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Fig. S1. Signal-to-Background Ratio (SBR) and corresponding metastatic stages of current 

technologies reported in literatures and our work. 

 

 

 

Fig. S2. Representative transmission electron microscopy (TEM) images of prepared NPs. 

 

 

 

Fig. S3. Schematic diagram of fabrication processes of phosphorescence NPs. 
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Fig. S4. The RTP property of NPs by bottom-up and top-down methods. (A) Phosphorescence 

spectra of nanoparticles, (B) Phosphorescence delay of nanoparticles.  

 

 

Fig. S5. The RTP property of NPs with different oxygen saturation in PBS solution. The 

phosphorescence spectra (A) and the phosphorescence decay (B) of NPs with the oxygen 

saturation ranging from 0.1% to 80%.  
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Fig. S6. RTP decay curves of NPs determined by FLS980. 

 

  

Fig. S7. Comparison of fluorescence and phosphorescence sensitivity by fluoresceine and 

phosphorescence NPs. The phosphorescence intensity (A) and the maximum emission intensity 

(B) of phosphorescence NPs with concentration ranging from 250 µg mL-1 to 0.03 µg mL-1. 
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Fig. S8. Stiffness response of phosphorescence NPs under different environment. The 

photographs (A), phosphorescence spectra (B) and lifetimes (C) of phosphorescence NPs in PBS, 

10% HA, and 15% gelatin solutions. 

  

Fig. S9. The phosphorescence intensities of NPs as a function of the cycle number of light 

activations. (n = 3, mean ± s.d.). 
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Fig. S10. (A) The afterglow intensities of NPs with varied UV exposure time.  (B) The afterglow 

intensities of NPs after storage for different days at 4 oC (n = 3, mean ± s.d.). 

 

Fig. S11. Cell viabilities of NIH/3T3 (A) and 4T1 (B) cells after incubation with NPs in different 

concentration. (n = 3, mean ± s.d.). 
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Fig. S12. H&E-stained images of major organs of the normal mice after intravenous injection of 

PBS (control) and NPs (n = 3). The scale bars represent 100 μm. 

 

 

 

Fig. S13. Changes of relative body weight of healthy BALB/c mice after intravenous injection of 

PBS and NPs from day 1 to day 20 (n = 3, mean ± s.d.). 
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Fig. S14. Signal and background radiance of pre-irradiated subcutaneous imaging (A) and lymph 

node imaging (B) (n = 3). 

 

 

Fig. S15. Phosphorescence imaging of isolated organs (hearts, livers, spleens, lungs and kidneys) 

from mice bearing 4T1 metastatic tumors at 1.5 h, 3 h, 5 h, 7 h, 12 h and 24 h post intravenous 

injection of NPs after removal of light irradiation at t = 10 s. 
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Fig. S16. H&E-stained images of major organs of the mice bearing 4T1 lung metastases after 

intravenous injection of NPs. The scale bars represent 100 μm. 

 

 

Fig. S17. NPs concentration in different organs from mice bearing 4T1 metastatic tumors at 1.5 h, 

3 h, 5 h, 7 h, 12 h and 24 h post intravenous injection. (M, metastases) (n = 3, mean ± s.d.). 

 

 

Fig. S18. Phosphorescence images captured by IVIS spectrum and plot of fold changes of 

phosphorescence intensities for NPs after incubation with different tissue homogenates (A) and 

different metal ions (B), respectively (n = 3, mean ± s.d.) 
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Fig. S19. (A) Schematic diagram of 4T1 lung metastatic tumor and lungs monitored by 

phosphorescence imaging, CT scan and pathological sections. (B) Phosphorescence images, CT 

images, and H&E-stained images of 4T1 metastatic lungs from day 0 to day 14 (n = 3). Scale bar: 

100 μm. (C) Maximum radiance of phosphorescence imaging of 4T1 metastatic lungs from day 0 

to day 14 (n = 3, mean ± s.d.). (D) Lung volume of 4T1 metastatic lungs from day 0 to day 14 

calculated by Analyze 14.0 software (n = 3, mean ± s.d.). 
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Fig. S20. IHC staining of Bcl-2, TGF-β, TNF-α and VEGF of 4T1 metastatic lungs from day 0 to 

day 14 (n = 3). Scale bar: 20 μm. 

 

 

Fig. S21. Average optical density (AOD) of corresponding IHC stained images calculated by 

ImageJ software. A: Bcl-2. B: TGF-β. C: TNF-α. D: VEGF (n = 6). 
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Fig. S22. Maximum radiance of lungs of control mice from day 0 to day 27 (n = 3, mean ± s.d.). 

 

 

Fig. S23. IHC staining of Bcl-2, TGF-β, TNF-α and VEGF of orthotopic H22 liver tumor 

metastatic lungs from day 0 to day 27 (n = 3). Scale bar: 20 μm. 
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Technologies 

Metastatic 

target 

organ 

Metastatic 

pathway 

Orthotopic 

metastatic 

models 

Diagnosed 

metastatic stage 
SBR Reference 

Phosphorescence 

imaging 
Lung 

Blood-

stream 
No 

Pre-metastatic 

microenvironmental 

changes 

102 
This 

work 

Phosphorescence 

imaging 
Lung 

Blood-

stream 
Yes 

Pre-metastatic 

microenvironmental 

changes 

62 
This 

work 

Fluorescence 

imaging 

Lung 

Liver 

Pancreas 

Kidney 

Bone 

Blood-

stream 
No Secondary tumor 12 (11) 

Fluorescence 

imaging 
Peritoneum / Yes Secondary tumor 12 (12) 

Fluorescence 

imaging 
Back / No Secondary tumor 16 (13) 

Fluorescence 

imaging 

& Naked eye 

Lymph 

node 

Lymphatic 

system 
No Secondary tumor / (50) 

Optoacoustic 

imaging 

Lymph 

node 

Lymphatic 

system 
No Secondary tumor / (51) 

MRI Liver / No Secondary tumor 1.8 (15) 

MRI Liver 
Blood-

stream 
No Secondary tumor 2.9 (52) 

MRI & PET 
Lymph 

node 

Lymphatic 

system 
No Secondary tumor / (53) 

PET & Urine test Lung 
Blood-

stream 
No Secondary tumor / (16) 
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Micro-CT & FMT & 

MRI 

Liver 

Lung 

Blood-

stream 
Yes Secondary tumor 15 (17) 

Chemiluminescence 

imaging 
Peritoneum / No Secondary tumor 23 (20) 

Table S1. Comparison of NPs with other imaging methods in terms of metastatic site, 

metastatic pathway, diagnosed metastatic stages and signal to background ratio. 

 

 

Sample 
Molecular 

structure 

Quantum 

yield 

Phos. 

lifetime 

Subcutaneous 

signal to 

noise ratio 

(SBR) 

Reference 

TPM 

(No.1) 

 

3.7 % 20.1 μs 7 (54) 

m-TPA-N 

(No.2) 

  

17 % 

(11 %) * 

0.025 s 

(9.3 μs) * 
51 (35) 

4-BACZ 

(No.3) 

 

53 % 0.55 s 62 (55) 

CS-C2H5 

(No.4) 
 

3.5 % 0.092 s 30 

(56) 

CS-C3H7 

(No.5) 
 

5.7 % 0.327 s 70 

DMOPy/BPO 

(No.6) 

 

18 % 0.11 s 75 

(27) 

DMAPy/BPO 

(No.7) 

 

20 % 0.18 s 160 

d-DTBT 

(No.8) 
 

20 % 0.28 s 4 (26) 
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t-DTBT 

(No.9) 

 

11 % 0.30 s 17 

s-DTBT 

(No.10) 
 

32 % 0.34 s 230 

M-C2H5 

(No.11) 
  

43 % 33 s 147 

(25) 

M-CH3 

(No.12) 
  

20 % 17 s 310 

CBA-CH3 

(No.13) 

 

52 % 0.868 s 367 (39) 

XCO-PiCl 

(No.14) 
 

5.4 % 0.61 s 375 (57) 

m-PBCM 

(No.15) 

 

13 % 0.71 s 428 (58) 

OSN1-T 

(No.16) 

 

4.9 % 

(11 %) * 
0.861 444 (31) 

M-PhCl 

(No.17) 

  

55 % 

(23 %) * 

6.38 s 

(49 ms) * 
2278 

This 

work 

Table S2. Signal-to-background ratio (SBR) of subcutaneous imaging and corresponding 

lifetimes of pure organic RTP materials reported in literatures and our work. (*Quantum 

yield or phosphorescence lifetime of prepared nanoparticles) 
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