Supplemental material

Molecular basis for GIGYF-TNRC6 complex assembly

Meghna Sobti^{1,2}, Benjamin J. Mead³, Alastair G. Stewart^{1,2}, Cátia Igreja^{4,*}, Mary Christie^{1,2,3,*,^}

¹Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac
Research Institute, Sydney, New South Wales 2010, Australia
²School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, New South
Wales 2052, Australia
³School of Life and Environmental Sciences, The University of Sydney, Sydney, New South
Wales 2006, Australia
⁴Department of Integrative Evolutionary Biology, Max Planck Institute for Biology, MaxPlanck Ring 9, D-72076 Tübingen, Germany

*Correspondence to:

catia.igreja@tuebingen.mpg.de, +49 7071601432

tara.christie@sydney.edu.au, +61 293512001

^Present address:

School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia

	GIGYF1-TNRC6C	GIGYF2-TNRC6A	
PDB code	7RUQ	7RUP	
Space group	C121	P212121	
Unit cell			
Dimensions	99.92, 32.50, 69.58	32.78, 38,31, 62.06	
a,b,c (Å)			
Angles	90, 133.84, 90	90, 90, 90	
α,β,γ (°)			
Data collection			
Wavelength (Å)	0.9537	0.9537	
Resolution	29.63-1.79	19.43-1.23	
Observed reflections*	99534	303634	
Unique reflections*#	15377 (861)	23420 (1130)	
Completeness (%)*#	99.5 (94.3)	100 (100)	
Multiplicity*#	6.5 (5.9)	13.0 (11.7)	
R _{merge} (%)*#	9.6 (61.9)	9.6 (129.7)	
CC(1/2) *#	0.997 (0.747)	0.999 (0.778)	
$*^{\#}$	11.2 (3.0)	13.6 (2.0)	
Wilson B (Å ²)	19.6	11.5	
Refinement			
Resolution	29.63-1.79	19.43-1.23	
R_{work}/R_{free}	16.55/18.93	15.21/17.69	
Protein molecules/asu	4	2	
Number of atoms			
Protein	2209	1148	
Ligand/ion		5	
Water	70	96	
B-factors (Å ²)			
Protein (Chains	24.7, 31.7, 27.0, 32.9	14.1, 18.1, -, -	
A,B,C,D)			
Ligand/ion		17.0	
Water	32.4	26.2	
Ramachandran plot			
Favored (%)^	98.44	100	
Outliers (%)^	0	0	
Root mean square			
deviation	0.011	0.01.	
Bond lengths (A)	0.011	0.015	
Bond angles (°)	1.238	1.389	

 Table S1. Data collection and refinement statistics

*Output from Aimless

[#]Values in parenthesis are of the highest resolution shell

^Calculated by Molprobity

Protein	Name of the	Fragment/mutations	Location of mutations
CICVE1	CICVE1 full longth	1 1025	
075420	CICVF1 C*	1-1033	AEUD hinding site
073420	GIGIFIC	1-1055/159A, 141A, MA6A 1A7A	4EHF-binding site
	CICVE1 C* CVE*	1 1035/V30A V/1A	AEHD hinding site
		$M_{16\Lambda} I A_{7\Lambda} V_{70\Lambda}$	DDCA hinding site
		F490A W498A F504A	rrow-onlong site
	GIGYF1 F533E	1-1035/F533E	Phe nlug
	GIGYF1 GYF domain	470-538	i no piug
	GIGYF1 GYF domain	470-538/F533E	Phe plug
	F533E		1
	GIGYF1 GYF domain	470-538/F533W	Phe plug
	F533W		1 0
	GIGYF1 GYF domain	470-538/W498A	PPGΦ-binding site
	W498A		
GIGYF2	GIGYF2 full-length	1-1299	
(isoform 1)	GIGYF2 C*	1-1299/Y41A, Y43A,	4EHP-binding site
Q6Y7W6-1		M48A, L49A	
	GIGYF2 GYF*	1-1299/Y538A, F549A,	PPGΦ-binding site
		W557A, F563A	
	GIGYF2 F592E	1-1299/F592E	Phe plug
	GIGYF2 GYF domain	529-597	
	GIGYF2 GYF domain	529-597/F592E	Phe plug
	F592E		
	GIGYF2 GYF domain	529-597/F592W	Phe plug
	F592W		
	GIGYF2 GYF domain	529-597/W557A	PPGΦ-binding site
	W557A		
TNRC6A	TNRC6A full-length	1-1709	
(isoform 2)	TNRC6A PPGL motif	1476-1486	
Q8NDV7-2		1405 1405	
TNRC6B	TNRC6B PPGL motif	1487-1497	
(isoform 2)			
	TNDC(C DDCL	1470 1490	
INRC6C	INRC6C PPGL motif	14/0-1480	
(1SOTOTILI 1)			
<u> </u>	TTD DDC & motif	68 78	
P26651	IIF FFGΨ motil	00-70	
4FHP	4FHP full_length	1-245	
(isoform 1)			
060573-1			

 Table S2. Constructs and mutants used in this study

Figure S1. Structure of GIGYF1/2 GYF domains in complex with TNRC6 peptides. (A) The structure of GIGYF2-TNRC6A was refined to 1.23 Å and the final 2Fo-Fc density for the

peptide is shown in blue mesh contoured at 1σ . (B) The structure of GIGYF1-TNRC6C was refined to 1.79 Å and the final 2Fo-Fc density for the peptide is shown in grey mesh contoured at 1σ . (C-F) AlphaFold models (Jumper et al. 2021) of the human TNRC6 proteins and *Drosophila melanogaster* (*Dm*) GW182. The "PPGL" motifs are shown as colored spheres.

Figure S2. The Phe plug is conserved in CD2BP2 GYF domains from yeast to humans. Sequence alignment of CD2BP2 class GYF domains with the "GYF" motif boxed in purple. The conserved Phe plug residue is denoted by the red asterisk, and the defining Trp residue of the CD2BP2 class of GYF adaptors is indicated by the red arrow. The species abbreviations are as follows: *Dm* (*Drosophila melanogaster*), *Dr* (*Danio rerio*), *Nv* (*Nematostella vectensis*), *Sc* (*Saccharomyces cerevisiae*).

Figure S3. The Phe plug does not appear to be conserved in *A. thaliana* GYF domains. (A and B) The position of the Phe plug was predicted by AlphaFold (Jumper et al. 2021). (C) Alignment of GYF domains from *A. thaliana*. A Phe residue is located directly C-terminal to the α 2 helix in some GYF domains (red dashed box). A "PPGF" motif is found at the C-terminus of the EXA1 GYF sequence (blue box). (D) Predicted structures of *A. thaliana* GYF domains by AlphaFold superimposed onto ATG08430 (green; PDB ID 1WH2). (E) Superimposition of GIGYF2 onto predicted structures of AT2G18090 (gold), AT2G16485

(purple) and AT3G51120 (grey). The Phe residues C-terminal to the a2 helix are highlighted in red dashed box for the plant domains, and the GIGYF2 Phe plug is denoted by red asterisk. (F) Superimposition of GIGYF2 onto predicted structures of AT1G24300 (magenta), AT1G27430 (teal) and AT5G43950 (EXA1; slate). The EXA1 "PPGF" motif is not shown but extends from the C-terminal helix (denoted by slate "*C*"). For all superimpositions, the RMSD values are shown over the indicated number of C α residues (in parentheses).

Figure S4. The Phe plug contributes to GIGYF2 GYF domain stability. (A and B) Mutation of the Phe plug to a Glu does not prevent PRS-containing peptides from interacting with the GIGYF1/2 GYF domain. The wildtype His₆-GYF domains served as positive controls. (C and D) GFP-tagged full-length GIGYF1/2 interacts with HA-tagged full-length 4EHP in HEK293T cells and substitution of four residues within the 4EHP-binding site (C*) disrupted this interaction, as indicated by Western blot analysis. The interaction was not affected by Phe plug mutations F592E and F533E in GIGYF2 and GIGYF1, respectively. GFP-MBP and GFP-F-Luc served as negative controls. (E) Thermal shift assays using wildtype, F592E and F592W GIGYF2 GYF domains. Lysozyme was used as a positive control and the apparent melting temperature is similar to previous reports (Deore and Manderville 2019). Each assay was performed in triplicate and representative curves are shown. (F and G) Mutation of the Phe plug to a Trp does not prevent PRS-containing peptides from interacting with the GIGYF1/2 GYF domain. The wildtype His₆-GYF domains served as positive controls.

References

- Deore PS, Manderville RA. 2019. Aptamer-induced thermofluorimetric protein stabilization and G-quadruplex nucleic acid staining by SYPRO orange dye. *New Journal of Chemistry* **43**: 4994-4997.
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al. 2021. Highly accurate protein structure prediction with AlphaFold. *Nature*.