiver operating characteristic
(ROC) curve. We then independently trained six random forest classifiers using six gorilla
samples by repeating the steps above and generated predicted scores for each variant using the
six classifiers. The averaged predicted scores are denoted as the RF score of the variant. We
chose a stringent cut-off of <0.05 for RF scores to minimize the effect of poor-quality variant
calling on the ClinVar and other analyses.

We next evaluated the impact of applying the trained RF classifiers to other gorilla samples,
which also showed comparable area under ROC curve. We then assessed whether the trained RF
classifiers can be applied to other species pairs. Because reference genomes are unavailable for
the majority of our species, we cannot directly assess the number of false positives when
mapping to the close species. Instead, we designed several experiments to evaluate the accuracy
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of the gorilla-trained classifier that make use of the reference genomes we had in hand. First, we
mapped a gorilla sample to the chimpanzee genome and applied the classifiers previously trained
between gorilla and human. Second, we chose another pair of primates, rhesus macaque and
baboon, to test the performance of the same classifiers. Last, we took human samples from an
independent data set, Platinum Genomes project (/28) and mapped those to chimpanzee and
gorilla genomes. We also trained a second random forest classifier using the human and
chimpanzee pairs and tested the performance of trained classifiers on human and gorilla pairs.
All the results show the classifiers trained on one pair of closely-related species are generally
applicable to another pair of closely-related species with comparable area under ROC.

Cascaded variant filtering

In addition to random forest filtering, we performed extra variant filtering steps. First, because
we are interested in learning about pathogenicity of coding variants in humans, we removed
variants that fell in codons where neither the reference nor the alternative allele resulted in a
codon that matched the human codon at that position. Interestingly, this codon-match indicator
also naturally reflects the clustering of these primate reference species into four major groups,
great apes, Old World monkeys, New World monkeys and lemurs / tarsiers, as shown in the
heatmap of Fig. S1A. Requiring codon match between primate and human genomes eliminated
more than 50% of stop-gained variants in our primate dataset.

Next, we applied a series of gene-specific filtering steps to reduce the poor-quality primate
variants in samples of each primate reference species. We excluded variants falling in primate
transcripts carrying annotation errors compared with human transcripts, such as those with
incorrect start codons or splicing donor and acceptor sites, which implies that transferring the
human annotation directly to primates may have been problematic for these transcripts. We also
removed variants in primate transcripts carrying in the middle of the sequence stop-gained
variants that were not observed in the list of gnomAD protein-truncating variants.

We compared the distribution of variant random forest scores of a gene with the exome-wide
distribution of variant RF scores and removed all variants in genes with a skewed distribution
(Wilcoxon rank sum test p-value < 1e-20). We also merged the variants from all the samples
mapped to a specific reference species and performed the Hardy-Weinberg equilibrium test for
variants in primate reference species with at least seven samples. We then removed variants in
the genes that carry any variants with excessive heterozygosity which also deviate from the
Hardy-Weinberg proportions with p-value < 0.05.

In order to identify and exclude duplicated regions in primate genomes, we developed a unique
mapping filter. First, we removed low quality sequencing reads of primate samples by filtering
out reads with mapping quality < 20 from sample BAM files; then, we mapped the remaining
reads to both hg38 and the relevant primate reference genome. We divided all reference genomes
into 1kb bins and identified the best-mapped region in primate genomes as where the largest
fraction of reads from one hg38 1kb bin are mapped (if reads from one hg38 1kb bin are mapped
to two consecutive primate 1kb bins, the two bins are merged into one region). The fraction of
reads from the hg38 bin that fall into the best-mapped region of the primate genome is the unique
mapping score for that bin for each sample. By averaging the unique mapping scores across all
the samples mapped to a specific reference species, we generated the unique-mapper (UM) score
which applies to all the variants of the reference species that fall in the specific 1kb hg38 bin. For
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ClinVar analyses, we chose a stringent cut-off of >90% for this score to ensure the one-to-one
mapping between human and primate genomes.

These variant filters effectively reduced the number of stop-gained variants per primate sample
to be close to the average number of stop-gained variants of human samples from Platinum
Genomes project (/28) (shown in Fig. S1B). The missense : synonymous ratios (MSR) gradually
decreased after applying each of these filtering steps (Fig. S1C). In contrast, the missense :
synonymous ratios of those excluded variants tend to be well above 1.0, implying they are either
potentially deleterious or unreliably called. In addition, low-quality indels have also been
substantially reduced (Fig. S1D).

Mammal polymorphisms

For mammal polymorphisms, we inherited the dbSNP variants of orangutan, rhesus, marmoset,
cow, pig, mouse, goat, chicken and zebrafish from our previous paper (/7) and lifted those over
to hg38. We then excluded variants that failed codon-match requirement between hg38 and other
species genomes. 109,732 unique missenses among the good quality variants of orangutan,
rhesus, and marmoset were included in the training data set of PrimateAI-3D.

For each of primate, mammal and other vertebrate species, we computed a depletion metric
following our previous paper (/7), which measures the decrease of MSR of gnomAD common
variants which are identical-by-state with other species, compared to the MSR of orthologous
rare variants (Fig. S5).

Evaluation of fraction of common variants in primate polymorphisms

Due to that the averaged sample size per primate species is 2.5, we investigated the impact of
small sample size on the fraction of common variants (allele frequency > 0.1% in each primate
species) in the primate polymorphisms.

We then used the gnomAD allele frequencies of human common variants to simulate allele
frequency spectra of primates at various sample sizes. For each primate species, we sampled
genotypes according to gnomAD allele frequencies assuming the sample size is identical to that
of the primate species. The fraction of gnomAD common variants discovered was averaged
across 100 simulations for that specific sample size. We pooled the variants across the 233
simulated primate species and estimated the fractions of common variants for missense and
synonymous variants separately, which are shown as allele frequency spectra in Fig. S2.
According to this simulation, it is estimated that 95.1% of observed variants (>95.1%) are
common variants (>0.1%), ~ 3% of synonymous variants in primates are rare (allele frequency <
0.1%) while ~ 94% of primate missense variants are common. Since the human allele frequency
spectrum would be expected to have a larger fraction of rare variants than most other primate
species due to the recent exponential expansion of human population size, the actual proportion
of primate variants that are common (>0.1%) may be substantially higher than the 95.1% we
estimated from simulations with gnomAD data.

From this simulation, we also obtained the average numbers of common synonymous variants at
various sample size levels, which are used in the saturation analysis.

Generation of training variant set for PrimateAI-3D
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For the benign variant set, we first included 126,873 unique common missense variants from
human population data. To generate the primate polymorphism benign set, we relaxed our
filtering criteria as deep learning algorithms naturally tolerate noise and benefit more from larger
amounts of training data. We still removed variants falling in poor-quality genes or genes with
poor annotations. However, we relaxed the unique mapper score cut-off to > 60% and the
random forest score to < 0.17 and obtained 4,315,321 unique missense variants from primate
sequencing. After merging human and primate missenses with missenses from dbSNP primates
and variants from study on chimpanzee and bonobos (/29), we obtained 4,514,581 unique
missenses for the benign set in total.

All possible missense variants were generated from each base position of canonical coding
regions by substituting the nucleotide at the position to the other three nucleotides. We excluded
variants falling in start or stop codons, resulting in 71,166,190 all possible missense variants.
After removing 4,514,581 benign variants and 6,207,640 human rare variants, 60,443,969
variants with unknown significance were left.

ClinVar analysis of polymorphism data for human, primates, mammals, and other

vertebrates

To examine the clinical impact of variants that are identical-by-state with primate species, we
downloaded the release variant summary for the ClinVar database
(ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vef GRCh38/variant 20210328.vcf.gz released on 28-
March-2021) (4). The database contained 872,942 variants on the hg38 genome build, of which
753,511 were single nucleotide variants. Synonymous and stop-gained variants in the ClinVar
database were excluded. Next, we required variants to have two-star review status or above,
which includes “criteria provided, multiple submitters, no conflicts” and “reviewed by expert
panel”. We then removed those with unknown significance or conflicting interpretations of
pathogenicity. We merged variants with Benign or Likely Benign annotations into a single
category, as well merging variants with Pathogenic or Likely Pathogenic annotations. After these
filtering steps, there were a total of 7,017 variants in the pathogenic category and 12,229 variants
in the benign category (Fig. 1C).

We analyzed ClinVar variants that were identical-by-state with variation in primates, mammals
and other vertebrates and compared to those present in human population, such as gnomAD
database. A summary of the numbers of benign and pathogenic ClinVar variants that were
present in great apes, Old World monkeys, New World monkeys, lemurs and tarsiers, more
distant mammals, birds and fish is shown in Fig. 1F.

Saturation of all possible human synonymous mutations with increasing number of primate
populations sequenced

We performed simulations to investigate the expected saturation of all ~22M possible human
synonymous mutations by sampling common variants present in the 521 extant primate species.
We considered various sample sizes for primates, including 10, 20, 50, 100, 200, 500 and 1000.
In the previous section, we estimated the numbers of common synonymous variants observed in
different sample sizes of humans via simulation.

For each primate species with each sample size, we simulated two times the number of common
synonymous variants observed in human (allele frequency > 0.1%), because humans appear to
have roughly half the number of variants per individual as other primate species (/30). We

7
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assigned simulated variants based on the observed distribution of human common synonymous
variants in the 192 trinucleotide contexts. For example, if 2% of human common synonymous
variants were from the TAG>TCG trinucleotide context, we would require that 2% of the
simulated variants were randomly sampled TAG>TCG mutations. This has the effect of
controlling for the effects of mutational rate, genetic drift, and gene conversion bias, using
trinucleotide context. The curves in Fig. S21 show the effects of varying the number of species,
and the number of individuals per species on the saturation of the ~22 all possible human
synonymous variants in the genome. With a small sample size of 10, more than 50% of human
synonymous variants will be present in the 521 primate species. As the sample size per primate
species increases to 1000, about 80% of human synonymous mutations will be covered if we can
sequence all the extant primate species. With 521 primate species, all CpG transitions (100.0%)
and non-CpG transitions (96.6%) would be observed, but only 62.3% of transversions would be
covered, due to their much lower mutation rates. We note that this analysis assumes each species
is a homogeneous population, which would underestimate the amount of variation due to
subpopulation and subspecies structure; hence, saturating all transversions may still be likely
within the 521 extant primate species.
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Derivation of primate mutation rates and observed/expected ratios per gene

We estimated primate mutation rates using intronic sequences 50-200bp away from exons, where
the impact of selection and other factors is minimal. We slid a window of 3 nucleotides along the
intronic sequence in steps of one nucleotide and for each primate reference genome counted the
number of each of the 64 possible trinucleotides. Next, we counted the number of variants with
each of the 192 trinucleotide mutation contexts that were observed in all samples mapped to that
reference genome. The ratio of the observed occurrences of each trinucleotide mutation context
to the number of possible trinucleotides across the reference genome served as our estimate of
the mutation rate.

Using these mutation rates, we computed the expected number of synonymous variants per gene
for each primate reference species. We normalized our mutation rates to ensure that we expect
the same total number of synonymous variants as are observed across the genome, although they
may be distributed in different genes than are observed. To do this, we summed up the intronic
mutation rates across the 192 trinucleotide contexts along the sequence of each gene and
normalized this value by the total mutation rate of the whole exome. Multiplying the normalized
mutation rate per gene with the total number of observed synonymous variants in that same gene,
we generated the expected number of synonymous variants per gene. We then assessed the
quality of primate mutation rates by computing the Spearman correlation between the observed
and expected numbers of synonymous variants. The Spearman correlations vary from 0.295 to
0.925 among primate reference species due to the numbers of samples mapped to reference
species range from 1 to 169.

Next, we evaluated multiple approaches to aggregating those mutation rates across primate
reference species. First, we took the median of mutation rates across all the 31 non-human
primate reference species. Second, as the mutation rate of one species is in practice interpreted as
the probability of observing one mutation at a base position with one specific trinucleotide
context, we computed the probability of observing at least one mutation across 31 reference
species via a Binomial model for a specific base position with a trinucleotide context. Third, we
calculated the same probability as the second approach except that at the base position that failed
codon-match requirement, the mutation rate was assigned to zero. Last, we selected nine primate
reference species with more than 20 samples and the Spearman correlation between the observed
and expected numbers of synonymous variants > (.75, including Aotus nancymaae, Ateles
fusciceps, Cebus albifrons, Cercopithecus mitis, Lemur catta, Macaca mulatta, Pithecia pithecia,
Rhinopithecus roxellana, and Papio anubis. We took the median of mutation rates generated
from these nine species to represent the primate mutation rates.

For each set of aggregated mutation rates, we generated the expected numbers of synonymous
variants per gene across all the primate samples and took the ratio between the observed and
expected numbers of synonymous variants to produce the observed/expected (O/E) ratio of
synonymous for each gene. We multiplied each type of aggregated primate mutation rates with
their specific O/E ratios of synonymous variants of genes to produce a new set of mutational
probabilities of variants. Next, we evaluated the four sets of aggregated mutation rates and these
four sets of adjusted mutational probabilities using the Spearman correlation between the
mutational probability of a variant and the indicator of its presence in primate variants or not
across all possible synonymous variants in the exome. The median mutation rates of nine primate
species adjusted by the O/E ratios of genes achieved the highest Spearman correlation of 0.414.
These adjusted primate mutation rates also outperform directly applying gnomAD mutation rates
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(29, 47) with the Spearman correlation of 0.367, implying that primates have different mutational
preference from humans.

Likewise, we computed the expected number of missense variants per gene across all primate
species using this optimal set of primate mutation rates, which was normalized using the
identical correction factor of synonymous variants (Fig. 2B). We computed the O/E ratios for
missenses per gene (Fig. 2C). We then multiplied this best set of primate mutation rates by the
O/E ratios of synonymous to generate mutational probabilities for each of all possible missense
variants, which are used to select the matched set of variants with unknown significance for the
PrimateAI-3D training.

In comparison with human data, we adopted the gnomAD mutation rates (29, 47) and variants,
and computed the observed and expected numbers of synonymous and missense variants using
the similar approach, as well as the O/E ratios of genes for synonymous and missense variants,
respectively, shown in Fig. 2B and 2C.
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Identifying differential selection between humans and primates

We sought to develop a model to 1) quantify the broad-scale similarity of natural selection
between humans and primates and 2) identify genes evolving subject to remarkably different
selective pressure in humans compared to primates. Because our strategy of mapping to
divergent reference genomes means that some observed variants within a primate species are
actually fixed differences between that species and the reference to which it was mapped, we
based our estimates of selection on the number of segregating missense variants in each gene per
primate species (i.e., we excluded variants that were carried on all chromosomes sampled from a
given species). This ensures that we do not underestimate selection in the primate samples,
because fixed variants are more neutral than segregating variants. Nonetheless, the number of
segregating missense variants is shaped in complex ways by both sampling and demographic
forces, we took a two-pronged approach to tackling this question. First, we built an explicit
population genetic model to model selection across primates. Second, we developed a Poisson
Generalized Linear Model to robustly detect genes that are differentially selected between
humans and primates.

Explicit population genetic model of selection

Our explicit population genetic model proceeds through two phases: first, we model the counts
of synonymous segregating sites to learn a neutral background distribution of mutation rates per
gene per species. Then, we apply that neutral background distribution to estimate the average
selection per gene across species.

General modelling framework

We first established a neutral baseline for each species by fitting a model to the segregating
synonymous variants in each species. We employed the Poisson Random Field model, under
which the observed number of segregating sites is a Poisson random variable, with the mean
determined by mutation, demography, selection, and sample size (34). For simplicity, we
assumed an equilibrium (i.e. constant) demography for all species besides human; for human, we
used Moments (57) to find a best fitting demographic history based on the folded site frequency
spectrum of synonymous sites.

With a best fitting demographic model in hand, we let X; 4, be the number of mutations of type k
(k = 0issynonymous, k = 1 is missense) in gene g of species i, 0;; = 4N; |, be the per site
population scaled mutation rate, and Ly be the number of sites of type k in gene g. We then use
dadi (50) to compute pi(yig) which can be interpreted by noting that 6;,p;(y) is approximately
the probability that a site in gene g with population scaled selection coefficient y;; = 2Njs is
segregating in a sample from species i.

Then, the distribution of X; j; is Poisson with mean Bingkpi(yig), ie.

(eingkpi (Yig))x

e—9ingkpi(Yig)_
x!

P(Xigk = X|9ig) =

Background neutral model to estimate per gene mutation rates

We anticipated that due to a combination of true variation in mutation rate and data quality
across the genome, different genes would have a different effective per base-pair mutation rate.
Although we could have used the estimated mutation rates from earlier work, we wanted to
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create a robust estimate with very few parameters per species. To accommodate this, we adopted
a Gamma distributed prior on 8,4, and applied it to synonymous sites (i.e., k = 0,y;; = 0) and
integrated over it to result in a scaled negative-binomial distribution.

elngopl(O) Ba
P(Xlgo —xo) f N ) e Biglgopi(0) <1"( )elgoc 1,-B0ig )delg

Lgopi(o) Ba F(O(+X)
Yot T (g4 1 op,(0)

a+Xxg

To account for the impact of GC content on mutation rate, we parameterized the gamma
distribution mean as a log-linear function of GC content,

log(ug) =my + mgcGCy,

log(o) = sd,.
from which we can compute gene-specific a and 3 parameters,
Hg
O(g ?
Hg
Bg - ;

We then optimized the parameters m,, mg;, and sd, by maximum likelihood in each species to
learn the background distribution of mutation rates.

Given our optimized parameters, we can compute a posterior distribution on the mutation rate
per gene,

(Xg +Xo
(Bg + Lgopi(o)) eocg+xo—1e_(

_ Bg"‘LgOpi(O))aig
=xy) = )
(g0 = %o) (o + x,) ig

P(0;,]X;

which is simply a gamma distribution with parameters o' = ag + x, and Bg' = Bg + LgoPi(0)-
Fig. S7A shows a histogram of the average population scaled mutation rate across species.

Modelling selection across species

With the parameters my, m¢., and sd, in hand, we can parameterize the distribution of the
number of segregating nonsynonymous sites given a selection coefficient. To generate the
expected number of segregating sites given a selection coefficient, we used dadi (50) to generate
pi(y) across a grid of population scaled selection coefficients, from 2Ns = 0 to 2Ns = 10000. We
assumed further that every nonsynonymous mutation in a gene shares the same population scaled
selection coefficient, y;g .

We then took the posterior distribution of 8;, estimated from the synonymous sites as the
distribution of mutation rates for nonsynonymous sites to obtain
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P(Xigl = X1 IYig)

X1 ag+xg
= _foo (einglpi(Yig)) e~ Oiglg1Pi(vig) (ﬁg M Lgopi(())) .ag+x°_1e_(ﬁg“g"pi(o))eig do;
o x;! T'(a + x,) ig 9
a+xg
_ Lgipi(vig) (Bg + Lglpi(o)) Ty + x0 + %)
o x! [+ x)

)(Xg+xO+X1'

(Bg + Lgopi(o) + Lglpi(Yig)

Finding average selection coefficients via an EM-like procedure

Noting that from population genomic data, the only thing that can be explicitly determined is the
population-scaled selection coefficient, yig = 2N;s;4, we devised a two-step procedure to control
for demographic differences across species (i.e., differences in N;). In principle y;4 can be
different across species due to differences in either N; or s;4, but we assumed that for the
majority of genes, s;; = s, is identical across species, and the differences in y;, are driven
primarily by differences in N; . Our procedure can then be thought of as analogous to an EM
algorithm, in which first we estimate y;, separately for each species and gene, followed by
estimating N; by assuming that s;, is identical across species, and finally using our estimated N;

to produce estimates of s,.

First, we inferred y;q for each gene and species separately. This resulted in some information
loss, because in species with small sample sizes, there may be many genes with 0 segregating
missense variants, and hence result in an inference of an MLE y;, = —o0. Nonetheless, for each
species we obtained thousands of genes with an estimate of yjg. To control for some variation in
estimated y across species, we additionally restricted to genes with y;z between 10 and 1000.

We then assumed that for almost all remaining genes (1000-10000 depending on the species), the
difference in estimated yjg = 2N;s;, between species is due to the N_i being different, and that

Sig = S4 is identical across species for gene g. For each gene, we averaged estimated y;4 across
species to obtain ¥, =~ 2Ns,, the average population scaled selection coefficient for gene g.
Then, we computed R;; = Y;4/Y4, which is an estimator of N;/N because y;, /Y4 =

2N;sy/ 2N Sqg = N;/ N. To account for noise among the outliers and the fact that Sq 18 not truly
identical across species, we estimated a single R; value per species by taking the median of R;,
across all genes in species i.

Finally, we grouped species together to re-estimate y, by substituting y;; = R;Yg, which
provides an approximation of y;, from ¥, via R;yg = N;/ NZng = 2N;sg. Then, we maximized

the likelihood
L(7e) = | [P(kiga[Ri7z)

iel
to find the maximum likelihood estimate of ¥ across a group of species I. In the following, we

take I to be either the set P of all non-human primates, or I to be the singleton set H containing
just humans.
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Fig. S7B shows our estimated Y, as a function of the pooled missense : synonymous ratio among
primates. The strong negative correlation is expected, as genes with higher missense :
synonymous ratios have smaller estimated selection. To convert our estimates of Y to estimates

of the selection coefficient, s, we divided by 2*10,000, which we take to be a typical effective
population size among primates.

Comparing human and primate selection

Next, we compared human and primate constraint using this modelling approach. First, we
computed a distribution of fitness effects (DFE) across genes in humans and primates by plotting
a histogram of selection coefficients per gene in both our grouping of primates and our human
data (Fig. S7C). We note that the much larger sample size of the human data compared to the
primate data results in fewer outliers of strong selection, because almost every gene has missense
variants in the human data, whereas in the primate data there are many genes observed with few
to no primate missense variants.

To identify genes where human constraint is different from non-human primate selection, we
developed a likelihood ratio test to test whether s is significantly different between human and
other primates by testing if Y is different between human and primate. Under the null model,
Ygh = Yg, S0 the likelihood is

1) = ([ TPt n)) x Pt 1)
iep

where P is the set of non-human primates and the subscript h indicates human data. Under the
alternative hypothesis, yng # Y4 so the likelihood is

i) = ([T POsR) ) x PGt
iep
This then forms the likelihood ratio test statistic,

A=2(logL, —logL,).
Note that under the null hypothesis y,4, = Y4 we have that L; = L, and hence this represents a
nested hypothesis test. Thus, under the null hypothesis that y, = ¥, the test statistic follows a x?
distribution with one degree of freedom, A ~ x2(df = 1), by standard likelihood ratio theory.

Intuitively, this test determines whether sy, is significantly (P<0.05) different from s,, because
we already corrected for the effective population size of humans using Ry,. Specifically, Ryypg =
Nh/NZNShg = ZNhShg Whlle Rhy_g = Nh/NZNSg = ZNh_S , SO that ithg * E, then Shg * Sg.

Fig. S7D shows the relationship between v, and vy 4, showing that there is a strong correlation.
Colored points indicate genes that are significant according to the combined significance test
described in the main text and subsequently.

Comparison with alternative approaches

We next assessed whether our population genetic modeling improved the correlation of selection
estimates of our primate data with previous gene-constraint metrics in humans, including pLI
(28) and s_het (/11). We found that explicitly modeling the selection coefficient improves the
correlation with these constraint metrics over the raw missense : synonymous ratio when using
either primate data or human data (Fig. S8).
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Testing the model via simulation
To verify the performance of our model, we performed population genetic simulations.

We generated data in line with our human and primate data by simulating data for 15000 genes.
We used the number of synonymous and nonsynonymous mutations possible given the human
reference genome for each gene, to create a realistic distribution of polymorphism in our
simulations. For each gene, we drew the selection coefficient from a gamma distribution with
mean 0.01 and standard deviation 0.01. We also drew the mutation rate per basepair for each
gene from a gamma distribution with mean 5x10® and standard deviation 1x10-%. We then
sampled from 213 species, with sample sizes matching those in our real primate data. For each
species, we drew an effective population size from a gamma distribution with mean 10,000 and
standard deviation 5,000.

To generate data for each species, we sampled from the Poisson random field model.
Specifically, given an effective population size, mutation rate, sample size, and selection
coefficient, the counts of sites from each gene in each species are sampled from a Poisson
distribution as in the previous section. We then ran the inference pipeline inference on the
simulated data, and Fig S9A shows that our inferred selection coefficients are very strongly
correlated with the simulated selection coefficients, although they are somewhat upwardly biased
for very weak selection of roughly s ~ 1/10000, which is expected based on the fact that the
population scaled selection coefficient would be less than 1 on average, and thus have only
minimal effects on segregating polymorphism. This shows that our model infers selection
precisely from genome-scale data.

We then tested the power and calibration of the likelihood ratio test by simulating 2000 of the
15000 genes as having a different selection coefficient in humans compared to the rest of
primates. To simulate the change in selection coefficient, we drew a random factor with a log-
uniform distribution between 0.01 and 100 and multiplied the primate selection coefficient by
that factor for each of the 2000 genes. We then performed the inference pipeline followed by the
likelihood ratio test, with p-values corrected for multiple testing by the Benjamini-Hochberg
procedure, as in the main text. Fig S9B shows that we obtain good control of the false discovery
rate for genes with no change in selection between humans and primates, while obtaining greater
power for larger shifts between human and primate.

Poisson generalized linear mixed model

Our population genetic model successfully modelled the similarity of selection between primates
and humans, which we wanted to confirm with a less explicit model. To do so, we used a
Poisson generalized linear mixed model, inspired by the model used in SnIPRE (/37). We
pooled polymorphic synonymous and missense mutations across all primates, and compared the
pooled MSR to the MSR of human variants. Because these two quantities are related in a non-
linear way, we used a two-step process. First, we fit a Poisson GLMM to the pooled primate data
to estimate the depletion of missense variation at each gene. Then, we fit a second Poisson
GLMM to the human data, controlling for the primate depletion estimates. This allowed us to
estimate how much more or less depleted for missense variation each human gene is compared to
what is expected based on primate genes. To control for noisily estimated missense :
synonymous ratios, we only fit the Poisson GLMM to genes that had an average unique mapper
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score > 0.9 across all primate species and for which we had at least 100 synonymous variants
pooled across primates.

Primate GLMM

To model primate variation, we set up a simple model in which there is a background mutation
rate and the impact of GC content as fixed effects, and random effects accounting for gene-
specific mutation rates and the depletion of nonsynonymous variation. Recalling from the
population genetic model that X; g, is the number of mutations of type k (k = 0 is synonymous,

k =1 is missense) in gene g of species i, we summed over all non-human primates to get the
total number of variants of type k in gene g across non-human primates,
P _
K50 = ) Ko
iep
where P is the set of non-human primates, and the superscript (P) indicates that the value is over
non-human primates and is not an exponent. Then, we modeled X éi) as a Poisson GLMM,

Xéi) ~ Poisson(uf;,?)

where

log(ngr) = B + BGC, + 857 + e,k + log(Lyy)
with B(()P) being a fixed effect corresponding to background mutation rate, ng) being a fixed
effect that corresponds to the impact of GC content, SEIP) a random effect corresponding to the
discrepancy between the mutation rate of gene g and the genome-wide background, €, a random
effect corresponding to the deficit of missense variation, £ is an indicator of mutation type, and
Ly the number of sites of type k in gene g. Note that k here serves as an indicator of whether a
site is a synonymous or a missense mutation.

We fit this model using the R package glmer (52).

Human GLMM
With the estimates of €, in hand, we built a model for the human data X ;,:) = Xpgi, With
H . H
Xék) ~ POLsson(uqu))
Where
log(n) = BS” + BIPGCy + Boggk + Bactk + Baelk + 857 +ngk + log(Lgi)

Here, BgH), BgH), SEH), and Lg; have the same interpretation as the primate model, just applied to
human data. However, we now have additional fixed effects 3,, B3, and 3, that model a
nonlinear relationship between the missense depletion in primates and the missense depletion in
humans. Thus, our remaining random effect, n, can be thought of as the deviation of the
observed depletion of missense variants in humans compared to what would be expected based
on the primate depletion. In particular, n, < 0 indicates that a gene has even fewer missense
variants than would be expected based on primates, and is thus suggestive of stronger constraint
in humans than in primates, while n, > 0 indicates an excess of missense variants compared to
expected based on primates, implying relaxed constraint in humans compared to primates.
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To see if the model is able to capture the nonlinear relationship of human and primate MSR, Fig.
S10 shows the log-scaled MSRs of both human and primate, along with the function $,x +

B3x? + B,4x3 which models the relationship of primate MSR to human MSR. It is able to capture
the nonlinearity near the edges of the MSR distribution much better than a linear fit.

GLMM p-values

To determine which 1, values were significantly different from 0, and hence indicative of
human having less or more constraint than non-human primates, we developed an approach to
controlling for gene length by binning genes by gene length and creating Z-scores based on the
ng within each bin. Intuitively, shorter genes are likely to have a large magnitude of ng, by
chance. Moreover, because we don’t actually expect that selection is identical between humans
and primates, we anticipate identifying genes for which n, significantly deviates from a
background distribution.

Our procedure was to first bin genes into quantiles by the number of amino acids in the human
reference genome, each bin consisting of 100 genes. We then computed a Z-score by bin by
computing the mean and standard deviation of 1, within each bin and standardizing each n4 by
bin-wise mean and standard deviation. We then computed p-values assuming that the Z-score
follows the standard normal distribution Z ~ N(0,1).
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PrimateAI-3D Model

We developed a comprehensive deep learning algorithm called “PrimateAI-3D”. It takes as input
protein structures and fixed-species multiple sequence alignments. A method called voxelization
captures the protein structure surrounding a target variant and the conservation of its amino acids
across evolution. A 3D convolutional neural network takes this voxelized structure as input and
converts it into predictions of pathogenicity. PrimateAlI-3D is trained to integrate three diverse
objectives: distinction between human and primate common variants and unknown human
variants; prediction of acceptable alternative amino acids at a protein site after removing all
atoms of the original amino acid (“fill-in-the-blank in 3D”); ranking of scores that follows the
ranking produced by the PrimateAl language model and the variational autoencoder from EVE.

Training data preparation

Protein structures

We downloaded predicted human protein structures from the AlphaFold DB (June 2021) (73).
16,568 protein sequences in that database matched exactly to one of our 19,158 hg38 proteins.
For the rest, we performed homology modelling: we created a BLAST (/32) database from the
sequences in AlphaFold DB and searched against it with the remaining 2,590 proteins. For 2,167
proteins, we found a sequence match with >80% sequence identity, >80% target sequence
coverage and <75 residues not covered (for 1,073 of those 2,590 proteins, both sequence identity
and target coverage were >99%). We applied homology modelling software Modeller (/16)
using the AlphaFold structures as templates to calculate structures that exactly matched the
sequences of our target proteins. For the remaining 423 proteins with more than 75 residues not
covered by an AlphaFold DB structure, we used HHpred (74) to predict a structure for the entire
protein. Then we used both the AlphaFold DB and HHpred structures as templates in Modeller.
This procedure covered another 384 proteins with structure, leaving 39 proteins that failed in
HHpred or Modeller. All these 39 proteins were several thousand amino acids long and were
excluded from our training dataset.

Multiple sequence alignments

PrimateAI-3D took in the multiz100 alignment from the UCSC database (712, 113) to calculate
the evolutionary conservation of each human protein residue in a set of 100 vertebrate species,
similar to PrimateAl (/7). In addition, we also included the protein sequences derived from the
recently released Zoonomia study which consists of whole-genome alignments of 241
mammalian species (//4). Finally, we obtained alignments of 251 species that covered at least
75% of all human proteins in the human Jackhmmer alignments (/33) that we generated to
replicate EVE (67); section “Model evaluation™). We aligned the amino acid sequences of the
three sets of species to produce an alignment of human proteome across 592 species by filling
any missing parts with gaps.

Protein voxelization and voxel features generation

Protein voxelization is the process of converting sets of protein atomic coordinates into tensors
that have the same shape for all sets of coordinates and that can then be used in a traditional
machine learning device. A regular sized 3D grid of cubes (“voxels”) is centered at the Ca atom
of the residue with the target variant (Fig. S11) and each voxel captures its atomic and
evolutionary environment. We evaluated different combinations of grid sizes of voxels and voxel
sizes and selected a grid size of 7x7x7 voxels with a voxel size 2Ax2Ax2A, which achieves the
best performance.
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For each voxel, we computed a vector composed of diverse features, which is explained in detail
below.

Atomic distance profile

For each voxel, we recorded the shortest distance between the Ca of one type of residuals (e.g.,
Alanine residue in Fig. S11) and the center of the voxel. We repeated this procedure for other
amino acids and obtained the shortest distance of the voxel center to each of 21 amino acid types
(20 standard amino acids plus one amino acid representing all non-standard amino acids). We
then recorded the shortest distance for Cp instead of Ca atoms, resulting in 2*21=42 distance
values for each voxel (Fig. S11), which is referred to as the atomic distance profile of a variant.
Detailed procedure is explained in Supplementary Text section 1.

Structure quality features

Several features measure the confidence of the structure around each voxel, including an
indicator whether the protein structure is present in AlphaFold DB as-is (i.e., with a perfect
sequence match to one of our protein sequences) and an indicator whether we used Modeller
with AlphaFold DB structures as templates (in case the match was not perfect). We also included
residue-specific quality features such as the pLDDT from AlphaFold DB (Fig. S12).

Species-differentiable evolutionary profiles

In PrimateAl (/7), the evolutionary profile of a target residue is the frequency of each amino
acid in the multiz100 alignment. This implies that all species have the same contribution to the
amino acid frequency profile, regardless of the genetic distance of a species to human or to other
species, thus it is an unrealistic scenario. Therefore, in PrimateAI-3D, we assigned a different
weight to each species of the 592-way whole proteome alignments. We initialized each weight to
be 1/592 at the beginning of training, but let each weight be differentiable. This means
PrimateAI-3D learns by itself how important each of the 592 species in the MSA is in terms of
contribution to human pathogenicity. In Supplementary Text section 3, we implemented this
procedure in a convolutional layer C onv, that, for any target residue, takes a fixed-species

multiple sequence alignment as input and outputs an evolutionary profile with 210 features. In
order to merge this evolutionary profile with voxels, we obtained a mapping from each voxel to
the sequence position of the residue that is closest to the voxel center across all protein atoms in
the structure (the nearest neighbor; function defined in Supplementary Text; Fig. S12).

Other protein-specific features

We included the reference amino acid in every voxel as a 1-hot encoded vector with 21 features
(Fig. S12). The reference amino acid is the amino acid at the target site in the human reference
proteome. Furthermore, we added two binary indicators to every voxel that signal whether the
atoms of the target residue had been removed before voxelization or not (section “Model
training”; Supplementary Text for details).

Model Architecture

The first layer of the network performs unpadded 3D convolutions in the voxel feature
dimension with a kernel size of 1x1x1 and 128 filters, followed by ReLU activation and batch
normalization. This creates an output tensor of shape 7x7x7x128. We then repeatedly applied 3D
convolutions with a kernel size of 3x3x3, valid padding, and 64 filters until the output tensor’s
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shape becomes 1x1x1x64, again each time followed by ReLU activation and batch
normalization. In each such layer, the first three dimensions of the output are reduced by 2
(because of the valid padding). Then we flattened the tensor and added a final hidden dense layer
with 64 hidden units (ReLU activation, batch normalization). The output layer consists of 20
units (one for each standard amino acid) and uses a sigmoid activation function.

Model training

PrimateAI-3D was trained to perform multiple tasks simultaneously (multi-task learning), which
are described in detail below. Each task captures an alternative and unique aspect of
pathogenicity. We experimented with multiple combination techniques, including transfer
learning, but found that simultaneous optimization gives the best generalization performance,
which is in line with the current trend in structure prediction models (e.g., AlphaFold2 (72) and
RoseTTAFold (/34) to combine various evolutionary and physical aspects of predicted
structures in their loss functions).

Human and primate variants

We obtained 4.5 million benign missense variants from human and primate data. We sampled a
matched set randomly from the genome, requiring the distribution of mutational probabilities of
unknown variants to be identical to that of benign variants. Another difference from PrimateAl
(17) was that we used a single label vector to represent all the variants at the same amino acid
site. This means we predicted the pathogenicity of all alternative amino acids at a site in one
forward pass, instead of only a single variant. Note that a single nucleotide substitution cannot
generate all 20 amino acids and that the label vector for a residue always contains missing
values. We therefore masked missing labels during loss calculations so that they never directly
contribut to the gradient. Benign variants have a label value 0 and pathogenic variants have a
value 1. We used mean squared error as the loss function for non-missing labels.

Variants from fill-in-the-blank in 3D

The generation of this variant set was inspired by the typical training procedure of language
models (87). During voxelization, the voxel grid is centered on the Ca atom of a target residue
and the distance profile is calculated using all atoms within the scanning radius of a voxel center.
For fill-in-the-blank in 3D, we performed the same procedure, except that we removed all atoms
of the target residue before calculating the distance profile or nearest neighbor mapping. In
effect, all features specific to the target residue were removed from the input tensor to the
network. Then we trained the network to pick the amino acid which may be acceptable at the
target site. These acceptable / unacceptable amino acids from the multiple sequence alignments
formed a second training set. Any amino acid that occurs in the MSA at the target site was
considered acceptable (label 0), all others unacceptable (label 1).

Variant ranks from language models

Language models, such as EVE and PrimateAl language model, perform competitively on data
sets evaluated on a per-gene basis, such as saturation mutagenesis assays. However, directly
using prediction scores from these models as additional features to PrimateAI-3D failed to
improve performance. This is due to that the major fraction of the variance in variant
pathogenicity across the human proteome can be attributed to the variation of proteins or protein
domains. For example, in the human and primate variant set, the ratios between the numbers of
common and unknown variants are lower for more pathogenic genes. Similarly, in fill-in-the-
blank training, we observed fewer species tend to carry mutations in more pathogenic genes,

20




10

15

20

25

30

35

40

45

Submitted Manuscript: Confidential
Template revised February 2021

assuming a fixed set of species across the proteome. Language model scores, however, have not
been calibrated well for this inter-protein (or protein domain) variation, thus are ignored by
gradients from the previous two datasets with dominant effect on variance. Instead, we
hypothesized that using language model scores as an additional target output could be helpful:
first, neither of the two datasets capture epistatic patterns (unknown human variants can contain
both pathogenic and benign variants; fill-in-the-blank labels are taken only from single protein
positions in limited species without considering sequence context). Secondly, voxelized
structures may be expressive enough to capture epistatic patterns by themselves. For example,
epistatic interactions usually indicate residue-residue interactions in structure (/35).

We used a rank loss function to incorporate language model scores as a third training dataset,
and only computed it on variants from the same protein. More specifically, we first converted the
scores from language models to ranks, separately for each protein. This means the ranks for each
protein are within range (1,...,N), where N is the length of the protein. These ranks are the truth
ranks, i.e. PrimateAI-3D is trained to produce scores that have the same ranks. The pairwise
logistic loss from Pasumarthi et al.(117) measures the distance between two sets of ranks and

produces a gradient that ultimately updates the model to predict scores that better match the truth
ranks.

Training procedure

The dataset of human and primate variants covers 5.6M of 10.8M possible amino acid positions
in human proteome. For each of the other two datasets (fill-in-the-blank in 3D and language
model ranks), we sampled equally as many amino acid positions. This is primarily due to
practical reasons. First, this allows each batch to have the same number of samples from each
dataset (~33 with a batch size of 100), leading to more stable training in each dataset
individually. Second, it controls the influence of each dataset solely via the sample weight in the
loss function, instead of training sample size as an additional free parameter. Third, it keeps
training and epoch times at reasonable levels. Last, there was no obvious performance benefit
from allowing more samples.

For the language model ranks dataset, we additionally required that all 33 samples in a batch
come from the same protein. This allows calculating rank losses not only for the same protein
position, but across all samples from the same batch. The number of times that a protein was
chosen for a batch was proportional to the length of the protein. In order to make our model
robust against protein orientations, we randomly rotated the protein atomic coordinates in 3D
before voxelizing a variant.

Model optimization was performed using Adam (/36) from Keras 2.2.0 with default parameters
and a learning rate of 0.001. From each of the three datasets, we sampled 20,000 hold-out protein
positions for model validation. For each alternative model and epoch, we predicted these hold-
out validation datasets, together with variants from BRCA I and TP53 assays. This produced two
area under ROC metrics (human and primate variants and fill-in-the-blank in 3D variants) and
three Spearman rank correlation values (language model ranks and BRCAI and TP53 assay
ranks) for each epoch in each alternative model. We calculated the rank of each metric across all
alternative models, e.g., we converted human and primate AUC values from 9 alternative models
in a range (0.6, ..., 1.0) to ranks (1, ..., 9). Then, for each model, we averaged the ranks of the 5
datasets, and only kept the model with the highest average rank. Furthermore, we used this
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procedure to optimize the weights of each dataset in the loss function (0.5 for fill-in-the-blank in
3D, 1.0 for language model ranks, 2.0 for human and primate variants).

Ensemble training and inference

Once we found the optimal model and model parameters, we repeated this training procedure 40
times, each time with a different initial seed value. This generated 40 different models. In order
to predict a variant, we calculated its pathogenicity score using all 40 models 10 times, each time
with a different protein orientation. The average of these 400 scores was the final pathogenicity
score for the variant.
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PrimateAl Language Model

PrimateAl language model is a multi-sequence alignment transformer (83) for fill-in-the-blank
residue classification, which was trained end-to-end on MSAs of UniRef-50 proteins (118, 119)
to minimize an unsupervised masked language modelling objective (87). It outputs classification
scores for alternative and reference residues, which serve as inputs to the PrimateAI-3D rank loss.

Traditionally, fill-in-the-blank MSA transformers simultaneously classify multiple masked
locations in MSAs during training. Higher numbers of mask locations can add more MLM
gradients that inform optimization, thereby enabling a higher learning rate and faster training.
However, fill-in-the-blank pathogenicity prediction is fundamentally different from traditional
MLM as classification at a mask location depends on predicted values of residues at other mask
locations. The classification scores may often be the averages of conditional predictions over all
possible combinations of residues at other mask locations. Primate Al LM avoids this averaging by
revealing tokens at other mask locations before making predictions. Our model achieves state-of-
the-art clinical performance and denoising accuracy whilst requiring 50x less computation for
training than previous MSA transformers.

Preparation of MSA datasets

We created an MSA for each sequence in a UniRef-50 database (March 2018 version) (/15, 118)
by searching a UniClust30 (/37) database (October 2017 version). Then an MSA dataset
containing 26 million MSAs was created using the protein homology detection software HHblits
version 3.1.0 (/38). Default settings were used for HHblits except that we set the number of search
iterations (-n) to 3. This replicates the approach to generating MSAs to train MSA transformer
(139). In addition, we generated a set of MSAs for 19,071 human proteins using HHblits following
the procedure above.

Next, we excluded UniRef-50 MSAs whose query sequences carry rare amino acids, retaining
those containing the 20 most abundant residues only. To further simplify our data pipeline, we
filtered non-query sequences in the MSA to those that only contain the 20 most common residues
and gaps, which represent deletions relative to the query sequence. As input MSAs to PrimateAl
LM have a fixed size of 1024 sequences, we randomly sampled up to 1023 non-query sequences
from the filtered sequences if MSA depth is larger than 1024. If MSA depth is below 1024, we
padded the MSA with zeros to fill the input.

We then applied a periodic mask pattern with a stride of 16, which covers an amino acid position
of interest in the query sequence, to MSAs. Using a fixed mask pattern ensures consistent
computational requirements for mask revelation discussed below. The position of interest was
randomly sampled from all positions in the query sequence during training or chosen by a user
during inference. To maximize information about the position of interest, we tried to select a
cropping window with a size of 256 residues where the position of interest is at the center. However,
the cropping window may be shifted if the position of interest is near the edge of an MSA to avoid
padding zeros and increase information about the position of interest. If the query sequence is
shorter than the PrimateAl LM cropping window, zeros were padded to fill the window size.
lustration of cropping, masking, and padding of MSAs input to PrimateAl LM is shown in Fig.
S23.
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We followed AlphaFold 2 (72) to assign a smaller probability, psample» to an MSA being sampled
during training if the protein length, L, is shorter,

max(min (L, 512), 64)
psample X 512 ’

to rebalance the distribution of lengths for UniRef-50 proteins used for training and human proteins,
and to avoid computation being wasted on padding. We also adjusted the probability of sampling
non-query sequences to be included in the first 32 sequences of an MSA, where the fixed mask
pattern is applied, to penalize the occurrences of gaps in those sequences. The probability, P asks

of a non-query sequence being masked decreases with increasing number of gap tokens, Nggp,,

2
L— N
Pmask OC(L—Zgap)-

Down sampling of sequences with lots of gaps reduces the fraction of missing data in MSAs.

Model Architecture

MSA Embedding

We first embedded MSA input for PrimateAl LM, shown in Fig. S24, and applied a fixed mask
pattern to the first 32 sequences of MSAs. The MSA tokens were encoded by learned 96-channel
embeddings, which were summed with learned 96-channel position embeddings for residue
columns before layer normalization (/40). To reduce computational requirements, embeddings for
the 1024 sequences in MSAs were split into 32 chunks, each containing 32 sequences, at periodic
intervals along the sequence axis. These chunks were then concatenated in the channel dimension
and mixed by linear projection.

MSA Transformer

Embedded MSAs were propagated through 12 axial attention blocks shown in Fig. S13. Each axial
attention block consists of residuals that add tied row-wise gated self-attention, column-wise gated
self-attention, and a transition layer, shown in Fig. S13. The self-attention layer has 12 heads, each
with 64 channels, totaling 768 channels, and transition layers project up to 3,072 channels for
GELU activation (/417). The adoption of axial gated self-attention was inspired by AlphaFold 2’s
Evoformer (72). The main change is that we used tied attention (/39) in PrimateAl LM axial
attention layer (Fig. S25), instead of triangle attention in AlphaFold 2. Tied attention is the sum of
dot-product affinities, between keys and values, across non-padding rows, followed by division by
the square root of the number of non-padding rows, which reduces computational burden
substantially.

Mask Revelation

Mask revelation, shown in Fig. S26, reveals unknown values at other mask locations after the first
12 axial attention blocks. It combines the updated 768-channel MSA representation with 96-
channel target token embeddings at locations indicated by a Boolean mask which labels positions
of mask tokens. The Boolean mask, which is a fixed mask pattern with stride 16, is applied row-
wise to gather features from the MSA representation and target token embedding at mask token
locations. Feature gathering reduces row length from 256 to 16, which drastically decreases the
computational cost of attention blocks that follow mask revelation in Fig. S26. For each location
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in each row of the gathered MSA representation, we concatenated the row with a corresponding
row from the gathered target token embedding where that location is also masked in the target
token embedding. The MSA representation and partially revealed target embedding are
concatenated in the channel dimension and mixed by linear projection.

After mask revelation, the now-informed MSA representation is propagated though residual row-
wise gated self-attention and transition layers shown in Fig. S13. The attention is only applied to
features at mask locations as residues are known for other positions from the MSA input to
PrimateAl LM. Thus, attention only needs to be applied at mask locations where there is new
information from mask revelation. After interpretation of the mask revelations by self-attention, a
masked gather operation collects features from the resulting MSA representation at positions
where target token embeddings remained masked. The gathered MSA representation is translated
to predictions for 21 candidates in the amino acid and gap token vocabulary by an output head
shown in Fig. S27.

Model Training

Loss Function
Primate Al LM was trained end-to-end on MSAs for UniRef-50 proteins to minimize a weighted
masked language modelling loss,

LMLM = _Wlengthwmask Z log(pij)

ijEM

where M is the set of positions where MSA input tokens are masked, and probabilities, p;;, are
computed from PrimateAl LM outputs by softmax normalization, p;; = softmax(l;;), of logits,
l;j, output by PrimateAl LM. Softmax normalization over the amino acid vocabulary is applied
independently per position, j, in each sequence, i. Since query sequences do not contain gap tokens,

query sequence gap token logit values are changed to —10°. Loss weights are higher for longer
proteins, thus we designed this weight,

1
Wlength = min <LE, 64) ,

to adjust for the effect of a small portion of longer proteins when taking a single fixed-sized crop
from their MSAs. Weights are also higher for MSAs with a lower number of masked positions,

Nmaska

Winask = N2
to rebalance contributions from MSAs with various depths and padding.

Optimizer

PrimateAl LM was trained for four days on four A100 graphical processing units (GPUs).
Optimizer steps are for a batch size of 80 MSAs, which is split over four gradient aggregations to
fit batches into 40 GB of A100 memory. Primate Al LM was trained with the LAMB optimizer
(82) using the following parameters: $; = 0.9, B, = 0.999, € = 107, and weight decay of 0.01.
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Gradients are pre-normalized by division by their global L2 norm before applying the LAMB
optimizer. Training was regularized by dropout (/42) with probability 0.1, which was applied after
activation and before residual connections, as shown in Fig. S25. Axial dropout (72) was applied
in self-attention before residual connections: post-softmax spatial gating in column-wise attention
is followed by column-wise dropout, and post-softmax spatial gating in row-wise attention is
followed by row-wise dropout.

PrimateAl LM was trained for 100,000 parameter updates. The learning rate is linearly increased
over the first 5,000 steps from 7 = 5 X 107° to a peak value of n = 5 x 107%, and then linearly
decayed ton = 10~*. We applied automatic mixed precision (AMP) to cast suitable operations
from 32-bit to 16-bit precision during training and inference (/43), which increases throughput
and reduces memory consumption without affecting performance. In addition, we used a Zero
Redundancy Optimizer to reduce memory usage by distributing optimizer states across multiple
GPUs (144).

Ensemble

An ensemble of six PrimateAl LM networks was trained with different random seeds for training
data sampling and model parameter initialization. Their top-1 accuracies during training are shown
in Fig. S28 for mask locations in the query sequence and all sequences in UniRef-50 MSAs. Top-
1 accuracy for the query sequence is much lower than for all sequences as the query sequence does
not contain gap tokens, which are easier to predict than residues as they often form long and
contiguous segments in MSAs created with HHblits. Primate Al LM accuracy on query sequences
was steadily improving at the end of training. However, PrimateAl LM was trained for no more
than 10° iterations due to computational cost.

Inference and pathogenicity score

PrimateAl LM fill-in-the-blank predictions are provided for locations of interest at every site in
19,071 human proteins, totaling predictions for 2,057,437,040 variants at 108,286,160 positions.
Each prediction is made by our ensemble of six models, with each model contributing at least four
inferences with different random seeds for sampling and ordering of sequences in human MSAs.
Inferences logits were averaged by taking means of predictions grouped by random seed, and then
taking the mean of the means. Each inference for 19,071 human proteins takes nearly 7 days on an
A100 and, in total, inference by the ensemble takes nearly 200 A100 days.

Pathogenicity prediction of a variant is traditionally evaluated according to the relative logit of
the variant residue compared to the one of the reference amino acid, i.e., log (pg) — 108 (Pref).
where p,.r and p,; are the reference (ref) and alternative (alt) probabilities obtained from the
ensembled logits. The probabilities are normalized over all possible residues disregarding the
gap token, such that Y., p, = 1 with probability p, of the r'" residue obtained from the ensembled
logits. The log difference captures how unlikely the variant amino acid is compared to the
reference amino acid. However, the score does not consider the prediction of the other 18
possible amino acids, which contain information about the language models internal estimate of
protein site conservation as well as convergence of the language model. We used the entropy
evaluated over amino acid predictions S = — Y., p,log (p,-) with probability p, of the r' residue
to capture a variant agnostic site-dependent contribution to the pathogenicity score. Specifically,
a score, Su;¢, for residue alt at a given site is given by the usual log difference of the alt and
reference ref logit at that site minus the entropy over amino acids at the given site, i.e.
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Sait = 10g (Pair) — log (pref) —-S.

The entropy term is small whenever the probability over all amino acids is dominated by a single
term and large whenever the model is uncertain about the residues and assigns multiple residues
high values. Physically, in this case the site is associated with little conservation and likely to
mutate. This should lead to less pathogenic signal. Adjusting the scores by entropy incorporates
a model internal estimate of amino acid conservation. A given log difference between residue
and reference will be considered as more pathogenic whenever it is associated with a highly
conserved site. The score adjustment additionally incorporates the lack of convergence
associated with a heavily undertrained model.
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Model Evaluation

Evaluation datasets

Saturation mutagenesis assays

We compared model performance using deep mutational scanning assays for the following 9
genes: amyloid-beta (102), YAP1 (96), MSH2 (120), SYUA (101), VKORI (121), PTEN (99,
100), BRCAI (122), TP53 (123), and ADRB?2 (124). We excluded from the evaluation analysis a
few assays of the genes for which the predication scores of some classifiers are unavailable,
including TPMT (99), RASH (145), CALM1 (146), UBE2I (146), SUMOI (146), TPK1 (146),
and MAPK1 (147). We also excluded assays of KRAS (148) (due to different transcript
sequence), SLCOIBI (149) (only 137 variants), and amyloid-beta (/50) (duplicate of (/02)). We
evaluated model performance by computing the absolute Spearman rank correlation between
model prediction scores and assay scores individually for each assay and then taking the mean
across all assays. See Table S6 for per-assay rank correlations for each method.

UK Biobank

The UK Biobank dataset (79, 80) contains 61 phenotypes across 100 genes. Evaluating on
common variants of all methods reduces the number to 41 phenotypes across 42 genes. We
calculated the absolute Spearman rank correlation between the predicted pathogenicity scores
and the quantitative phenotype scores for each pair of gene/phenotype. Only gene/phenotype
pairs with at least 10 variants were included in the evaluation (14 phenotypes across 16 genes).
We also confirmed that our evaluation is robust to this choice of threshold.

ClinVar

We benchmarked model performance in classifying clinical labels of ClinVar (downloaded from
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz on September 19,
2021) missense variants (4) as benign or pathogenic. Both “benign” and “likely benign” labelled
variants were considered benign, the same for “pathogenic” and “likely pathogenic” labelled
variants (both considered pathogenic). To ensure high-quality labels, we followed (67) and only
included ClinVar variants with 1-star review status or above (including “criteria provided, single
submitter”, "criteria provided, multiple submitters, no conflicts", "reviewed by expert panel",
"practice guideline"). This reduced the number of variants from 36,705 to 22,165 for the
pathogenic and from 41,986 to 39,560 for the benign class. Following EVE (67), we calculated
the area under the receiver operating characteristic curve for each gene and then report the mean
AUC across all genes.

DDD / ASD / CHD de novo missense variants

To evaluate the performance of the deep learning network in clinical settings, we obtained de
novo mutations from published studies for intellectual disorders, including autism spectrum
disorder (88-94) and developmental disorders (8§5-87). ASD contained 2,127 patients with at
least one de novo missense mutation. Taken together, there were a total of 3,135 DNM
mutations. This reduced to 517 patients with at least one DNM variant and a total of 808 DNM
variants after requiring all methods had predictions for those variants. In DDD, 17,952 patients
had at least one de novo missense variant (26,880 variants in total), reducing to 6,648 variants
after requiring availability of predictions of all methods. We also obtained a set of DNM variants
from patients with congenital heart disorders (95), consisting of 1,839 de novo missense variants
from 1,342 patients (reducing to 564 variants after requiring availability of predictions of all
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methods). For all the three datasets of de novo variants from affected patients, we used a shared
set of DNM variants from healthy controls, which contains 1,823 DNM variants from 1,215
healthy controls with at least one DNM variant and collected from multiple studies (88-93). It
was reduced to 250 variants (235 patients) after requiring availability of variant prediction scores
of all methods. For each disease set of DNMs, we applied Mann-Whitney U test to evaluate how
well each classifier can distinguish the DNM set of patients from that of controls.

Methods for comparison

Predictions from other methods were evaluated using rank scores downloaded from the database
for functional prediction dbNSFP4.2a (84). To avoid dramatic reductions in the number of
common variants, we removed methods with incomplete sets of scores (methods with less than
67 out of 71 million possible missense variants in hg38), except Polyphen2 (/57) due to its
widespread adoption. We included the following methods (method abbreviation) for comparison:
BayesDel noAF (BayesDel) (152), CADD_raw (CADD) (/53), DANN (/54), DEOGEN2
(155), LIST-S2 (156), M-CAP (157), MutationTaster converted (MutationTaster) (/58),
PROVEAN converted (PROVEAN) (/59), Polyphen2 HVAR (Polyphen2; due to better
performance then Polyphen2 HDIV) (/51), PrimateAl (/7), Revel (REVEL) (160),

SIFT converted (SIFT) (/61), VEST4 (162), fathmm-MKL coding (fathmm-MKL; highest
performance among the fathmm models for given benchmarks) (163).

ESM1v model (/64) was not released as part of dbNSFP4.2a (84). Due to unavailability of full
mutation effect predictions of the human proteome for this model, we used the pre-trained
ESM1v weights downloaded from GitHub (https://github.com/facebookresearch/esm) and
evaluated on all human protein sequences using the published code without any modifications.

Applying EVE to more proteins

In the original publication, EVE (67) is only applied to a small set of disease-associated genes in
ClinVar. To generate our language model-based training data set, it is essential to expand the
predictions of EVE to as many proteins as possible. Due to unavailability of EVE source code,
we therefore applied a similar method DeepSequence (/65) and converted DeepSequence scores
into EVE scores by fitting Gaussian mixture models. We used an up-to-date version of
UniRef100 (/15), but otherwise followed the alignment depth and sequence coverage filtering
steps described in (67). We achieved at least 1 prediction in 18,920 proteins and a total of 50.2M
predicted variants out of 71.2M possible missense variants. To validate our replication, we
evaluated the replicated EVE models using published variants from (67). We found that scores
from the replicated EVE model results in comparable performance to the published EVE
software on all benchmarking datasets, e.g., both methods achieve 0.41 mean absolute
correlation on Assays and 0.22 mean absolute correlation for UKBB.

Benchmarking PrimateAl LM against other sequence-only models for pathogenicity
predictions

Primate Al LM falls into a class of methods only trained to model proteins sequences but
performing surprisingly well as pathogenicity predictors. Despite not achieving the overall best
performance by themselves, they make crucial features or components in classifiers
incorporating more diverse data. Fig. S14 summarizes the evaluation performance of the
Primate Al LM against other such sequence-only methods for pathogenicity prediction: ESM1v
(164), EVE (67), LIST-S2 (42), and SIFT (48). Our language model outperforms another
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language model ESM1v on all the testing datasets except assays using only 1/50% of the training
time. This is particularly striking as PrimateAl LM does not rely on any fine-tuning on assays.

Combining PrimateAl LM with EVE

Language models are trained to model the entire universe of proteins. EVE (67) trains a separate
model for each human protein and all similar sequences. This and the differences in model
architecture and training algorithms suggest that the models extract distinct features from their
input. Therefore, we expected that the scores from EVE and our language model to be
complementary and that combining scores may result in improved performance. We found that
simply taking the mean of their pathogenicity scores already performs better than any of the two
methods alone. More elaborate combinations, e.g., using ridge regression, did not lead to any
further improvements. The resulting performance is shown in Fig. S14, where the combined
score leads to a performance gain of 6.6% (or 6.8%) in mean correlation on assays compared to
the Primate Al LM (or compared to replicated EVE), 1.4% (or 1.7%) improvement mean AUC
on ClinVar and increases in P-value by 11% (29%) for DDD, 3% (26%) for ASD and 17%
(23%) for CHD.

Evaluations of PrimateAI-3D

PrimateAI-3D performance is benchmarked against both supervised and unsupervised variant
pathogenicity classifiers. We found that PrimateAI-3D consistently outperforms other classifiers
on all evaluation datasets (Fig. 3D). Summary statistics of model performance across all the six
evaluation datasets are provided in Fig. S15 and Table S3. When the results are averaged across
benchmarks, PrimateAI-3D is far ahead of any competing classifier (Fig. S15). It appears the
reason why other classifiers come close to PrimateAI-3D in individual benchmarks is because
we evaluated nearly 30 other algorithms; akin to multiple hypothesis testing, by statistical chance
the performance of an algorithm may be an outlier on one particular benchmark, but their lack of
consistency in the other five benchmarks indicates regression back to the mean. As we show in
Fig. 3D, the second-place algorithm is different in each of the six benchmarks. A detailed
breakdown of the performance of PrimateAI-3D for each of the 42 genes in UKBB is provided
in Table S4. A detailed summary of performance of PrimateAI-3D and other benchmark
classifiers on the 9 assays considered is given in Table S6.

PrimateAI-3D sensitivity and specificity on ClinVar

The ClinVar mean per-gene AUC metric (Fig. 3; also used in EVE (67)) implicitly corrects for
different biases in ClinVar and enables a fairer comparison to methods directly trained on
clinical annotations. A complication of directly measuring sensitivity and specificity in the
ClinVar database is that human expert annotations are concentrated in a handful of disease genes
that have been most heavily studied, with 50% of the total pathogenic missense variants in
ClinVar coming from only 1.8% of the protein-coding genes in the genome (Fig. S16). This bias
in annotation results in some genes having severe imbalance in their number of benign and
pathogenic mutations, with >90% of labeled variants in the gene being either pathogenic or
benign. Other machine learning classifiers that have been trained on human annotation databases
have inadvertently learned the bias in annotation and take advantage of this property to assign
higher scores to variants in genes with a high fraction of pathogenic variants in ClinVar (Fig.
S17). To measure each classifier’s sensitivity and specificity without the influence of annotation
bias, we rank-normalized classifier scores for variants within each gene, and excluded genes
with >90% of variants being pathogenic or benign in ClinVar. PrimateAI-3D achieved a
sensitivity of 84.7% and specificity of 84.1% (percentile threshold: 57.7), and its AUC of 0.919
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was the best performance among all classifiers (Fig. S18), which was notable given that the other
classifiers (with the exception of EVE, PROVEAN, SIFT, LIST-S2) had been trained either on
ClinVar or highly overlapping annotation databases such as HGMD (166, 167).

Using PrimateAI-3D to improve ClinVar

To assess the utility of PrimateAI-3D for revising ClinVar annotations, we compared a snapshot
of the ClinVar database from September 2017 with the current database, and asked whether
PrimateAI-3D scores were predictive of variants whose annotations had been revised in the
interim. We defined the most confident X% PrimateAI-3D predictions as the X/2% variants with
the highest predicted pathogenicity merged together with the X/2% variants with the lowest
predicted pathogenicity. This implicitly converts the continuous PrimateAI-3D score into a
binary benign/pathogenic classification. We downloaded ClinVar September 2017, reduced it to
benign or pathogenic missense variants and only kept variants from genes with at least 20 variant
annotations (30,295 variants). Then we looked up the annotations of those variants in ClinVar
2021. We found that 4,850 of the 30,295 variants (16%) had changed or lost their clinical
annotation by 2021. Filtering the 30,295 variants to those that are also in the top 10% most
confident PrimateAI-3D predictions, 2,905 variants remain. For 55/2,905 (2%) variants, ClinVar
and PrimateAI-3D disagree. 29/55 (53%) variants changed ClinVar labels between 2017 and
2021. This is a 5 times higher fraction than for variants that agree between PrimateAI-3D and
ClinVar (273/2755, 10%; Fisher’s test P-value=10-**) and indicates that at least half of all
annotations that disagree between high-confidence PrimateAl-3D and ClinVar will change
annotation in ClinVar over time. We repeated this analysis with different confidence thresholds
for PrimateAI-3D (Fig. S19). Among the variants that were annotated as pathogenic in 2017, the
top 10% with the lowest (most benign) PrimateAI-3D scores were 4-fold more likely to have had
their ClinVar annotation consequence changed in the interim (P < 10-*). Conversely, among the
variants annotated as benign in 2017, the top 10% with the highest (most pathogenic) PrimateAl-
3D scores were 6-fold more likely to have had their annotation changed (P < 10°!®) (Fig. S19).
Even using the top 75% of all PrimateAI-3D predictions, there remains a 2-fold increase of
ClinVar label changes among variants that disagree between ClinVar and PrimateAI-3D. In
summary, discordance between PrimateAl-3D and ClinVar indicates a significantly elevated
chance of annotation error in ClinVar and can be used to increase confidence in ClinVar
annotations.



10

15

20

25

30

35

Submitted Manuscript: Confidential
Template revised February 2021

Candidate gene discovery

We tested enrichment of de novo mutations in genes by comparing the observed number of
DNMs to the number expected under a null mutation model (47). We tested the de novo
enrichment using twenty different missense pathogenicity predictors (see Methods for
comparison section). We report genes that are identified as enriched when only counting
missense DNMs with a PrimateAI-3D score 20.821. Some missense classifiers predicted scores
in limited sets of genes, and we compensated for this by scaling the null mutation rates by the
fraction of all missense sites with a pathogenicity score. For each missense predictor we
estimated the excess missense DNMs without any missense classifier, and identified the
pathogenicity threshold at which we captured that number of missense DNMs above that
threshold. For two classifiers (DANN, LIST-S2) we found missense DNMs from healthy
controls had skewed score distributions compared to the distribution of all scores genome-wide.
We calculated per-threshold inflation factors via the ratio of the quantile from control DNMs to
the quantile from all sites, at the same threshold. We identified an adjusted threshold as the
highest threshold at which the excess corrected for the corresponding inflation factor exceeded
the original excess. For example, for PrimateAI-3D the threshold was 0.821. We adjusted the
genome-wide expectation for damaging missense DNMs by the fraction of missense variants that
meet the threshold (roughly one-sixth of all possible missense mutations genome-wide). Each
gene required four tests, one testing protein truncating enrichment and one testing enrichment of
protein-altering DNMs, and both tested for just the DDD cohort and one where we excluded
individuals with a protein-altering DNM in a gene previously identified with monoallelic or
hemizygous inheritance for intellectual disability (ID). The genes with known links to ID were
obtained from Genomics England PanelApp ID gene panels with confidence level of 3 (108), or
found in Gene2Phenotype DDG2P subset where confidence was “definitive” (109). The
enrichment of protein-altering DNMs was combined by Fisher’s method with a test of the
clustering of missense DNMs within the coding sequence. The P value for each gene was taken
from the minimum of the four tests, and genome-wide significance was determined as P < 6.41 x
1077 (0= 0.05; 19,500 genes with four tests). We also excluded two genes, BMPR2 and RYRI as
borderline significant genes that already had well-annotated non-neurological phenotypes.

Fig. S22 shows the number of candidate genes discovered for each classifier, and while
PrimateAI-3D is among the best performing algorithms. Because the number of candidate
disease genes discovered in DDD (< 300) is a very small number compared to the number of
variants evaluated in the six clinical benchmarks (which typically contain on the order of tens of
thousands of variants), it is too noisy to be used as a meaningful metric for evaluating classifier
performance, as the differences between the algorithms are not statistically significant.
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Supplementary Text

1 Protein voxelization

Protein voxelization is the process of converting sets of protein atomic coordinates into tensors
that have the same shape for all sets of coordinates. We explain our voxelization method first
using two-dimensional atomic coordinates, followed by a straightforward extension to three
dimensions.

To voxelize a variant, we first obtained the protein structure in which the variant occurs and
determine the atomic coordinates of the Ca atom of the variant (Fig. S11A: blue point). Note that
the protein structure either has the reference amino acid or no amino acid at all at the site of
mutation (fill-in-the-blank in 3D; section "Model training"), but never an alternative amino acid.
Next, we reduced the atoms of the protein to Ca atoms of alanine residues (Fig. S11A: red
points). Then we defined a square of a certain size (Fig. S11B; imagine e.g. 6x6 Angstrom (A)).
We subdivided this square into smaller regular-sized squares called “voxels”, in this case 3x3
voxels of size 2Ax2A. We identified each voxel by its row and column index. For example, the
voxel in the top right is referred to as V(4 ;). Then we moved the center of the central voxel in the
voxel grid (Fig. S11: V(, 5y, in the middle of the grid) onto the Ca coordinate of the residue with
the mutation so that both points have the same coordinates (Fig. S11C: blue point from Fig.
S11A has the same coordinates as the center of voxel V(; 5y in Fig. S11B). Now we looped
through all voxel centers in the grid, starting with V(4 ;). We determined the Co atom that is
closest to the center of V(4 1) (i.e. the “nearest neighbour”; Fig. S11C: point NN) and still within
the scan radius 7 (Fig. S11C: red circle; typically SA). We calculated the Euclidean distance d
between the two points (Fig. ST11C). The closeness ¢ between V(4 1y and NN is then defined as

Equation 1
C(V(Ll),A, Ca) =1-d/r

Finally, we repeated this procedure for all 21 amino acids (20 standard amino acids and one
additional amino acid representing all non-standard amino acids), starting with the reduction to
the Ca atoms of all cysteine residues, instead of alanine. This is followed by a repeat of the
previous 21 iterations, but with Cp atoms, instead of Ca (however, the Ca is kept for the variant
with the mutation, i.e. the coordinates of the voxel grid center stay the same; Fig S11D). In the
end, each voxel is associated with 42 closeness values, one for each amino acid and atom type
combination (Figs. S11E-F). We refer to this set of values as the atomic distance profile of a
variant. We also experimented with including more atom types, but only found diminishing
returns.

The atomic distance profile is the first of two outputs of the voxelization procedure. The second
output is calculated with the following differences: we did not reduce to certain amino acids or
atom types. The NN therefore becomes simply the closest atom to a voxel center, across all
amino acid atoms in the protein. Then we looked up the position of the residue from which atom
NN comes in the sequence of the target protein. Instead of calculating closeness ¢, we only
defined a function s that maps each voxel to the sequence position of this closest residue. For
example, given a target variant at sequence position 11 in protein BRCA 1, the atom closest to
V(1,1) may come from a glycine residue at sequence position 32. Hence, s(V(4,1)) = 32.
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Moving the algorithm above from two to three dimensions, we only needed to increase the
dimensionality of the voxel grid by one dimension. For example, the first voxel V(4 1) becomes
V(1,1,1)- Given a 3x3x3 voxel grid, the central voxel V(; ») becomes V(3 ; 5.

Evaluating different voxel grid sizes (from 3x3x3 to 19x19x19) and voxel sizes (from 1Ax1AxA
to 3Ax3Ax3A), we found that grid sizes above 7x7x7 and voxel sizes below 2Ax2Ax2A failed
improve performance. Therefore, we chose a grid size 7x7x7 with 2Ax2Ax2A voxels. Note that
an atom does not actually need to be inside the voxel grid to contribute to both voxelization
outputs ¢ and s. It suffices if the atom is within the scan radius r of a voxel. Conversely, even if
an atom is within a scan radius, it does not automatically imply that the atom will contribute to ¢
and s. With our chosen parameters, on average the atoms of 41 (minimum I, maximum 205)
different residues are within the scan radius of a voxel in the grid. Of those, an average of 21
different residues (minimum 1, maximum 67) are mapped to by s.
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2 Details of structure quality features

We included several features indicating the confidence in the structure surrounding each voxel.
First, we defined four binary indicators: whether the protein structure is present in AlphaFold DB
as-is (i.e., with a perfect sequence match to one of our protein sequences), whether we used
Modeller with AlphaFold DB structures as templates (in case the match was not perfect),
whether we used HHpred and AlphaFold DB structures as templates in Modeller (when large
parts of a protein were missing in AlphaFold DB), or whether we used HHpred exclusively (in
case there was no similar match in the AlphaFold DB). For the structures that involved HHpred,
we added three features corresponding to the minimum, mean and maximum predicted TMscore
(168) of the templates found by HHpred. We also included B-factors from both AlphaFold DB
and Modeller (where available) using the mapping function, which maps each voxel center to the
sequence position of the residue with the closest atom to that center. For example, if S(V(1,1,1)) =
31, then we looked up the AlphaFold DB B-factor of residue 31 and added it to the feature
vector of voxel V(4 1,1). HHpred output contains a sequence alignment of up to 6 template
proteins with known structure. For each residue in the target protein, we counted how often the
other sequences in the alignment have non-gap amino acids at that position. This value indicates
how many templates could be used at each position when a structure needs to be predicted with
HHpred. We added this value to the feature vector of each voxel in the same way as for B-
factors. In total, there are 10 features describing the quality of the protein structure around a
voxel (Fig. S12B).

W
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3 Species-differentiable evolutionary profiles

Let X = {A, ..., W, —} be the set of all 20 amino acids A4, ..., W plus a gap token denoted as “—".
M is a |S|-way multiple sequence alignment S (|S| = 592) and M;’is the amino acid at protein
position i in alignment s € S. The evolutionary profile of amino acid 4 at protein position i is

defined as f;* = ¥, w[M; = A], where [] is the Iverson bracket and w = I?ll is a normalization

constant. f calculated only from the multiz100 alignments (|S| = 100) is part of the input
features for PrimateAl (/7). We interpreted f as a signal for human pathogenicity. A constant w
implies that variants from all species and alignments are equally important contributors. For
example, a variant in chimp (closely related to human) increases the frequency of an amino acid
by the same amount as the same variant in zebrafish (distant from human). We argue that this
should not be the case. For PrimateAI-3D, we therefore allowed each of the 592 whole proteome
alignments to have a different weight. More precisely, we defined a new evolutionary profile

A
f L= Ys Wg[M] = A], where wy is the weight of each alignment.

For example, assume that i = 31, S = {S;,S,, 53} and X' = {L, P} and that the two amino acids in
the alignments at position 31 are L for alignment S; and P for alignments S, and S5 respectively.
Assume further that wg, = 0.1, wg, = 0.05 and wg, = 0.2. The one-hot encodings of the amino

acids at position 31 are < 1,0 > (for S;), < 0,1 > (for ;) and < 0,1 > (for S3). It follows that
L P

f’31 =ws, = 0.1 and f’31 =ws, + wg, = 0.05+ 0.2 = 0.25.

Instead of calculating each wy from the alignments themselves (e.g. via similarity to other

sequences, as often performed for Potts models of MSAs (/69)), we initialized each wy to I?ll

before training, and let the parameters be differentiable during training. This means PrimateAl-
3D learns itself how important each of the 592 species is as contributors to the pathogenicity

. A
signal of fl .
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4 Evolutionary profile features

The evolutionary profile function f’; is equivalent to a 1D-convolutional layer without bias if we
interpret the 21 amino acids (20 standard amino acids plus a gap token) as input samples and the
number of alignments (|S|) as features (considering only one amino acid, the 1-hot encoding of
an amino acid is only a single value that is either 0 or 1). Denote this convolutional layer Convy,.
To make use of the typical parameters associated with a convolutional layer, we introduced a
bias term, increased the number of filters to 10 and activated each output via the ReLU activation
function (the latter enables modelling non-linear relationships between species). In the end, the
input to Convy, are the |S| 1-hot encoded amino acids at a sequence position i and the output is
an evolutionary profile with 10*21=210 elements. In order to merge this evolutionary profile
with voxels (above), we again make use of function s. For example, given S(V(1,1,1)) = 31, we
extracted the |S| amino acids at sequence position 31 from the alignments of the target protein
and 1-hot encode and convolved them using Convy,. The output is concatenated with the feature
vector of V(4 11y, extending it by 210 elements (Fig. S12C). Note that unlike for the other
features, the gradient does not stop at these 210 elements, but is backpropagated and used to
update the weight wg of each alignment.
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Fig. S1. Variant filtering steps improve variant quality. (A) Heatmap of Spearman correlation
of codon-match metrics among 31 primate reference species naturally clustering primates into
four major groups, including great apes, Old World monkeys, New World monkeys, and lemurs /
tarsiers. Codon-match indicates a specific codon of primate reference species matches human.
Lighter colors represent higher correlation between two species. (B) Boxplots showing that the
average number of stop-gained variants per sample of each primate reference species was
gradually reduced to close to human level after a series of variant filtering steps, including
requiring codon-match, removing SNPs in poorly-annotated genes or in genes with skewed
random forest score distribution or deviating from Hardy Weinberg equilibrium (HWE), and
removing SNPs with unique-mapper (UM) score <0.6 or RF score >0.17. Each dot represents the
average number of stop-gained variants of each primate reference species. The black line shows
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the average number of stop-gained variants of human samples from Platinum genome project.
(C) Boxplots showing that missense / synonymous ratios (MSR) decreased after variant filtering
steps. The pink box shows the MSR of variants that were filtered out. Each dot represents the
MSR of each primate reference species. The black line represents MSR of human samples. (D)
The average number of indels per sample of each primate reference species diminished after
filtering steps. For all the boxplots, box lengths represent the interquartile of data points and the
whiskers extend to 1.5 times the interquartile range from the box.
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Fig. S2. Allele frequency spectra for simulated primate variants. Barplots show the fraction
of primate missense (left panel) and synonymous (right panel) variants falling in each of the four
allele frequency bins. The simulated primate variants were sampled according to the gnomAD
allele frequencies, mimicking the sample sizes of primate species.
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Fig. S3. Venn diagrams show small overlap between gnomAD (blue) and primates (orange)
for both synonymous and missense variants. Large fractions of the transition variants
occurring at CpG sites are shared between gnomAD and primates, particularly the synonymous

variants.
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Fig. S4. Observed gnomAD (green) or primate (purple) missense variants at each amino
acid position in genes. (A-D) The distribution of gnomAD missense variants (green crosses)
along the genes CREBBP (A), SCN24 (B), KCNQI (C), BRAF (D), and KMT2D (E). Blue
crosses represent observed primate missense variants along the genes. Dark red circles represent
observed ClinVar pathogenic missense variants along the genes. Blue dots of the bottom
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scatterplots show the predicted pathogenicity scores of all possible missense substitutions, which
are the PrimateAI-3D scores at each amino acid position.
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Fig. S5. Scatter plot showing that natural selection purifies potentially deleterious missense
variants across species. The x-axis shows the depletion of orthologous missense variants
observed in primates, mammals, chicken and zebrafish at common human allele frequencies
(>0.1%) from gnomAD. The y-axis shows the species’ genetic distance from human, measured
by the fraction of nucleotides different from human.
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Fig. S6. Pie chart showing fractions of primate missense variants observed at different
allele frequencies (AF) in gnomAD databases. Blue represents variants either not observed in
gnomAD or with rare allele frequencies (< 0.01%). Orange and green show the fraction of
primate variants with 0.01% <AF < 0.1% or common allele frequencies (>0.1%), respectively.
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Fig. S7. Population genetic model fitting to human and primate data. (A) The distribution of
population-scaled mutation rates across all species. (B) The correlation between pooled primate
missense: synonymous ratio and inferred selection. The x-axis shows the missense : synonymous
ratio for each gene when pooled across all non-human primates. The y-axis shows the inferred
2Ns for each gene. (C) The distribution of fitness effects across genes in humans and non-human
primates. Histogram is over all genes that pass the filters to be used in the analysis. (D) The
correlation between human selection and primate selection. The x-axis shows the strength of
selection in humans, and y-axis shows the strength of selection in primates. Highlighted points
are significant according to point the population genetic model and the MSR regression.
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Fig. S8. Correlation of missense : synonymous ratios and selection coefficient estimates in
humans and primates. (A-B) Barplots show the Spearman correlation of those two metrics with
pLI (A) and s_het (B). Red bars represent correlation of missense : synonymous ratio of
polymorphic variants with pLI or s_het. Blue bars show correlation of estimated selection
coefficients. Bars are grouped by whether they are based on human data or pooled primate data.
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Fig S9. Performance of Poisson random field model in simulations. (A) Inference of
simulated selection coefficients is highly accurate. The x-axis shows the selection coefficient
simulated, as described in the text, while the y-axis shows the inferred selection coefficient using
the method described in the text. The solid black line indicates the line y = x, while the red line is
a moving average. (B) The likelihood ratio test is well powered and has a low false positive rate.
The x-axis shows the ratio between the simulated human selection coefficient and the simulated
primate selection coefficient. The y-axis shows the number of positives at an FDR of 5%
following the Benjamini-Hochberg procedure. Note that the middle point, 10° = 1 indicates no
difference between human and primate selection.
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Fig. S10: Relationship of human and primate missense : synonymous ratio based on
Poisson generalized linear mixed modeling. The x-axis shows the log-scaled missense :
synonymous ratio among polymorphic variants in primates compared. The y-axis shows the log-
scaled missense : synonymous ratio among polymorphic variants in humans. The red line
represents the best-fit relationship as inferred by the model.
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Fig. S11. Illustration of voxelization procedure in 2D projection. (A) Given a target site, the
corresponding structure is reduced to Ca atoms of a particular amino acid type (here: alanine; red),
plus the target Ca atom (blue). A voxel grid (B) is centred on the target Ca (C). The Ca atom (NN)
closest to the first voxel (1,1) is determined. Their Euclidean distance d is divided by maximum
scan radius 7 to obtain a relative distance. Subtracting that ratio from 1 turns the relative distance
into a relative closeness. This procedure is repeated on various levels: for each voxel in the grid;
for each amino acid type; for Cf atoms instead of Ca atoms.
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Fig. S12. Associating voxels with features. (A) Each voxel is associated with its amino acid
distance profile d. (B) The mapping of each voxel center to the closest residue is used to look up
structure quality metrics ¢. (C) Similarly, the mapping is used to associate each voxel with its
evolutionary profile p of the closest residue. (D) Other features that are associated with each voxel
include the 1-hot encoding of the target amino acid before mutation and indicators whether the
central residue has been removed (fill-in-the-blank in 3D; section "Model training") or not. (E)
Feature vectors d, g, p and & are concatenated and used as input to a 3D convolutional neural

network.
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Fig. S13: PrimateAl language model architecture. (A) An initial MSA representation is created
by learned embedding and stacking of MSA sequences. (B) Axial attention blocks develop the
MSA representation. (C) Mask revelation gathers features aligned with mask sites. For each
masked residue in a row, it reveals embedded target tokens at other masked locations in that row.
(D) Attention is applied to gathered rows to interpret mask revelations. (E) MSA features are
gathered from locations where target embeddings remained masked. (F) An output head,
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consisting of a transition and perceptron, maps the gathered MSA representation to predictions.
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Fig. S14. Evaluation performance of the language modelling part of PrimateAI-3D
(PrimateAl LM-only). The performance of Primate Al LM-only is compared to the replicated
VAE part of EVE (labelled “EVE*”) model and their combined score (labelled “PrimateAl
LM-+EVE*-only”). It is further compared to a selection of competitive unsupervised methods
(ESM1v, SIFT, LIST-S2). In clockwise direction starting from the top left, the individual panels
correspond to evaluation on DDD vs UKBB, DMS assays, ClinVar, ASD, CHD, DDD and
UKBB. For DMS assays and UKBB, the summary statistics are given in terms of absolute value
(Icorr]) of correlation between score and an experimental measure of pathogenicity, i.e., mean
phenotype (UKBB) or assays score (DMS assays). For DDD/ASD/CHD, we calculated the P-
value of Mann-Whitney U test for control and case distributions over all datasets. For ClinVar,
we measured the AUC averaged over all genes.
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Fig. S15. Combining performance metrics from all evaluation datasets. (A) For each of the

six evaluation datasets, the performance metric of each method was divided by the maximum

performance achieved across all methods. The average of that percentage across datasets is the
“Mean percentage of best method” for each method. (B) The rank of the performance metric of
each method is determined separately for each dataset and then averaged to create one mean rank
value for each method.
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Fig. S16. Fractions of ClinVar variants covered by genes in ClinVar. The x-axis is the percentage of
genes in ClinVar with at least one 1-star variant annotation. The y-axis is the percentage of ClinVar 1-star
variants covered by genes in ClinVar. Each point in a line indicates the minimum percentage of genes
required (x-axis) to cover a certain percentage of ClinVar variants (y-axis). For example, 50% of all
pathogenic variants in ClinVar come from 1.8% of ClinVar genes.
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Fig. S17. Dependency of pathogenicity scores on the per-gene ratio of benign to pathogenic variants
in ClinVar. We calculated the ratios “#benign/(#benign+#pathogenic)” for ClinVar genes with at least one
benign and pathogenic variant (x-axis). For each prediction method, we then calculated the mean score for
each gene (y-axis). Fitting a separate regression line for each method, the slope of PrimateAI-3D (-0.31) is
below the slopes of other methods (-0.428 to -0.484), indicating that other classifiers’ performance on
ClinVar are affected by fitting to the per-gene ratio of benign to pathogenic variants in ClinVar, likely
because they were trained directly on ClinVar or highly overlapping databases such as HGMD.
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Fig. S18. Global ClinVar ROC curves. Other methods represent those classifiers used in Fig. 3.
For PrimateAI-3D, the point that maximizes sensitivity+specificity is highlighted (sensitivity:
84.7%; specificity: 84.1%; percentile threshold: 57.7). This sensitivity+specificity is also the

maximum among all other methods.
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Fig. S19. PrimateAI-3D detects low-confidence ClinVar annotations. We took different percentages of
the most confident PrimateAl-3D predictions and measured their agreement with benign and pathogenic
annotated missense variants found in the September 2017 version of ClinVar. We also distinguished
between ClinVar variants whose annotations were changed or unchanged between September 2017 and
September 2021. We determine the odds of annotation change in variants that agree between PrimateAl-
3D and ClinVar (left panel). We do the same for variants that disagree. The y-axis is the conditional
maximum likelihood estimate of the ratio of the two odds. The x-axis indicates the fraction of top
PrimateAlI-3D variants. For example, a 20% fraction of variants means that we used the 10% most
pathogenic and 10% most benign predicted variants. The x-axis of the right panel is the same as in the left
panel and the y-axis indicates the Fisher’s exact test P-value of the corresponding odds ratio shown in the
left panel.
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Fig. S20. Impact of training dataset size on classification accuracy (extended). Performance
of PrimateAI-3D increases with the number of common human and primate variants in the training
dataset (x-axis). Performance of each dataset (y-axis) was divided by the maximum performance
observed across all training dataset sizes. ASD and CHD are highlighted because they were
excluded in Fig. 5A.
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Fig. S21. Saturation of human synonymous variants by sampling common variants present
in the 521 extant primate species. The line colors represent various sample sizes for the
simulated primate species, including 10, 20, 50, 100, 200, 500 and 1000.
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Fig. S22. Number of genome-wide significant genes by missense pathogenicity prediction
methods, identified through enrichment of de novo mutations over expectation. Note that
due to the small number of genes discovered (< 300) the differences between the algorithms are
not significant.
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Fig. S23: Cropping, padding, and masking of MSAs for PrimateAl LM. A location of interest
in the query sequence is indicated by an X, mask locations are black, padding is gray, and crop
regions are indicated by a dashed line. In these examples, mask stride is 3 and cropping window
width is 6 residues. (A) Away from MSA edges, a position of interest is at the right side of the
center of the crop region. (B) A crop region is shifted to the right of the location of interest to avoid
going over an MSA edge. (C) An MSA for a short protein is padded to fill a crop region. (D) A
crop region is shifted to the right of a location of interest to minimize padding and the MSA is
padded to fill the crop region.
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Fig. S24. MSA masking, learned embedding, and chunk stacking. (A) Part of an MSA with a
contiguous set of residues and a random set of non-query protein sequences is sampled. (B) A
fixed mask pattern is applied to a chunk of sequences at the start of the MSA. In this example, the
mask pattern is applied to the first 4 sequences and has a stride of 3. (C) Tokens are replaced with
learned embeddings, which are summed with learned position embeddings for residue columns
before layer normalization. The embedded tokens are divided into chunks, which (D) are
concatenated in the channel dimension and then linearly projected to form an initial MSA
representation.
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Fig. S25. PrimateAl language model components. (A) Tied row-wise gated self-attention. (B)
Row-wise gated self-attention. (C) Column-wise gated self-attention. (D) Transition. Dimensions

are shown for sequences, s = 32, residues, r = 256, attention heads, h = 12, and channels, ¢ =
64 and CMsa = 768.
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A Gather features along rows at positions B For each column, concatenate MSA C Project features, in preparation for
corresponding to mask locations representation with masked targets to interpretation by self-attention
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Fig. S26. Mask revelation. (A) A mask pattern is used to gather features, indicated with dots,
from the updated MSA representation and embedded target tokens. (B) For each protein, for each
masked residue in that protein, reveal embeddings for residues at other masked locations within
that protein. The partially revealed target embeddings are concatenated with the MSA
representation and (C) linearly projected, in preparation for interpretation by self-attention.
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Fig. S27. Revelation output head. Dimensions are shown for channels, cysp = 768, and
vocabulary size, v = 21.
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Fig. S28. Top-1 training accuracy. Training accuracies are averaged over 103 iteration segments
for six Primate Al LM models used in our ensemble. The accuracies are lower for query sequences,

which do not contain gap tokens.
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Supplemental tables

Table S1. 36 pathogenic ClinVar variants present in primates curated by our clinical
laboratory experts. A variant may occur in multiple species, shown in multiple rows. Curation
evidence is provided along with extra information on each variant, including in silico tool
predictions, penetrance, hypomorphic or not, recessive/dominant, etc.

Table S2. Expected and observed counts, inferred selection coefficients, and missense :
synonymous ratio deviation for 18,883 human genes. Expected and observed synonymous
counts in humans are in columns exp _syn_h and obs_syn_h, respectively, and expected and
observed missense counts in humans are exp_mis_h and obs_mis_h, respectively. Expected and
observed synonymous counts in the primate cohort are exp _syn_p and obs_syn_p, respectively,
and expected and observed missense counts in the primate cohort are obs_mis_p and exp _mis_p,
respectively. Selection coefficients in human and primate are indicated by s_human and
s_primate, respectively. Benjamini-Hochberg corrected p-values testing the null hypothesis that
s_human =s_primate are provided under p.adj.popgen. MSR regression was only performed on
12,738 genes passing cut offs. Genes that did not pass the cutoff have a low_quality flag set to
TRUE. For genes in the MSR regression, the log-scaled deviation from expected MSR is given
under MSR_deviation. Benjamini-Hochberg corrected p-values testing the null hypothesis

MSR _deviation = 0 are provided under p.adj.MSR.

Table S3. Performance of PrimateAI-3D and 16 other pathogenicity classifiers on six
benchmarking datasets. Information about the six evaluation datasets (UKBB, DDD, ASD,
CHD, ClinVar and DMS assays) is provided, including the number of patients and the number of
variants, as well as evaluation methods. Performance metrics of PrimateAI-3D and 16
pathogenicity classifiers are provided in the remaining columns. The average rank of
performance across datasets of each method is provided in the last row, with 1

corresponding to the best overall performing across all datasets and a rank of 17

corresponding to the worst.

Table S4. PrimateAI-3D performance on 42 genes with phenotype

associations from UKBB. Column “Phenotype” provides 41 phenotypes and column
“EnsemblelD” provides 42 genes. For each of 78 gene-phenotype pairs, the number of common
variants and evaluation metric of PrimateAI-3D (absolute value of Spearman correlation) are
provided.

Table SS. Enrichment of de novo mutations for all genes with >0 nonsynonymous de novo
mutations. P-values are provided for two enrichment tests, one with missense mutations
restricted to PrimateAI-3D scores > 0.821, and the other including all missense mutations.

Table S6. Performance of PrimateAI-3D and 16 other pathogenicity classifiers on 9
saturation mutagenesis assays. Absolute value of Spearman correlation of prediction scores of
17 classifiers (rows) with assay measurement across the 9 saturation mutagenesis assays
(columns labelled by gene symbol) are provided.
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