YMTHE, Volume 31

Supplemental Information

Extracellular vesicle-encapsulated

CC16 as novel nanotherapeutics for treatment

of acute lung injury

Yohan Han, Yin Zhu, Sultan Almuntashiri, Xiaoyun Wang, Payaningal R. Somanath, Caroline A. Owen, and Duo Zhang

Supplemental Figures

fig. S1. CC16 positive sEVs (CC16⁺ sEVs) are mainly released from epithelial cells. BALF sEVs from pooled normal humans (n = 10) and pneumonia patients (n = 21) were examined by western blot. CC16⁺ sEVs were purified by CC16 antibody-coated magnetic beads. sEVs positive markers (CD9, CD63, and Flot1) are detected in 50 μ g of sEVs or CC16⁺ sEVs. The Pan-CK, MPO, α -SMA, and CD31 were used as epithelial cell markers, neutrophil markers, smooth muscle cell markers, and endothelial cell markers, respectively.

fig. S2. LPS treatment reduces sEV-carried CC16 derived from murine BALF. (A-D) Mice (n = 5 per group) received 50 μ L PBS or 1 μ g LPS (in 50 μ L PBS) via i.t. Mice were sacrificed 24 h after treatment. BALF sEVs (200 μ g) from PBS- or LPS-treated mice (n = 5) were isolated and then analyzed. Representative TEM images of sEVs were shown. Scale bar = 100 nm (A). Size distribution (B), average size (C), and particle numbers (D) were determined by NTA. Data are mean \pm SD. The data were analyzed using two-tailed unpaired Student's t-test. ns; p > 0.05; *, p < 0.05. (E and F) MS was used to measure the number of CC16-derived amino acids in 20 μ g pooled BALF sEVs from PBS- or LPS-treated mice (n = 5).

fig. S3. sEV-CC16 generated from BEAS-2B with stable expression of CC16 protein inhibits cytokine and chemokine gene expressions in vivo. (A) Schematic overview of generation of BEAS-2B with stable expression of CC16 protein. Electroporation-mediated transfection of pRP-CC16 or vector was conducted and stabilized the cells for 2 - 3 days. Stably transfected cells were selected using 1 μ g/mL puromycin. Parts of the figure were drawn by using pictures from Servier Medical Art (http://smart.servier.com/), licensed under a Creative Commons Attribution 3.0

Unported License (https://creativecommons.org/licenses/by/3.0/). (**B**) CC16 staining was performed on BEAS-2B-Con and BEAS-2B-CC16 using an antibody against CC16. Scale bar = 100 µm. (**C-F**) LPS (1 µg in 50 µL PBS) was delivered into murine lungs (5 to 8 mice per group) via the i.t. route. After 3 h, mice were treated with 7.5×10^{10} (in 50 µL PBS) sEV-Con, sEV-CC16, or 50 µg (in 50 µL PBS) rCC16 via the i.t. route. Lung tissue and BAL were collected 24 h after sEV administration. mRNA levels of cytokines (**C**) and chemokines (Cxcl1, Cxcl2, and Ccl2) (**D**) in lung tissues were measured by RT-qPCR. mRNA levels of cytokines (II-1 β , II-6, and Tnf- α) (**E**) and chemokines (**F**) (Cxcl1, Cxcl2, and Ccl2) in BAL cells were measured by RT-qPCR. Results represent mean ± SD and were analyzed by a one-way ANOVA followed by Tukey's HSD. ns, p > 0.05; *, p < 0.05; *, p < 0.01.

fig. S4. sEV-CC16 protects *K. p*-induced lung injury in mice. Mice (n = 5 per group) received 5×10^3 CFU of *K. p* in 50 µL PBS via i.t. After 3 h, mice were given sEV-Con (7.5×10¹⁰ in 50 µL PBS), sEV-CC16 (7.5×10¹⁰ in 50 µL PBS), or rCC16 (2 mg/kg body weight) via the i.t. route. Mice were sacrificed 24 h after sEVs treatment. Schematic illustration of delivery of sEV-Con and sEV-CC16 into *K. p*-pretreated mice (**A**). H&E staining was performed using BAL cells and lung sections. M: macrophage; N: neutrophil; Red arrows: neutrophils; Blue arrows: increased alveolar disruption with hyaline membranes. Scale bar =100 µm (**B**). (**C-D**) The number of macrophages (**C**) or neutrophils (**D**) from BALF was counted. Lung injury was scored based on histological images (n = 5 per group) (**E**). Lung wet to dry weight ratios were calculated (**F**). Protein levels of IL-1β (**G**), TNF- α (**H**), CXCL-1 (**I**), and CXCL-2 (**J**) in BALF were detected using ELISAs. mRNA levels of cytokines (II-1β, II-6, and Tnf- α) (**K**) and chemokines (Cxcl1, Cxcl2, and Ccl2) (**L**) in lung tissues were measured by RT-qPCR. The results were presented as mean ± SD. The data were analyzed by a one-way ANOVA followed by Tukey's HSD. ns, p > 0.05; *, p < 0.05; **, p < 0.01.

fig. S5. LPS-induced lung injury decreases CC16 level of lung and BALF. (A-B) Mice (n = 5 per group) received 1 µg LPS (in 50 µL PBS) via i.t. After 24 h, mice were sacrificed for immunofluorescence staining of lung tissue (A). Scale bar = 100 µm. Relative fluorescence intensity is measured by Image J software (B). (C) Protein level of CC16 in BALF without EVs was detected using ELISAs. (D) Protein level of CC16 in normal human (n = 10) BALF without EVs and pneumonia patients (n = 21) BALF without EVs is detected using ELISAs. The results presented as mean ± SD. In panels B and C, results are analyzed by two-tailed unpaired Student's t-test. In panel D, the boxes in the boxplots show the medians with 25th and 75th percentiles, and the whiskers show the Min and Max value. Data are analyzed using a Kruskal-Wallis one-way ANOVA followed by pairwise testing with Mann-Whitney U tests. **, p < 0.01.

fig.S6. Characterization of CC16 knockdown mice and sEVs isolated from BALF. Mice (n = 6 per group) receive control siRNA (siCon) or CC16 siRNA (siCC16) via i.t. After 3 days and 5 days, mice were sacrificed. (A) Protein level of CC16 in the lung tissue is taken by western blot. β -actin is used as loading control. (B) Band intensity is measured by Image J software and CC16 expression level is normalized by β -actin. (C) Protein level of CC16 in BALF is detected using ELISAs. (D) sEVs are isolated from BALF 5 days after siCon or siCC16 treated mice. sEVs positive markers (CD9, CD63, and Flot1) and CC16 are detected in 100 µg sEVs protein using western blot. (E) Results are presented as mean ± SD. In panel B, Data are analyzed by one-way ANOVA followed by Tukey's HSD. In panels C and E, results are analyzed by two-tailed unpaired Student's t-test. **, p < 0.01.

fig. S7. sEV-CC16 ameliorates LPS-induced lung injury without complications. Schematic illustration of delivery of sEV-Con and sEV-CC16 into LPS-pretreated mice after CC16 knockdown (**A**). Mice were intratracheally treated with CC16 siRNA and maintained for 5 days. After inducing knockdown, LPS treatment was applied, and sEV-Con or sEV-CC16 was treated 3 hours later. Mice were then maintained for 24 h (**B-E**; n = 6 per group) or 1 week (**F-K**; n = 5 per group). H&E staining of BAL cells. M: macrophage; N: neutrophil. Scale bar = 100 μ m (**B**). The number of BALF macrophages (**C**) or neutrophils (**D**). Lung wet to dry weight ratios (**E**). Weight

change ratio of mice body was recorded after inducing CC16 knockdown (**F-H**). Lung wet-to-dry weight ratios on day 7 (**I**). H&E staining of lung sections (**J**). Red arrows: neutrophils; Blue arrows: alveolar disruption with hyaline membranes. Scale bar = 100 μ m. Lung injury scored (**K**). Results represent mean \pm SD and the data is analyzed by a one-way ANOVA followed by Tukey's HSD. ns, p > 0.05; *, p < 0.05; *, p < 0.01.

fig.S8. sEV-CC16 prevents enlargement of the spleen. Mice (n = 5 per group) receive control siRNA (siCon) or CC16 siRNA (siCC16) via i.t. After 5 days, received 1 µg LPS (in 50 µL PBS) via i.t. After 3 h, mice were given sEV-Con (7.5×10^{10} in 50 µL PBS) or sEV-CC16 (7.5×10^{10} in 50 µL PBS) via the i.t. route. After 1 week, the spleen was collected for image and weight change confirmation (A-B). Results are presented as mean ± SD and are analyzed by one-way ANOVA followed by Tukey's HSD. ns, p > 0.05; *, p < 0.05; **, p < 0.01.

fig. S9. sEV-CC16 inhibits cytokine and chemokine expression in macrophage-like cells. (A-E) 100 ng/mL LPS-treated THP-1 cells were incubated with 5×10^8 /mL sEV-Con, sEV-CC16, or 1 µg/mL rCC16 for 24 h. mRNA levels of cytokines (IL-1 β , IL-6, and TNF- α) and chemokines (CXCL2 and CCL2) were measured by RT-qPCR (n = 3 per group). (F-H) THP-1 cells were infected with *K.p* (MOI 1:5) for 1 h and then were incubated with 5×10^8 /mL sEV-Con, sEV-CC16, or 1 µg/mL rCC16 for 24 h. mRNA levels of IL-1 β , IL-6, and TNF- α were measured by RT-qPCR (n = 3 per group). Results represent mean ± SD and were analyzed by a one-way ANOVA followed by Tukey's HSD. *, p < 0.05; **, p < 0.01. (I-S) 100 ng/mL LPS-treated BMDM were incubated with 5×108 /mL sEV-Con, sEV-CC16, or 1 µg/mL rCC16 for 24 h. PKH26-labeled sEV-Con or sEV-CC16 were added to BMDM for 24 h and the internalization of sEV was observed using a fluorescence microscope. Scale bar = 100 µm (I). The secretion of cytokines (IL-1 β and TNF- α)

and chemokines (CXCL-1 and CXCL-2) was measured by ELISA (n = 3 per group) (**J-M**). mRNA levels of cytokines (II-1 β , II-6, and Tnf- α) and chemokines (Cxcl-1, Cxcl-2, and Ccl2) were determined by RT-qPCR (n = 3 per group) (**N-S**). Results represent mean ± SD and were analyzed by one-way ANOVA followed by Tukey's HSD. ns, p > 0.05; **, p < 0.01.

fig. S10. sEV-CC16 induces DNA damage response genes. (A) Mice received 1 µg LPS in (50 µL PBS) via the i.t. route. After 3 h, mice were treated with sEV-Con or sEV-CC16 via the i.t. route. Mice were sacrificed 24 h after sEV treatment. mRNA levels of Lig1, Pcna, Brca2, and Exo1 are determined by RT-qPCR in BAL cells (n = 8 per group). (B) 100 ng/mL LPS-treated THP-1 cells were incubated with 5×10^8 /mL sEV-Con, sEV-CC16, or 1 µg/mL rCC16 for 24 h. DNA damage response genes were measured by RT-qPCR. (C-E) *K.p*-infected (MOI 1:5) NHBE or BEAS-2B were treated with 5×10^8 /mL sEV-Con or sEV-CC16. mRNAs from treated NHBE were subject to TaqManTM Array Human DNA Repair Mechanism analysis and upregulated genes

are listed (n = 3 per group) (C). Upregulated genes were confirmed using RT-qPCR in NHBE (D) and BEAS-2B cells (E). Results were represented as mean \pm SD and analyzed by two-tailed unpaired Student's t-test. *, p < 0.05; **, p < 0.01.

fig. S11. *Cc16* deficiency results in increased DNA damage in mice. Untreated WT mice and *Cc16* KO mice were maintained in normal condition for 3 months or 18 months. (A) Lung sections from 3-month-old WT and *Cc16* KO mice were stained using an antibody against CC16 (n = 3 per group). Non-immune rabbit IgG was used as a negative control. Scale bar = 100 μ m. (B) Immunofluorescence staining was performed in lung sections from 3-month-old (n = 3 per group) or 18-month-old (n = 8-9 per group) WT and *Cc16* KO mice using an antibody against γ -H2AX. Lung sections from 18-month-old WT mice were stained with non-immune rabbit IgG. Scale bar = 100 μ m. (C) Relative fluorescence intensity is measured by Image J software (n = 3 for 3-month-old WT and *Cc16* KO mice; n = 8 for 18-month-old WT mice; n = 9 for 18-month-old *Cc16* KO

mice). The boxes in the boxplots show the medians with 25th and 75th percentiles, and the whiskers show the Min and Max values. The data is analyzed using two-tailed unpaired Mann-Whitney U test. ns, p > 0.05; **, p < 0.01. (**D**) DNA damage in the lung was measured by TUNEL staining. Scale bar = 100 µm. (**E**) The percentage of TUNEL-positive cells is calculated (n = 3 per group). Results represented mean \pm SD and are analyzed using two-tailed unpaired Student's t-test. ns, p > 0.05; **, p < 0.01.

fig. S12. CC16 suppresses mRNA levels of cytokines through interaction with HSP60. (A-C) mRNA levels of IL-1 β , CXCL2, and IL-8 are detected after transfection of HSP60 and/or CC16 plasmid as indicated. In panel A-B, results are mean \pm SD of 3 independent experiments and analyzed by two-tailed unpaired Student's t-test. In panel C, the results of 3 independent experiments are represented as mean \pm SD and analyzed by a one-way ANOVA followed by Tukey's HSD. ns, p > 0.05; **, p < 0.01.

Characte	Normal	Pneumonia			
ristics	(N = 10)	(N = 21)	<i>p</i> -Value		
Age	$60.2 \pm$	$55.7 \pm$	N.S		
(years),	17.7	16.6			
mean (SD)	4 (10)	10 (55)			
Number of	4 (40)	12 (57)	N.S		
males (%)					
			Detailed info	ormation	
	Age				
Sample #	(years)	Gender	Pneumonia	Source	Sample details
					Normal donor wihout diseases
					including COPD, Idiopathic
1	74	Male	No	BioIVT	Pulmonary Fibrosis and Cystic
					Fibrosis.
					Normal donor wihout diseases
2	66	Ermals	Na		including COPD, Idiopathic
Z	00	Female	NO	B101 V 1	Fulmonary Fibrosis and Cystic
					FIDIOSIS.
					including COPD Idiopathic
3	53	Male	No	BioIVT	Pulmonary Fibrosis and Cystic
5	55	Withe	110	DIOLAI	Fibrosis
					Normal donor wihout diseases
					including COPD. Idionathic
4	44	Female	No	BioIVT	Pulmonary Fibrosis and Cystic
					Fibrosis.
					Normal donor wihout diseases
					including COPD, Idiopathic
5	23	Female	No	BioIVT	Pulmonary Fibrosis and Cystic
					Fibrosis.
					Normal donor wihout diseases
					including COPD, Idiopathic
6	76	Female	No	BioIVT	Pulmonary Fibrosis and Cystic
					Fibrosis.
					Normal donor wihout diseases
-	60				including COPD, Idiopathic
	68	Male	No	BIOLVT	Pulmonary Fibrosis and Cystic
					F1DrOS1S.
					including COPD Idionethic
0	50	Fomalo	No	BioIVT	Pulmonary Eibrosis and Cystic
0	50	remate	NO	DIOLAI	Fibrosis
					Normal donor wihout diseases
					including COPD Idionathic
9	67	Female	No	BioIVT	Pulmonary Fibrosis and Cystic
-	07	1 0111110	110	2101 1	Fibrosis.
					Normal donor wihout diseases
					including COPD, Idiopathic
10	81	Male	No	BioIVT	Pulmonary Fibrosis and Cystic
					Fibrosis.
11	82	Male	Yes	Discovery	
				Life	Pnuemonia positive (Escherichia coli)

Table S1 Clinical characteristics of study subjects

				Sciences	
				Discovery	
				Life	Pruemonia positive (Stanbylococcus
12	55	Male	Ves	Sciences	lugdunensis Methicillin resistant
12	55	White	105	Inc	Staphylococcus aureus)
				Discovery	Supriyrococcus uncus)
				Life	
13	78	Male	Yes	Sciences	Pnuemonia positive (Pseudomonas
				Inc	aeruginosa)
				Discovery	.
				Life	
14	65	Female	Yes	Sciences	Pnuemonia positive (Pseudomonas
				Inc	aeruginosa)
				Discovery	
				Life	
15	55	Female	Yes	Sciences	Pnuemonia positive (Gram-negative
				Inc	bacıllı)
				Discovery	
16	10	Essente	Vaa	Life	Phuemonia positive (Providencia
10	19	Female	res	Inc	stuartii Achrombacter Xylosoxidans/
				Discovery	proteus miraoms)
				Life	
17	31	Male	Ves	Sciences	Pnuemonia positive (Gram-negative
17	51	White	105	Inc	bacilli)
				Discovery	
				Life	
18	42	Male	Yes	Sciences	Pnuemonia positive (Gram-negative
				Inc	bacilli)
				Discovery	
				Life	
19	31	Male	Yes	Sciences	Pnuemonia positive (Gram-negative
				Inc	bacilli)
20	45	Male	Yes	BioLINCC	ARDS positive, primary pneumonia
					ARDS positive, primary aspiration,
21	44	Male	Yes	BioLINCC	secondary pneumonia, secondart
					trauma
22	60	Female	Yes	BioLINCC	ARDS positive, primary pneumonia
23	71	Female	Yes	BioLINCC	ARDS positive, primary pneumonia
24	45	Male	Yes	BioLINCC	ARDS positive, primary pneumonia
25	71	Male	Yes	BioLINCC	ARDS positive, primary pneumonia
					ARDS positive, primary sepsis site
26	65	Female	Yes	BioLINCC	lung pleura, primary pneumonia
27	60	Female	Yes	BioLINCC	ARDS positive, primary pneumonia
28	71	Female	Yes	BioLINCC	ARDS positive, primary pneumonia
29	71	Male	Yes	BioLINCC	ARDS positive, primary pneumonia
20			17	D' I DIGG	ARDS positive, primary aspiration,
30	44	Male	Yes	BIOLINCC	secondary pneumonia, secondart
					APDS positivo primory consis cita
31	65	Female	Vac	Biol INCC	lung pleure, primary proumonic
51	05	Temate	1 63	DIOLINCC	ing picura, primary pileumonia

Table S2 WikiPathway

Table S3 DNA oligo sequences

	Name	Forward primer (5' to 3')	Reverse primer (5' to 3')
	mouse IL-		
	10	GCTCTTACTGACTGGCATGAG	CGCAGCTCTAGGAGCATGTG
	mouse Il-	TGGACCTTCCAGGATGAGGAC	GTTCATCTCGGAGCCTGTAGT
	1β	А	G
	mouse	CCCTCACACTCAGATCATCTT	
	Tnf-α	СТ	GCTACGACGTGGGCTACAG
	mouse	CTGGGATTCACCTCAAGAACA	
	Cxcl-1	TC	CAGGGTCAAGGCAAGCCTC
	mouse		
	Cxcl-2	CCAACCACCAGGCTACAGG	GCGTCACACTCAAGCTCTG
	mouse IL-	TAGTCCTTCCTACCCCAATTTC	TTGGTCCTTAGCCACTCCTTC
	6	С	montermotente
	mouse	TTAAAAACCTGGATCGGAACC	GCATTAGCTTCAGATTTACGG
	Ccl2	AA	GT
	mouse		
	Ligl	TTCTGAGCTGTGAAGGGGAG	GACGCTTTGGGAATCCTGATG
	mouse		
	Pcna	TTTGAGGCACGCCTGATCC	GGAGACGTGAGACGAGTCCAT
	mouse	ATGCCCGTTGAATACAAAAGG	
	Brca2	A	ACCGTGGGGGCTTATACTCAGA
qPCR	mouse		
primers	Exol	TGGCTGTGGGATACCTACTGTT	ATCGGCTTGACCCCATAAGAC
	mouse		
			GGGGIAGAIGIIIICAAAIGC
	human II-	CCACAGACCTICCAGGAGAAT	GIGCAGIICAGIGAICGIACA
	Ip 1	G	GG ATCCCCTACACCTTCTCACT
	numan Trf a	CTCTTCTCCCTCCTCCACTTTC	
	I ΠΙ-α		
	numan Cycl 1	AGG GAA TIC ACC CCA AGA	ACT ATO OOO OAT OCA OOA
	LXCI-1		
	Cycl 2	G	CTTCAGGAACAGCCACCAAT
	human Il	CTGTGTGAAGGTGCAGTTTTG	CTCAGCCCTCTTCAAAAACTTC
	8 Numan 11-	CC	тсс
	buman II -		
	6	TG	TG
	human	10	10
	Ccl2	CCCCAGTCACCTGCTGTTAT	TGGAATCCTGAACCCACTTC
	human		
	Lig1	GCCCTGCTAAAGGCCAGAAG	CATGGGAGAGGTGTCAGAGAG
	human		
	Pcna	CCTGCTGGGATATTAGCTCCA	CAGCGGTAGGTGTCGAAGC

	human		
	Brca2	CACCCACCCTTAGTTCTACTGT	CCAATGTGGTCTTTGCAGCTAT
	human		AGGAGATCCGAGTCCTCTGTA
	Exo1	CCTCGTGGCTCCCTATGAAG	А
	human		
	Polq	CTGCGTCGGAGTGGGAAAC	CTGTAGGCTTGCATTCTCCTG
	human		GCAGAAGCGATGGGTTCTTGT
	Mbd4	CCGTCACCTCTAGTGAGCG	А
	human	GAAACTAAGCCGTCCTTTTCA	TCCAGCTCCATGTGAATAACC
	Mapk9	GA	Т
	human		GGAGCTTTATTTCGTGCAGAC
	Mgmt	ACCGTTTGCGACTTGGTACTT	С
	human	GATAAGAGAGCCACGAACCA	
	Tbp	С	GATAAGAGAGCCACGAACCAC
Cloning	human	CGGGGTACCATGCTTCGGTTA	CCGCTCGAGGAACATGCCACC
primers	HSP60	CCCACAGT	TCCCATAC