
Supplementary Methods 

Details of Deep Learning Models in the Study 

Details of Nuclei Segmentation Model: 

Training Data: The training data was a publicly available nuclear annotated dataset from the 

MoNuSeg grand challenge1. The dataset comprised 30 images and around 22,000 carefully 

annotated nuclear boundaries. The images in this dataset were downloaded from the TCGA 

archive and comprised tumor slides across seven organs from 18 sites. The inherent diversity of 

nuclei appearance in this dataset allowed for training a robust model. Image patches 

corresponding to 256 × 256 pixels were extracted from these images at ×40 magnification and 

fed into the model during training. 

Model Details: The architecture of the nuclei segmentation model in our study is shown in 

Figure 1 (1b). The Pixel2pixel cGAN2 is an extension of GAN with both the generator and 

discriminator being conditioned on auxiliary image information. The cGAN model adopted an 

end-to-end U-Net network3 as the generator, a multi-layer convolutional network as the 

discriminator, both of which were formed based on Convolution-BatchNorm-ReLu4 modules. 

Feature matching loss5 was additionally added in the standard cGAN loss6 function to improve 

the stability of model training by regulating the generator to generate data that matched the 

distribution of the real data. Conditional GAN has been validated as a robust and promising 

approach for nuclei segmentation task in previous studies7–9. 

Details of Tubule Detection Model: 

Training Data: The training dataset comprised image patches corresponding to n=307 early-

stage breast cancers that were 2000×2000 pixels in size and at 40x magnification. These image 

patches were randomly extracted from manually annotated tumor regions on digitized slides in 

D2 (ECOG 2197). The breast tubule structures in each patch were carefully manually delineated 

by an experienced pathologist. Patches of size 256x256 pixels were extracted from the images 

and following data augmentation, a dataset of 1.22×109 (i.e. over 1.2 billion) patches for model 

training. 

Model Details: We trained a five-layers end-to-end U-Net to segment tubules in breast cancer 

histopathological images. The model was implemented with Adam optimizer and built with 

Convolution-BatchNorm-ReLu4 modules. The combined edge and class weight-based cross-

entropy was employed as the loss function to respectively handle the edge detection and class 

imbalance issue. Twenty tumor tiles were randomly selected from another 20 WSI, respectively, 

with tubule masks overlaid on the top for visual evaluation by an experienced pathologist. One 

of four grades (Excellent, Good, Fair, Poor) was assigned to each tile by the pathologist based 

on visual examination of machine performance for tubule detection on the tile. The reference 

accuracy for each category as assigned by the pathologist was:  Excellent: >90%, Good: 80% - 

90%, Fair: 70%-80%, Poor: <70%.”. 30% of tiles were ranked as "Excellent", 45% of tiles 

"Good", and 25% of tiles "Fair". 

Details of Mitosis Detection Model: 

Training data: The network was trained by a dataset containing 550 annotated mitoses in 311 

images in size 2000 x 2000 pixels at 40x magnification from 12 IBC cohorts10. Considering the 



high inter-observer variability for mitosis annotation11,12, we had a highly experienced (~20 

years) board-certified anatomic pathologist to perform mitosis annotation task to ensure the 

quality of ground truth. This pathologist has had nearly twenty years of experience in reviewing 

breast pathology slides and almost ten years of experience in reviewing digital pathology 

images. Small patches (64x64 pixels) were extracted centering around the mitosis/non-mitosis 

nuclear centroid as the training set. 

Model details: Specifically, the training process of our mitosis detection model consists of patch 

extraction, model training, and model refining. (1) Patch Extraction: We converted the RGB H&E 

images to gray-scale blue-ratio images, where a higher pixel value indicates higher intensity in 

blue channel relative to the red and green channels. Only the high blue-ratio pixels, which were 

evident to capture candidate mitosis, were retained to constitute the training patches for 

computational efficiency. To address the huge class imbalance in the training set due to the 

sparsity of positive (mitotic) pixels, we hypo-sampled the negative class by random subsampling 

and augmented positive class size by expanding each annotated mitotic centroid into a 9-pixel 

radius circle so as to extract multiple mitotic patches from one single mitosis annotation. (2) Model 

Training: We divided the mitotic image dataset into three subsets: a training subset containing 

279 images of size 2000 x 2000 pixels with 499,194 patches of size 64×64 pixels extracted, in 

which 23.6% were positive and 76.4% negative; a validation subset of 56 images with 127,645 

patches; and a test subset consisting of 32 images with 55,092 patches. The model was trained 

using weighted cross-entropy loss in conjunction with an Adam optimizer with image data 

augmentation for training size enhancement. The model yielding the highest accuracy on the 

validation set was selected for further model refining in step 3). (3) Model Refining: To further 

reduce the false-positive detection, we fine-tuned the model with an updated training set by 

randomly substituting 90% of the negative patches with all the false-positive patches classified by 

the initially trained model. The optimal refined model was locked down and yielded a balanced 

accuracy of 0.778 and F1 score of 0.54 on the test set.  

Details of Epithelium Detection Model: 

Training Data: The training data includes the manual annotations of epithelium on 200 digital 

pathology images (512x512 pixels) at 10x magnification collected from Johns Hopkins University 

and Cleveland Clinic Foundation. 

Model Details: The model used for epithelium detection was of the same architecture as the 

nuclear segmentation model described in Section "Details of Nuclei Segmentation Model" and 

Ten tumor tiles were randomly selected from 10 WSI, respectively, with tubule masks overlaid on 

the top for visual evaluation by a pathologist. Each tile was assigned one of the four ranking 

grades (Excellent, Good, Fair, Poor). All tiles were ranked as "Good". The reference accuracy for 

ranking system is the same with the one used for tubule detection assessment.  

Detailed Description of the Extracted Computerized Features:  

Detailed Description of Nuclear Histomorphometric Features: 

• Nuclear Shape features13,14 (N=100) capture the information of nuclear boundary such as 
shape irregularity, which have also been proven to be prognostic for early stage ER+ 
breast cancer14. 

• Nuclear (Haralick) Texture features15,16 (N=26) evaluate the heterogeneity patterns 
relating to the chromatin arrangement within each nucleus.  



• Cell Orientation Entropy (CORE) features17 (N=39) quantitatively measure the disorder of 
nuclear orientation within local neighborhoods, which have been demonstrated to 
correlate with recurrence of prostate cancer17. 

• Cell Cluster Graph (CCG) features18 (N=26) characterize local spatial architecture by 
constructing sub-graphs on the nuclear nodes in the local tumor neighborhood extracting 
features such as cell radius, connectivity, and eccentricity. CCG features have been 
utilized to predict the recurrence risk in prostate cancer18. 

• Global Graph features 19 (N=51) explore nuclear  architecture by taking each nucleus as 
a node and connecting the nodes via Voronoi Diagrams, Delaunay Triangles, and 
Minimum Spanning Trees. The derived nuclear spatial arrangement and nuclear density 
measurements have previously shown to be associated with recurrence risk for invasive 
breast cancer19 and lung cancer20.  

Detailed Description of Mitosis Features: 

• Mitosis Count (N=6):  The patient-level statistics (mean, median, max, standard deviation, 
skewness, and kurtosis) were calculated on tile-level mitotic counts for each patient.  

• Mitosis Count Ratios (N=25): The patient-level statistics (mean, median, max, standard 
deviation, skewness, and kurtosis) were calculated on the ratios of mitotic count to nuclei 
count, blue-ratio nuclei count, and epithelium nuclei count on the tile level, respectively. 
Moreover, mitotic event, detected nuclei, epithelium nuclei, highlighted blue-ratio nuclei 
were also accumulatively counted across the WSI to calculate the ratios of the 
accumulated mitotic count to the other three accumulated counts.  

• Mitosis Density Vector (N=13): A mitotic density vector containing 11-dimensional 
descriptors was constructed. Each bin of the vector calculated the proportion of tiles with 
n (n ϵ 0, 1 … 9, and n ≥ 10) mitotic events on the WSI, respectively21. The histogram 
entropy and approximate entropy of the mitotic density vector also served as part of the 
patient-level mitotic features. 

• Proliferation Score (N=1): Complying with the clinical criteria for tumor proliferation score 
assignment, a proliferation score of 1, 2 or 3 was automatically calculated in each WSI.  
We automated the calculation of the proliferation score on each WSI by simulating the 
clinical mitosis grading scheme (tumor proliferation score 1 corresponds to a mitotic count 
of 0-7 per 10 high-power fields (HPFs)22, score 2 corresponds to 8-15 mitoses count, and 
score 3 corresponds to ≥16 mitotic count23,24.). We calculated the patient-level proliferation 
score feature, as follows: 

    𝑀10𝐻𝑃𝐹𝑠 = 2 ×
∑ 𝑀𝑖

𝑇
𝑖=1

𝑇
= 2𝑀𝑚𝑒𝑎𝑛                                                     (1) 

fscore𝑚𝑒𝑎𝑛 = {

   1, 𝑀10𝐻𝑃𝐹𝑠 ∈ [0,7]

      2, 𝑀10𝐻𝑃𝐹𝑠 ∈ [8,15]
3, 𝑀10𝐻𝑃𝐹𝑠 ≥ 16

                                                 (2) 

where 𝑀𝑖 is the number of mitotic events on the 𝑖th tile, 𝑇 is the number of tiles containing 

mitotic event in a WSI,  𝑀𝑚𝑒𝑎𝑛 is the average mitotic count per tile, and 𝑀10𝐻𝑃𝐹𝑠 is the 
average mitotic count per 10 HPFs.  

 

Detailed Description of Tubule Features: 

• Tubule Nucleus Ratios (N=26): Three tubule ratios, including tubule nuclei count to the 
non-tubule nuclei count, tubule nuclei count to the epithelium nuclei count, and tubule 
nuclei count to the nuclei count were calculated at tile level. Subsequently, eight statistical 
summaries (mean, median, max, standard deviation, skewness, kurtosis, histogram 



entropy, and approximate entropy) were calculated on the three tile-level features to 
generate 24 patient-level tubule nucleus ratio features. Total tubule nuclei count, overall 
nuclei count, and overall epithelial nuclei count in a WSI were also calculated.  

• Tubule Ratio Distribution Vector (N=30): A 10-dimensional vector was calculated 
respectively for the three tile-level tubule ratio features. Each of the vector bins counted 
the number of tiles with ratio values of 0-5/9, 5/9-10/9, …., 35/9-40/9, 40/9-5, and >5 for 
the ratio of tubule nuclei count to the non-tubule nuclei count and the ratio of tubule nuclei 
count to the epithelium nuclei count, ratio values of 0-0.1, 0.1-0.2, …., 0.8-0.9, 0.9-1 for 
the ratio of tubule nuclei count to the nuclei count.  

 

Supplementary figure 1. Flowchart of inclusion and exclusion criteria for patient selection. 

 

Feature category Top feature names Brief description 

Nuclear 
histomorphometric 

features 

MST: MST Edge Length 
Minimum/Maximum_mean 

Average ratio of maximal to minimal edge length 
in Minimum Spanning Trees (MST) constructed 

on nuclei nodes 

Shape: Mean Fourier 
Descriptor6_mean 

Average Fourier descriptor 6 of nuclear 
boundary 

CCG: Number of connected 
components_mean 

Average number of cell clusters in the tumor tiles 

Haralick: standard deviation 
intensity 

information_measure1_mean 

Average value of the standard deviation intensity 
information measure 1 

Mitotic features 

MtsDensity_n7 Computerized proliferation score 

Proliferation score Proportion of tiles with 7 mitotic events on the 
WSI 

Overall nuclei number Overall nuclei number 

M2n on WSI Ratio of mitotic count to the overall nuclei 
number on a WSI 

Tubule formation 
features 

TfiDensity_p2_t2nt Number of tiles with tubule nuclei count to non-
tubule nuclei count (t2nt) ratio value of 5/9-10/9 

Kurtosis_t2nt Kurtosis of tile-level t2nt ratios 

Std_t2epi Standard deviation of tile-level tubule nuclei 
count to epithelium nuclei count ratios (t2epi) 

Max_t2epi Max values of tile-level t2epi ratios 

Supplementary table 1. A detailed description of the identified 12 top features 

 



 

Supplementary figure 2. Illustration of the top 12 identified features between high-risk and low-risk groups 

predicted by IbRiS on all datasets D1+2+3 (D1+D2+D3) with p values calculated by two-sided t-test. The 

first row corresponds to the top four nuclei features: (a1) MST: MST Edge Length Minimum / 

Maximum_mean, (b1) Shape: Mean Fourier Descriptor 6_mean, (c1) CCG: Number of connected 

components mean, and (d1) Haralick: standard deviation intensity information_measure1_mean. The 

second row shows the top four mitotic features: (a2) MtsDensity_n7, (b2) Proliferation score, (c2) Overall 

nuclei number, and (d2) M2n_on_wsi. The third row displays the top four tubule features: (a3) 

TfiDensity_p2_t2nt, (b3) Kurtosis_t2nt, (c3) Std_t2epi, and (d3) Max_t2epi. Among the 12 features, 11 of 

them were found to be significantly discriminative (p<0.001) between the two risk groups. 

 

 

Prognostic feature names Coefficients Feature categories 

TilesCount_n7_norm 19.1082 Mitotic Rates 

TfiCountNorm_p2_t2nt 2.9066 Tubule Formation 

Std_t2epi 1.3910 Tubule Formation 

Proliferation score _mean 0.9979 Mitotic Rates 

Shape: Mean Fourier Descriptor 6_mean 0.3637 Nuclear Morphology 

MST: MST Edge Length Minimum / Maximum_mean 0.1951 Nuclear Morphology 

CCG: Number of connected components_mean 0.0746 Nuclear Morphology 

Kurtosis_t2nt 0.0164 Tubule Formation 

Overall_nuclei_number -1.2752e-08 Mitotic Rates 

Haralick: standard deviation intensity 
information_measure1_mean 

-0.6235 Nuclear Morphology 

M2n_ratio_on_wsi -255.0056 Mitotic Rates 

Supplementary table 2. The assigned coefficients corresponding to each of the top features by the 

prognostic Cox regression model. 



Details of Identification of Optimal Risk Score Threshold 

The approach for identification of the optimal risk score threshold in this study has been 

previously discussed25 and utilized in another clinical study26. Specifically, the optimal threshold 

to dichotomize the continuous risk scores was adaptably set by a traversal search as follows: 

The continuous risk scores were first sorted in descending order across all patients in the 

training set. Subsequently, the average value of each pair of risk scores adjacent to each other 

was calculated to constitute a set of candidate risk thresholds. The candidate risk-thresholds set 

was further narrowed by trimming elements with extreme values from both ends. In the traversal 

search process, every candidate risk threshold was applied to categorize the patients in D1 into 

high-risk or low-risk recurrence groups with the corresponding log-rank p-value and Hazard 

Ratio (HR) calculated. The risk-threshold yielding the maximal HR on D1 was selected as the 

optimal threshold (opt) for classifier IbRiS. 

 

Supplementary figure 3: Distribution of the continuous risk scores on (a) D1, (b) D2, and (c) D3 

 

 

Supplementary figure 4: Prognostic ability of IbRiS on D2 by controlling HER2 status. (a) KM curves 

illustrate the estimates of DFS on IbRiSH (red) versus IbRiSL (blue) on HER2- patients in D2; (b) as well as 



IbRiSH (red) versus IbRiSL (blue) on the HER2- & HER2 unknown patients in D2 both utilizing two-sided 

log-rank test to measure the differences between low- and high-risk groups.  

 

Supplementary figure 5. KM curve estimates for DFS on high versus intermediate versus low ODx risk 

categories in (a) D1 and (b) D2, and high versus intermediate versus low histologic grade in (c) D1, (d) D2 

and (e) D3 with the differences between the risk categories assessed by two-sided log-rank test. ODx risk 

category was significantly prognostic on D2 but not on D1, while histologic grade was prognostic on neither 

D1 nor D2. 

As Supplementary figure 5 shows, the three ODx risk categories were statistically significantly 

distinguishable on D2 and, with the low ODx group demonstrating more favorable outcomes than 

the high/intermediate group. A similar distinguishable trend between the low and 

high/intermediate ODx risk groups was also exhibited on D1, although not statistically significant. 

However, the stratification of recurrence risk between intermediate and high ODx groups was 

ambiguous on both D1 and D2.  

The statistically significant risk stratification was neither identified between the low and 

intermediate histologic grades nor between the low and high histologic grades on any of the three 

cohorts, although the trend that the high histologic grade had worse outcome could be observed 

(note only one patient has low histologic grade in D3 and was thus not shown in the KM curves).  

 



Supplementary figure 6: KM curves estimate the DFS on (a) high & intermediate (red) versus low (blue) 

histologic grades, (b) high (red) versus intermediate & low (blue) histologic grades, (c) as well as high (red) 

versus low (blue) clinical risks. The risk stratification was marginally significant both between the high and 

low histologic grades and between the high and low clinical risk groups as assessed by the two-sided log-

rank test. 
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