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Materials and Methods 

Determination of candidate terminal selectors 

 We used Seurat v3 (43) to determine the sets of differentially expressed TFs that are 

continuously maintained in each neuron from our developmental scRNA-seq atlas of the optic 

lobes (1). First, we subset Seurat objects from each stage to retain only the neuronal clusters. 

Cluster markers were then calculated between these neuronal clusters only using the 

FindAllMarkers function (only.pos=TRUE, otherwise default parameters) which we filtered for 

transcription factors using a list of 629 genes from FlyBase. From these tables, we determined 

for each cluster, the TFs that were picked as its markers in adults as well as in at least 4 out of 

the 5 developmental stages (to buffer against potential errors due to technical variations in 

small clusters). A total of 113 TFs were found to be consistent markers of at least one cluster 

throughout development and in adults (1). 

 Relying on cluster markers alone can be misleading: Some genes may fail to be picked 

up as markers for certain clusters despite being expressed if the level of expression is not 

significantly higher than the average of the rest of the dataset. This could be true even for 

differentially expressed genes. Similarly, some pan-neuronal (or ubiquitous) genes might be 

picked up as markers in some clusters if the level of expression is variable. We thus turned to 

mixture modeling data that we previously generated to binarize the expression of every gene 

in each cluster and stage (1). This method considers, for each gene, the level of expression in 

all clusters in order to assign a probability of expression to each cluster (33). For each of the 

174 neuronal clusters with mixture modeling available at all 6 stages, we determined which of 

the 113 marker TFs had a non-zero probably of expression for a given cluster at every stage. 

However, this can also be error-prone for some genes when there is not a bimodal distribution 

of expression levels among the clusters. Therefore, we combined the two methods: a gene was 

selected as a candidate terminal selector for a given cluster if i) it was found as a consistent 

marker of the cluster as described above, or ii) if it was continuously expressed at all stages 

according to mixture modeling. Lastly, we discarded all TFs that were found to be expressed in 

more than 150 clusters according to mixture modeling (likely pan-neuronal) in at least two of 

the stages. The final table (Fig. S1A, Table S1) contains 95 TFs in total, with a median of 10 

TFs per cluster (min:4, max:16) whose combinations are unique to each cluster. 

 It is important to note that while these results represent our best efforts to binarize a 

complex developmental gene expression landscape, there may still be errors, especially for 
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genes with high variations in their levels of expression, and for smaller clusters that may be 

present in less than 20-30 cells in some of the stages. We thus recommend manual inspection 

of candidate selector expression patterns for cell types of interest as we did here (Fig. 1B, Fig. 
3D) before designing experiments. 

 In order to calculate the distances between cluster pairs (Fig. S1D), we used the Seurat 

V4 function AggregateExpression() with the option return.seurat=TRUE to obtain averaged 

transcriptomes for each cluster. We then calculated the pairwise Euclidian distances between 

all 174 neuronal clusters (15,225 pairs), using the scaled expression values of 95 candidate 

terminal selectors (x-axis) or 2467 cluster markers that were ranked within the top 100 (by 

logFC) markers of any neuronal cluster (y-axis) at P50. Using scaled expression ensures that 

each gene contributes to the distance measure equally regardless of expression level. Note 

that the pairs involving cluster 102 appear to form a distinct regime in Fig. S1D. This is most 

likely an artefact resulting from the fact that cluster 102 is a heterogenous mixture of 

contaminating central brain neurons all present at very low stoichiometry, rather than an actual 

cell type. 

 To produce the cluster dendrograms in Fig. S2, we used the Seurat function 

BuildClusterTree() on the scale.data slot with features specified as all candidate terminal 

selectors (S2A), 36 homeobox candidate selectors (S2B) or the top 100 cluster markers as 

described above (S2C). Clusters were manually grouped into 22 branches in Fig. S2A and 

assigned specific colors accordingly, except for 6 “outlier” clusters that were not given any color. 

The same color scheme was then applied to the trees in S2B and S2C as well to highlight the 

consistency (or lack thereof) between the hierarchical organization of clusters based on 

different gene sets. 

Animal husbandry and genetics 

 All experiments were performed with both female and male (mixed) D. melanogaster 

(except for sequencing experiments, where only females were used) maintained at 25 or 29°C. 

The precise genotypes and temperatures used for experiments in each figure panel are detailed 

in Table S4. Generally, MARCM and sequencing experiments were performed at 25°C, while 

RNAi and most ectopic expression experiments were performed at 29°C. Source details for all 

fly strains are specified in Table S5. Adult dissections were performed within 2 days of eclosion. 

For pupal dissections, white pupae (P0) were selected and then aged until P50 (50h at 25°C 

or ~35h at 29°C) or P30 (30h at 25°C or ~20h at 29°C). Late L3 experiments were performed 

using wandering larvae. Experiments involving tub-Gal80ts were reared at 18°C and then 
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switched to 29°C two days before dissection (L3 dissections) or at late L3 stage (later 

dissections). Heat shocks at 37°C were applied for 15 minutes at L3 stage (MARCM) or for 7-

8 minutes at early pupal (P0-10) stages (flip-out). All genotypes were analyzed in at least 5 

biological replicates (brains); sample sizes are indicated in the figure legends. Animals fitting 

the gender and age criteria were selected randomly from the fly vials for all experiments. 

Antibody generation 

 Polyclonal antibodies against Drgx, Pdm3, SoxN, Mef2, Vsx2, Brp and Repo were 

generated by Genscript (https://www.genscript.com/). 

Amino acids 431-587 of Drgx protein was used to immunize rats: 

SNSVAELRRKAQEHSAALLQSLHAAAAAGLAFPGLHLPPLSFAHHPALGQHVVNHNNNNTM

RMKHEAQDMTMNGLGPGSGSGSGSGSAGGGTSSAALLDLAESAVAYQQQQHATLSPPTT

PTQQSSGGVAATEGSPGSGAIAGSGSLNGNVVLTKME 

Amino acids 801-1292 of Pdm3 protein was used to immunize rats: 

STSAVSSTLPQISLRHPDELTAPQMDLKPLELSASTSPPAPPPRHHFGHSLRGSSTVSPKHS

PQGRMGGSGGSTTTGMNLSQHHERHDRLERLERQERHERRSHTPTATATRASVSSSSSA

GHHGGSLPSGRLSPPSSAPSNSAANSISDRGYTSPLFRTHSPQGHALSLGGSPRLERDYLG

NGPSSGTATSTSSCGAPTAAGSSATANVLSSINRLNASNGELTITKSLGAPTATATRASSASP

RDDSPGPGPSTSSVSHMQPLKLSPSSRSEPPHLSPNGNDNDNDLLMDSPNEPTINQATTNV

VDGIDLDEIKEFAKAFKLRRLSLGLTQTQVGQALSVTEGPAYSQSAICSSALAAQMYAAQLST

QQQNMFEKLDITPKSAQKIKPVLERWMKEAEESHWNRYKSGQNHLTDYIGVEPSKKRKRRT

SFTPQALELLNAHFERNTHPSGTEITGLAHQLGYEREVIRIWFCNKRQALKNTVRMMSKGMV 

The following peptide from SoxN protein (55) was used to immunize rabbits: 

LHYQTDSPDLQQQHQSC 

The entire ORF of the Mef2 protein purified with a His-tag was used to immunize rabbits: 

MGRKKIQISRITDERNRQVTFNKRKFGVMKKAYELSVLCDCEIALIIFSSSNKLYQYASTDMDR

VLLKYTEYNEPHESLTNKNIIEKENKNGVMSPDSPEAETDYTLTPRTEAKYNKIDEEFQNMMQ

RNQMAIGGAGAPRQLPNSSYTLPVSVPVPGSYGDNLLQASPQMSHTNISPRPSSSETDSGG

MSLIIYPSGSMLEMSNGYPHSHSPLVGSPSPGPSPGIAHHLSIKQQSPGSQNGRASNLRVVI

PPTIAPIPPNMSAPDDVGYADQRQSQTSLNTPVVTLQTPIPALTSYSFGAQDFSSSGVMNSA

DIMSLNTWHQGLVPHSSLSHLAVSNSTPPPATSPVSIKVKAEPQSPPRDLSASGHQQNSNG

STGSGGSSSSTSSNASGGAGGGGAVSAANVITHLNNVSVLAGGPSGQGGGGGGGGSNGN

https://www.genscript.com/
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VEQATNLSVLSHAQQHHLGMPNSRPSSTGHITPTPGAPSSDQDVRLAAVAVQQQQQQPHQ

QQQLGDYDAPNHKRPRISGGWGTHHHHHH 

The following epitope from Vsx2 protein was used to immunize rabbits: 

TEAPTDLTTTAGATVAKERQTPTPPKTTNATMATAATSAATAATPTNAAEGNLTSVSEPQQQ

PQQQQQEQQHHQPHHHQYREHHQMTMAAASRMAYFNAHAAVAAAFMPHQLAAAVHHHH

QHQHQHHPHHHPHHPHGAVGGPPPPPPMQHHHPHHPHHPLLHAQGFPQLKSFAAGAGTC

LPGSLAPKDFGMESLNGFGVGPNSKKKKK 

Amino acids 221-401 of Brp protein was used to immunize guinea pigs: 

TDVQRQQLEQQQKQLEEVRKQIDNQAKATEGERKIIDEQRKQIDAKRKDIEEKEKKMAEFDV

QLRKRKEQMDQLEKSLQTQGGGAAAAGELNKKLMDTQRQLEACVKELQNTKEEHKKAATE

TERLLQLVQMSQEEQNAKEKTI MDLQQALKIAQAKVKQAQTQQQQQQDAGPAGFLKSFF   

The following epitope from Repo protein was used to immunize guinea pigs: 

MEHDSFDDPIFGEFGGGPLNPLGAKPLMPTTTAMHPVMLGSVHELCSQQQQQQQQQRLPD

CNTILPNGGGGGAGSGGAGG SPNYVTKLDFVNKMGCYSPSQKYEYISAPQKLVEHHHHHH 

DrgxΔTm1 allele 

 CRISPR-mediated mutagenesis was performed (WellGenetics Inc) to produce a 

genomic deletion of the Tm1-specific enhancer element we identified in the Drgx locus (see 

below the snATAC-seq analysis section). In brief, the upstream gRNA sequence 

AGCAATTCGCTATCCTTCGC[TGG] and downstream gRNA sequence 

TTCGACTGGACAGCTTAGTC[TGG] were cloned into U6 promoter plasmid(s) separately. The 

cassette 3xP3-RFP, which contains a floxed 3xP3-RFP, and two homology arms were cloned 

into pUC57-Kan as donor template for repair. gRNAs and hs-Cas9 were supplied in DNA 

plasmids, together with donor plasmid for microinjection into embryos of the control strain w1118. 

F1 flies carrying selection marker of 3xP3-RFP were further validated by genomic PCR and 

sequencing. CRISPR generated a 1,038 bp deletion within the 4th intron of Drgx. 3xP3-RFP 

cassette was then excised through Cre/LoxP recombination, and the excision was validated by 

PCR and sequencing. 

Immunohistochemistry and imaging 

 Fly brains were dissected in ice-cold Schneider’s Insect Medium (SIM) and fixed in 4% 

formaldehyde (in PBS) at room temperature for 30-50 minutes and washed in PBST (PBS + 

0.3% Triton X-100). They were then incubated in primary antibodies (in PBST + 5% horse 
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serum) for 1 or 2 days at 4°C, washed three times in PBST for 10 minutes and then incubated 

in secondary antibodies at 4°C overnight followed by 2x 15 min washes in PBST and an 

additional 15 min in PBS. They were then mounted in Slowfade and imaged with a Leica SP8 

confocal microscope using a 63x (NA=1.3) glycerol objective with xy resolution <200nm and z 

resolution = 500nm.  

 The following primary antibodies were used: Chicken anti-GFP (1:1000), mouse anti-V5 

(1:250), rat anti-NCad (1:20), mouse anti-Brp (nc82, 1:50), guinea pig anti-Brp (1:300), mouse 

anti-Aop (1:100), rabbit anti-SoxN (1:250), rabbit anti-Mef2 (1:250), rat anti-Drgx (1:250), rat 

anti-Pdm3 (1:500), guinea pig anti-Pdm3, guinea pig anti-Repo (1:500), rabbit anti-Vmat (56) 

(1:250), guinea pig anti-Vsx1 (1:300), rabbit anti-Vsx2 (1:500), guinea pig anti-Runt (1:500), 

rabbit cleaved anti-Dcp-1 (1:200), rabbit P-p44/42 anti-MAPK (1:100). 

 The following secondary antibodies (all donkey) were used: anti-chicken Alexa 488, anti-

rabbit DyLight 405, anti-rabbit Alexa 488, anti-rabbit Cy3, anti-rabbit Alexa 647, anti-mouse 

Alexa 488, anti-mouse Alexa 555, anti-mouse Alexa 647, anti-rat Alexa 488, anti-rat Cy3, anti-

rat Alexa 647, anti-guinea pig DyLight 405, anti-guinea pig Alexa 488, anti-guinea pig Cy3, anti-

guinea pig Alexa 647. All were used at 1:300 dilution except for anti-chicken Alexa 488 that 

was used at 1:500. The origin of all antibodies used is listed in Table S5. 

HCR RNA-FISH 

Hybridization chain reaction fluorescence in situ hybridization experiments to detect 

mRNAs (HCR RNA-FISH)  were performed as previously described (57). Custom probes were 

designed by Molecular Instruments against the following transcripts: 5-HT7 (NM_079860.3, 

amplifier: B1), Octβ1R (NM_001170219.2, amplifier: B2), Or63a (NM_079171.4, amplifier: B3) 

and Dh44-R1 (NM_137116.3, amplifier: B4). Hybridization, amplification buffer and wash 

buffers, and the fluorophore-labelled amplification hairpins (Alexa 546 for B3 and B4 and Alexa 

647 for B1 and B2) were also obtained from Molecular Instruments. 

Briefly, brains were dissected in ice-cold SIM and fixed in 4% formaldehyde (in PBS) at 

room temperature for 20 minutes and washed 3x10 minutes in PBST (PBS + 0.3% Tween-20) 

and for another 5 minutes in 5X SSCT. The samples were pre-hybridized in hybridization buffer 

for 30 minutes, and then incubated for 2 nights in hybridization buffer containing the probes at 

37°C. Afterwards, they were washed 4x5 minutes in wash buffer at 37°C and for another 5 

minutes in 5X SSCT. They were then pre-amplified for 30 minutes in amplification buffer 

(without hairpins) before being incubated overnight in amplification buffer with the hairpins at 
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room temperature. Finally, they were washed three times (5, 5 and 10 minutes) in 5X SSCT 

and another 5 minutes in PBS before mounting in Slowfade. All solutions were prepared using 

nuclease-free water and all incubations were performed on a nutator. 

Image analysis 

 Images were analyzed and prepared using Imaris 7 (Bitplane) and Photoshop 2021 

(Adobe). They were presented either as maximum intensity projections to highlight TF/RNA 

staining patterns or as 3D reconstructions using the “Blend” mode with “glow” colormap in 

Imaris to highlight neuronal morphologies. 

 Most quantifications were done manually by determining the proportion of each cell type 

(ignoring irrelevant cell types that may be labeled by the drivers, such as non-Tm neurons in 

experiments related to Tm1/2/4/6) in each brain (biological replicates) based on their 

stereotypical morphology, or expression of specific TFs, as specified in the figure legends. As 

the number of labeled neurons per brain show high variation in MARCM and flip-out 

experiments, all statistics were performed using the per brain proportions of indicated cell types 

(or their perturbed variations) and parametric, two-sided t-tests unless indicated otherwise. Bar 

and pie charts were generated using Prism 9 (GraphPad). 

 Quantification of the number of apoptotic cells for experiments shown in Figure S4B-C 

was performed semi-automatically using Imaris. Colocalization channels were created between 

the GFP (min. intensity=30) and Pdm3 (min. intensity=50) channels, as well as between the 

GFP (min. intensity=30) and cDcp1 (min. intensity=30) channels. Surface objects were then 

created separately for the i) GFP, ii) GFP-Pdm3 Coloc, iii) GFP-cDcp1 Coloc channels, with 

the same thresholds, filtered for “Quality” above 5 and “Number of Voxels” above 500. The 

number of cells that co-express GFP+Pdm3+cDcp1 were counted manually based on the 

overlap of Surface objects from (ii) and (iii). For each brain, the ratio of all dying cells were then 

calculated as the number of Surface objects in (iii) divided by the number of objects in (i). The 

ratio of dying Tm2 neurons were calculated as the ratio of triple labeled cells divided by the 

number of objects in (ii). The analysis was restricted to the medulla cortex as T2 and TE 

neurons are also labeled by GFP and Pdm3 in this experiment, but they were excluded based 

on their location. For experiments shown in Figure S5F-G, apoptotic Tm1 and Tm4 cells were 

counted manually since membrane GFP was used in these experiments rather than nuclear 

GFP. Tm4s display strong nuclear Aop staining while in Tm1s Aop can only be observed as 

extranuclear rings (and they are also labeled by Drgx in the control brains). 
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 To quantify HCR-FISH experiments, somas of labeled neurons (based on CD4-tdGFP 

signal) were manually segmented in Imaris to create surface objects (using the “circle” tool 

under the “Contour” tab). Mean intensity values per cell were then exported to spreadsheets 

for each of FISH channel. Since the signal intensities can vary significantly across samples, for 

each cell, we calculated the ratio of Dh44-R1 (Mi15 marker) signal to 5-HT7 (Dm2 marker) 

signal, or similarly the ratio of Or63a (Mi15) signal to Octβ1R (Dm2) signal to compare across 

conditions (Fig. S7F-H). 

Single-cell RNA sequencing 

Female white pupae (P0) were selected and maintained at 25°C until P50. Brains were 

dissected in ice-cold SIM and incubated for 20 minutes (at 25°C) in a Collagenase/Dispase 

cocktail, followed by washes and mechanical dissociation of the optic lobes, using a previously 

described protocol (1). 5 brains (10 optic lobes) were dissociated together for each condition 

(Control and UAS-Pdm3). We then isolated the cells expressing the nuclear GFP Stinger from 

these single-cell suspensions using a BD FACSAria (see Supplementary Information for the 

FACS gating strategy). Samples were immediately processed for scRNA-seq. 

 Droplet-based purification, amplification and barcoding of single-cell transcriptomes 

were performed using Chromium™ Single Cell 3’ Reagent Kit v3.1 (10X Genomics) as 

described in the manufacturer’s manual. As the output concentrations from FACS were typically 

less than 400 cells/μl, we loaded the entire reaction volume (43.2 μl) with single-cell suspension 

(no extra water). The samples of each condition were processed back-to-back at each step of 

the entire protocol and were run on the same 10x chip to minimize batch effects. The libraries 

were subjected to paired-end sequencing (28x8x91) with Illumina NovaSeq 6000 (Genomics 

Core at NYU CGSB) to ~130,000 reads per cell (88-89% sequencing saturation, as reported 

by CellRanger). We mapped the sequenced libraries to the D. melanogaster genome assembly 

BDGP6.88 using CellRanger 5.0.1, which retained 3,830 cells from Control and 3,813 cells 

from UAS-Pdm3 library, with a median of ~2500 genes per cell. All downstream analyses were 

performed with Seurat v4 (58). The libraries were merged (without integration) and further 

filtered to retain the cells with 2,000 to 20,000 UMIs and less than 5% of UMIs corresponding 

to mitochondrial genes, to a total of 6693 cells (3303 Control, 3390 UAS-Pdm3). 

scRNA-seq analysis 

 The data was log-normalized, followed by determination of the top 2000 variable 

features and scaling with default parameters in Seurat. Cell type assignments were done in a 
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supervised manner using a machine learning model we had previously trained on the scRNA-

seq atlas of the entire optic lobe at P50 (1). tSNE reduction was then calculated using the top 

50 principal components (Fig. S4A). Surprisingly, these libraries contained many cell types 

which we never observed using the TmX/Tm2-Gal4 with a membrane-bound GFP (Fig. S3D), 

including (but not limited to) Mi1/4/9 and Tm3/5/9/20 types (Fig. S4A). It is possible that the 

driver has weak background expression in these other cell types, and that the very strong 

nuclear localization of Stinger allows GFP signal to be concentrated there (as opposed to a 

membrane GFP) allowing these cells to be picked up by FACS. Indeed, a high number of nuclei 

with weak GFP signal (that were never labeled by Pdm3 or Aop) could be observed in these 

brains (Fig. S4B). We thus restricted all further analysis to the cells classified as Tm1/2/4/6 or 

T2 neurons by the machine learning model (Fig. 1H,J). In addition, we realized that one of the 

brains dissected for the Control library was in fact a male, based on roX1/2 expression. These 

cells were excluded from all the differential gene expression analyses below. They were still 

included in the UMAPs since those were calculated using the scaled data slot, which was 

corrected (regressed out) for sex differences based on roX1 and roX2 expression. 

 The top 500 variable features were re-determined after subsetting of the data, which 

were then re-scaled accordingly. The UMAP reduction (Fig. S4D, Fig. 1H-O) was calculated 

using the top 6 principal components. The unsupervised clustering was performed using the 

top 5 principal components and resolution 0.4 (otherwise default parameters). Differentially 

expressed genes (DEGs) between the indicated clusters in Figure 1K and Table S2 were then 

determined using the FindMarkers function with default parameters, filtered to only retain the 

markers with adjusted p-value < 0.01. Control and UAS-Pdm3 libraries in this experiment are 

expected to have some batch effects. To avoid picking up DEGs which may be driven by such 

effects, we also calculated the list of markers (adj. p-value < 0.01) between the 4 Tm types in 

the control library only, using the FindAllMarkers function (only.pos=TRUE, otherwise default 

parameters). Reasoning that any gene that does not normally display differential expression 

between the Tm neurons should not be regulated by Pdm3 in these cell types, the number of 

DEGs displayed in Figure 1K and the full marker lists provided in Table S2 only include such 

genes that were also part of this list of 1395 “Control Tm markers”. 

snATAC-seq analysis 

 We used Seurat v4 and Signac 1.3.0 (59) to analyze the snATAC-seq datasets 

generated from whole fly brains by (28) at stages Adult, P48 and P24. Peak/count matrices 

generated by the authors, based on pre-determined regulatory regions in the fly genome, were 



10 
 

extracted from the CisTopic object and separate Seurat/Signac objects were created for all 

three stages. The following steps were then taken separately for each object/stage: The data 

were TF-IDF normalized and all features were set as variable by running the FindTopFeatures 

function with “min.cutoff = 'q0'” option. Latent semantic indexing (LSI) reduction was then 

calculated using the RunSVD function (n=200). We then clustered the data using the top 120 

LSI dimensions (excluding the first one, which correlated strongly with sequencing depth) and 

with ‘algorithm’ and ‘resolution’ set to 3 in the FindClusters function. Label transfer was applied 

from Adult to P48 and from P48 to P24 datasets to establish (rough) linkages between the 

clusters of different stages. The anchors were found between the datasets with 100 CCA 

dimensions, then the labels were transferred with the TransferData function 

(weight.reduction=lsi and dims=2:80). 

In order to annotate the datasets, gene activity, i.e. ‘pseudo expression’, matrices were 

calculated by counting the number of reads (directly from the fragment files) within 5kb 

upstream of TSS for every gene. These were then used to perform label transfer from the 

scRNA-seq datasets at corresponding stages: Adult, P50 and P30 (1). The anchors were found 

between the datasets using the variable features of the RNA dataset (CCA, 150 dims), then the 

labels were transferred with the TransferData function (weight.reduction=lsi and dims=1:120). 

The quality of label transfer was variable and particularly low at P24; we thus first focused on 

the Adult dataset to establish correspondence between the scRNA- and snATAC-seq clusters. 

Every cluster was inspected manually for its correspondence to the optic lobe clusters in the 

scRNA-seq dataset. If a substantial number (depending on the expected frequency of clusters) 

of cells belonging to any (neuronal) RNA cluster corresponded to a clearly defined ATAC 

cluster, those clusters were retained for further analysis (Fig. S6A). This process excludes all 

glia and the vast majority of central brain neurons, but it may also exclude optic lobe neurons 

that derive from central brain which are typically present in lower frequencies and may not 

cluster well. Using the linkages we established above between the different stages, we 

determined in P48 and P24 datasets the clusters that corresponded to optic lobe neuronal 

clusters in the Adult dataset and discarded the rest. 

After isolating the optic lobe neurons in all 3 stages, we reapplied TF-IDF and SVD, and 

re-clustered the datasets to maximize resolution. The Adult optic lobe dataset was clustered 

with LSI dimensions 3 to 80 and resolution=5, while we used the dimensions 2 to 80 and 

resolution=3 for the P48 and P24 datasets. Multiple clusters corresponding to T4/T5 neurons 

were merged. We obtained 45 final clusters of optic lobe neurons at the adult stage, 37 of which 
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could be confidently linked to defined (though not all annotated) clusters (or groups of clusters) 

in the scRNA-seq atlas (Fig. S6B, the clusters that are still likely optic lobe neurons but could 

not be confidently linked to well-defined RNA clusters are grayed out). There were 59 initial 

clusters in the P48 dataset and 41 in P24. We took a multi-step process to harmonize the cell 

type assignments between different stages. First, label transfer was performed from Adult to 

P48 dataset, as described above for the whole datasets. We took advantage of both these 

transferred labels and the transferred labels from the P50 RNA dataset to manually inspect all 

clusters. Unlike the strategy we previously employed to harmonize the cell-type assignments 

in scRNA-seq datasets of different stages (1), label transfer between different stages was far 

less robust in snATAC-seq; thus we mostly respected the unsupervised assignments at each 

stage.  If most (typically >50% but in a few cases less) of a P48 cluster was classified as a 

specific Adult cluster (and no other), the entire cluster was assigned the same number as in the 

Adult. Since the clustering resolution was higher at P48, that meant in several cases merging 

of clusters. However, we later subclustered the lamina neurons L1-5 at this stage, to resolve 

all 5 types (Fig. S6C, blue ellipses). In some cases where a P48 cluster was mapped to multiple 

Adult clusters, the P48 cluster was split based on the label transfer classifications. In other 

cases where the correspondence of a P48 cluster to the Adult clusters was unclear, they were 

assigned to new identities (not present in the Adult dataset). This was the case for TE neurons 

(that are not present in adult brains), but also for TmY14, Lawf and Lai neurons, which could 

not be mapped reliably in the Adult dataset. The remaining P48 clusters that had inconsistent 

mapping to Adult clusters and also could not be reliably linked to a P50 RNA cluster were kept 

but grayed out in tSNE (Fig. S6C). The process was then repeated from P48 to P24 dataset, 

which had the lowest clustering resolution as well as the least reliable mapping from the (P30) 

RNA dataset. This meant that most of the clusters had to be split manually based on the 

transferred labels from the P48 dataset to maintain the same resolution (Fig. S6D). For the 

same reason, a much larger proportion of the dataset remained unlinked to specific cell types 

and were grayed out in the tSNE. 

The accessibility tracks were generated for the indicated clusters (Fig. 2D, Fig. S6E) 

using the CoveragePlot function with default parameters. The sequence of the genomic range 

chr2L:3679100-3679800 which encompasses the Tm1-specific peak in Drgx locus was 

extracted from Ensembl for motif enrichment analysis. We compiled a list of 1288 TF binding 

motifs, representing 411 TFs, from the CisBP database, including only those determined using 

direct evidence from Drosophila. We used the MEME suite (https://meme-

https://meme-suite.org/meme/tools/ame
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suite.org/meme/tools/ame) tool AME (60) to identify the enriched motifs. The only motifs that 

were found to be enriched with an E-value < 100 belonged to the TFs Klu, org-1 and nau; the 

latter two are not expressed in the optic lobe at any stage according to our scRNA-seq datasets. 

Network Inference 

 We inferred GRN models for two distinct groups of neurons using data from 

developmental stages P24-P50: i) Tm1/2/4/6 neurons that we studied in this paper (Tm 

network), ii) Lamina monopolar neurons L1-5 whose development have been extensively 

studied previously (Lamina network).  

Construction of priors: Prior connectivity matrices (tables of 1s and 0s linking TFs to target 

genes) were determined separately for Tm and Lamina neurons using the P48 snATAC-seq 

data (Fig. S6C), Signac v1.3.0 and the Inferelator-Prior software (40) available on GitHub, from 

the release branch v0.2.3 faf5e47. 

 For each prior, we used GTF and fasta files from the D. melanogaster genome assembly 

BDGP6.88. MEME suite tool FIMO (61) was implemented with the default 1e-4 p-value 

threshold to scan the Drosophila genome for the set of TF motifs described in the previous 

section. Several TFs motifs, specifically those belonging to: 'ct', 'dan', 'danr', 'Eip78C', 'H2.0', 

'jumu', 'Sox100B', 'Tbp', 'vis', 'Met', were never found in the genome using the default FIMO 

threshold (likely due to their lower information content), thus for those motifs we used a 1e-3 p-

value threshold to receive scores. All TF motifs were scored and filtered based on their 

information content as part of the Inferelator-Prior workflow. The refined list of scored TF motifs 

was used to assign regulatory relationships to target genes by using a 10kb window up and 

downstream of each gene body. These interactions were then clustered using the sklearn 

DBSCAN package with parameter epsilon=1 to retain a very sparse (<0.5% density on average 

per TF) matrix containing only the highest confidence interactions. The command line 

arguments for the Inferelator-Prior pipeline can be accessed at: 

https://github.com/cskokgibbs/DMOLN_NetworkScripts.  This pipeline requires as input a .bed 

file defining genomic ranges to be scanned for motifs. We tested 3 different priors (NoBed, 

ChromA and MergedDA) for both Tm and Lamina networks whose underlying peak sets were 

determined with different strategies as described below. Please note that even though Figure 
S8 displays the benchmarking results for networks built with all 3 priors, the final networks used 

in this work were based on the MergedDA priors. 

https://meme-suite.org/meme/tools/ame
https://github.com/cskokgibbs/DMOLN_NetworkScripts
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NoBed: No constraining peak file was used to build these priors. The entire 10kb up/down 

window for every gene was scanned for motifs. Note that this implies the NoBed priors for Tm 

and Lamina networks were therefore identical.  

ChromA: For these priors, we extracted all fragments originating from the Tm or Lamina 

neurons in the P48 snATAC-seq (Fig. S4C, red and blue ellipses) and called peaks using 

ChromA (62) version: fcfd120 branch: Any-Genome, using the parameters: atac -spec dm6. 

These peak sets were then used directly as input to Inferelator-Prior. Therefore, for these priors, 

all regions accessible in any of the 4 Tm or 5 lamina neurons were scanned for motifs without 

considering differential accessibility. 

MergedDA: We determined differentially accessible (DA) regions between the Tm or Lamina 

neurons with two different approaches. First, we used directly the peak set from (28). We subset 

the P48 Signac object for either the 4 Tm clusters or the 5 lamina clusters (Fig. S6C) and 

calculated the DA peaks using the FindAllMarkers function (logfc.threshold = 0.1, test.use = 

'LR', latent.vars = 'nCount_peaks' ). However, we noticed that these pre-determined regulatory 

regions often contained multiple peaks whose accessibility can vary independently, which could 

introduce artifacts. With this in mind, we re-built the peak/count matrices for Tm and Lamina 

clusters from the Fragments file using the FeatureMatrix function, using as features the peaks 

determined above by ChromA as accessible in Tm or Lamina clusters. DA peaks were then 

calculated for each group using the same parameters. This approach may have its own 

limitations, primarily due to sensitivity of peak calling since this was done separately on 

relatively small groups of cells here rather than the entire dataset. We thus decided to merge 

the two peak sets (separately for Tm and Lamina) using the GenomicRanges function reduce 

(min.gapwidth = 0) to obtain the final as input to Inferalator-Prior. 

MergedDA networks outperformed the other priors in all metrics (Fig. 5B, Fig. S8A-B), 

as expected; however, ChromA and NoBed priors performed similarly, suggesting that ATAC-

seq datasets are only useful for network inference when considering differential accessibility.  

Inference: We used the scRNA-seq datasets from P30, P40 and P50 generated by our lab (1), 

as well as from P24, P36 and P48 generated by another group (42) to infer GRN models. In 

order to determine the sets of differentially expressed genes (DEGs)  to model on, we used 

exclusively the “DGRP” portion of the P24-P36-P48 datasets as these are not expected to have 

batch effects between stages. The objects were subset for either the Tm or Lamina clusters, 

and then the stages were merged to keep each individual cluster from each stage as a separate 

class (thus, 12 classes for Tm, 15 for Lamina). DE genes (adj. p-value<0.01) were then 
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calculated between these classes using the FindAllMarkers function (only.pos = TRUE). The 

resulting sets of DE genes therefore represent those whose expression vary either across 

different cell types and/or different stages. Log-normalized data was used for inference; 

however, applying the same default scaling factor (10,000) to all stages can introduce artifacts 

if there are variations in the total RNA content of a given cell across different stages of 

development. We previously noted significant differences in the average UMI per cell values 

across different stages of our dataset (1); though it remains unclear how much of this could be 

attributed to technical reasons. When we normalized the cells of each stage with a value 

proportional to the average UMI value of that stage, we received overall very similar results 

compared to when we normalized with the default value. However, the benchmarks we 

performed with the Hr3 RNAi dataset (described below) were significantly better (results not 

shown) with the stage-adjusted normalization; we thus proceeded with this method. This is 

consistent with the finding that Hr3 is strongly regulated in the temporal axis during this period 

(39).  

 The networks were inferred using the Inferelator 3.0 (40), GitHub version v0.5.6 dd532f4, 

branch: release. Networks were learned using the multitask framework “AMuSR” (63) with the 

following parameters: regression=”amusr”, workflow=”multitask”, bootstraps=5, and cross 

validation seed set to 42 . Datasets were organized into two tasks representing data collected 

at P30-40-50 (“Desplan”) and P24-36-48 (“Zipursky”). For each task, TFA was calculated by 

computing the dot product between the task-specific expression dataset and the pseudo-

inverse of the prior. As part of the inference step, a linear model for each task is constructed 

that assumes each gene in the expression dataset can be modeled as a linear combination of 

the TFs regulating it (X = βA). Task specific betas represent the variance explained by each 

regulatory TF and are solved in the following way: We calculate the ratio between the variance 

of the residuals in the full model and the variance of the residuals when the model is refit, 

leaving one TF out at a time, as originally explained in the Inferelator (40). Any non-zero beta 

is considered evidence for a regulatory relationship between a gene and a TF. In the multi-task 

learning approach, after TFA is computed for each task independently, we solve the linear 

model for each task together resulting in an ensemble network, as well as task specific 

networks. Here, the model implements adaptive penalties to prefer regulatory interactions 

shared across the two tasks, placing a heavier penalty on interactions found to be only task-

specific. Three networks were learned using the respective priors described above for both 

groups of cell types. In order to obtain results without sampling error, model selection was 
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repeated by sampling the expression data across 5 bootstraps, resampled with replacement. 

Tm and lamina networks were modeled on both DE genes and DE TFs, as described above. 

The respective priors, subset by DE genes and TFs, were used as gold standard networks for 

evaluating network performance. Evaluation metrics included calculating Area Under the 

Precision Recall (AUPR) curve to compare our predicted interactions to the gold standard 

network (prior). Further, we compute Matthews correlation coefficient (MCC) to obtain 

confusion matrices representing true positives (TP), false positives (FP), true negatives (TN), 

and false negatives (FN). Calculating this score provided us with a metric to evaluate the 

reliability of our predicted network, as MCC obtains a high score only if the predicted 

interactions obtain good results for all four confusion matrices. An F1 score was additionally 

computed by taking the weighted average of the precision and recall. This score allows us to 

take into account both FP and FN, which is important to consider in the case of imbalanced 

classes, such as our model’s assumption that a target gene can be regulated by a limited 

number of TFs. Finally, we compute the variance explained by each edge contained in the 

resulting network, allowing us to interpret which edges explain the most variance in the posterior 

network. Each network was benchmarked against a negative control where a network was 

inferred on each respective prior with the gene names shuffled. The final (multitask, MergedDA 

prior) Tm and Lamina networks are provided in Table S3. All network inference run scripts for 

the Inferelator are available at https://github.com/cskokgibbs/DMOLN_NetworkScripts.  

 The Inferelator does not report the sign (activating or repressing) of inferred interactions. 

Thus, for visualization purposes, we calculated Pearson correlations of expression levels using 

the stage-adjusted, log-normalized data with all the stages merged for the respective cell types. 

The network visualizations were generated with the Python package jp_gene_viz version 

2.30.1 on branch ‘Master’ using the filters described in figure legends. 

Benchmarking the networks with TF perturbations: As the Inferelator attempts to model all 

biologically relevant (between cell types and stages) differential gene expression among the 

input cells, this provides an opportunity to test if the learned models are generalizable to novel 

regulatory states never seen by the algorithm. We took advantage of 3 independent RNA-seq 

datasets acquired in the background of specific TF perturbations (described below) for this 

purpose. For each dataset, TFA was calculated for each cell using the respective priors (Lamina 

for Hr3 and Erm, Tm for pdm3 datasets) and the log-normalized expression values. We 

incorporated the betas collected from the relevant networks outlined above, describing the 

relative contribution of TFs to the model of each gene in our sample, to provide this benchmark 

https://github.com/cskokgibbs/DMOLN_NetworkScripts
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with unseen, independent data. Taking the dot product of the estimated TFA and independent 

betas for each experiment provided us with reconstructed (predicted) expression matrices. The 

command line arguments for these steps are provided in the same Github repository referenced 

above. Note that since the models were built on DEGs only, the predicted expression matrices 

also contain only these genes (1394 genes for Tm, 1684 for lamina datasets). We evaluated 

the results produced by all three prior generation methods described above for these 

benchmarks (Fig. S8H-J) but the UMAPs shown are only for the reconstructions generated 

with the “MergedDA” priors (Fig. 5D-F, Fig. S8E-G). 

Hr3 RNAi: The Seurat object provided by the authors (39) was converted to match the gene 

names to our reference annotation, and subset to retain only the P48 stage. The predicted 

expression matrices were generated using the Lamina priors to calculate TFA, and the betas 

generated specifically from the “Zipursky” task described above, since these datasets contain 

the matching time point (P48) and were produced by the same lab using the same sequencing 

technology (10x v3.1). A merged Seurat object was then created with both the real (including 

only the DEGs present in the predicted expression) and predicted expression matrices, 

identification of top 1000 variable features, scaling and PCA were performed with the default 

parameters. UMAP visualization (Fig. S8E) was created using 30 principal components. The 

object was then split based on real vs. predicted expression, and integration was performed 

using the FindIntegrationAnchors (reduction=”cca”, anchor.features=1000, dims=1:30) and the 

IntegrateData (dims=1:30) functions. The data were scaled again and UMAP was generated 

using the same parameters as above (Fig. 5D). Then, separately for each of the 5 cell types 

contained in this dataset (L1-5), we determined the DEGs (adj. p-value<0.01) between control 

(w RNAi) and Hr3 RNAi conditions using both the real and predicted clusters (non-integrated 

data). For each cell type, precision is defined as the ratio of correctly determined DEGs between 

the conditions in predicted clusters (i.e., those that were also DEGs between the real clusters) 

(TP/(TP+FP)), and the recall is defined as the ratio of these correctly predicted DEGs to all 

DEGs between the real clusters (TP/(TP+FN)) (Fig. S8H).  

Erm mutant: We obtained the Transcripts Per Million (TPM) results from a bulk RNA sequencing 

experiment of FACSed L3 neurons mutant for Erm (dFezf1) at stage P40 (21) and converted 

the gene names to match our reference annotation. We then simulated single-cell 

transcriptomes, separately for each of the 5 replicates of control (FRT40) and mutant 

experiments (Fig. S8D). The expression values were re-normalized to a total of 1 by dividing 

each value with the sum of all values for that sample. A probability distribution table was then 
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determined based on cumulative sums: starting from 0 and increasing gradually to 1 for the last 

(8905th) gene in the dataset, with the amount of increase for each gene from the previous one 

being proportional to its level of expression. Thus, for all expressed genes, their value is higher 

than the previous gene in the list, while the value remains constant (from the previous one) if 

the gene is not expressed. For each simulated single-cell, the number of UMIs it will contain 

was randomly chosen from a normal distribution with mean=2500, s.d.=2000 and a minimum 

of 1000 UMIs. Each UMI was then assigned to a gene by picking a random number between 0 

and 1, and determining the first occurrence of a number smaller than that in the probability 

distribution. Lastly, 100 simulated cells with at least 500 genes expressed were selected per 

replicate. Overall, the process aims to recapitulate the noisy sampling of mRNAs with high drop-

out rates as characteristic of scRNA-seq experiments. Log-normalization, variable feature 

selection and scaling was applied using Seurat and the UMAP visualization (Fig. S8D) was 

created using the top 3 principal components. As this data contains only a single cell-type (with 

and without perturbation of only one TF), we observed that 3 PCs were enough capture all 

biological variation, as the inclusion of more PCs only resulted in increasing distances between 

the replicate clusters of the same condition. 

The predicted expression matrices were then generated using the simulated single-cells, 

as described above for Hr3, but the betas were used from the “Desplan” task in this case since 

this task contains cells sequenced at the same stage (P40) as the Erm dataset. Integration 

between the real and predicted cells was performed using 200 anchors and 10 reduced 

dimensions (otherwise same as above) and the UMAPs were again calculated using the top 3 

PCs (Fig. 5E, Fig. S8F). As there is only one cell type in this case, a single precision and recall 

value was determined for each tested prior (Fig. S8I). Interestingly, when we used the non-

specific “NoBed” prior instead of the MergedDA prior, the predicted clusters in both Hr3 and 

Erm reconstructions tended to display many more DEGs between the conditions (higher recall), 

but with lower precision (Fig. S8H-I). 

UAS-Pdm3: As both benchmarks above were on lamina neurons, we also aimed to similarly 

benchmark the Tm networks using the scRNA-seq dataset generated in this paper (Fig. 1J). 

TFAs calculated using the Tm prior, as well as the betas from the wild-type Tm networks 

(Zipursky task) were used to generate the predicted expression matrices. Normalization, 

scaling, dimensionality reduction and integration was performed using the same parameters as 

described above for the Hr3 dataset (Fig. 5F, Fig. S8G). Precision and recall metrics were 
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calculated for the DEGs between indicated subclusters in Figure S8J (referring to the same 

cluster numbers as in Fig. 1K).  

 Relatively higher metrics for these reconstructions are likely a result of changes in this 

dataset representing complete transformations of one cell type into another, unlike the lamina 

datasets where “unnatural” regulatory states were created. The one exception to this was Tm1 

subcluster 6, where DEG analysis against the control Tm1 cells revealed extremely low recall 

(Fig. S8J). As we have discussed in the first section, this cluster consists of cells that express 

ectopic pdm3 (Fig. 1N), but still retain Tm1 fate and appear morphologically normal (Fig. S3F). 

It is therefore likely that the changes observed in these cells do not represent a significant shift 

in their regulatory state, potentially explaining the low performance of the model in 

reconstructing them. 

GO Enrichment: We filtered the inferred GRN model of Tm neurons to only include the 

interactions with combined confidence greater than 80% and variance explained greater than 

1% (the same filtering as in Fig. 5C). Within this filtered network, we determined the predicted 

targets of Hr3 (167 genes), Pdm3 (120 genes), Mef2 (112 genes) and subjected them 

(separately) to GO enrichment analysis for ‘Molecular Function’ terms using The Gene 

Ontology Resource (http://geneontology.org/). We filtered the terms to include only those with 

fold enrichment greater than 2. We used REVIGO (http://revigo.irb.hr/) to remove redundant 

terms and group the related ones (64) with a similarity index of 0.5. The TreeMap tables were 

then exported from REVIGO and inputted to the Python package CirGO (65) to create the 

summary graphs in Figure S9E.  
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Figure S1: Candidate terminal selectors of optic lobe neurons 

A, Differentially expressed TFs (columns) found to be continuously expressed in each optic 

lobe neuronal cluster (rows) throughout its development according to (1), see Methods and 

Table S1. B, Histogram depicting the distribution of candidate selectors in (A) according to the 

number of clusters they were found to be continuously expressed (x-axis bin size: 5). C, Pie 

charts displaying the proportions of major TF classes within all TFs in the Drosophila genome 

(top), and the TFs found to be a candidate selector for at least one cell type in A. Basic domain, 

zinc finger, homeobox, helix-turn-helix (excluding homeobox) categories are represented, with 

the other TF classes merged in “Other”. D, Euclidian distances between all possible pairs (see 

Methods) of the 175 neuronal clusters shown in (A), calculated using the scaled expression 

values of 95 terminal selectors (x-axis) or 2467 cluster markers (y-axis). Note that the pairs 

involving cluster 102 (light blue) form a distinct regime because this cluster does not represent 

a genuine cell type but is rather a heterogenous mixture of contaminating central brain neurons.   
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Figure S2: Hierarchical cluster trees of the optic lobe neurons 

Dendrograms of neuronal clusters in the P50 scRNA-seq dataset (1), based on the scaled 

expression values of 95 candidate terminal selectors (A), 36 homeobox terminal selectors (B), 

or 2467 clusters markers (C) calculated at this stage. Clusters were colored in all panels 

according to their branch membership in (A), except for 6 outlier clusters that were not assigned 

to any color. IPC: neurons deriving from the inner proliferation center. Blue arrows: Tm1/2/4/6 

neurons, purple arrows: Mi15 and Dm2 neurons. Red circle in (C) marks a branch in which all 

annotated neurons are known to send axonal projections to the central brain.  
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Figure S3: Tm6 annotation and pdm3 as the selector of Tm2 neurons (Supplement to 
Fig. 1) 

A, Violin plots displaying the log-normalized expression of aop, SoxN and Wnt10 in all adult 

optic lobe neurons (1). Cluster #62 (red rectangle) exclusively expresses all 3 genes. B, Max. 

projections of TmX/Tm4,6-Gal4 (left) or Wnt10-Gal4 (right) driving CD4-tdGFP (flip-out), 

displaying an adult Tm6 neuron (see Fig. 1A) with anti-SoxN (blue) and anti-Aop (red) for the 

inset in B. Arrow points to the nucleus of the neuron displayed below. D, 3D reconstructions of 

TmX/Tm2-Gal4 driving CD4-tdGFP (flip-out) at P50 and adult optic lobes with anti-NCad 

(white), displaying representative Tm neurons. Dashed lines mark the border of lobula neuropil. 

E, FRT40A (control) and pdm31 MARCM clones labeled with TmX/Tm2-Gal4 and CD4-tdGFP 

in adult optic lobes (maximum projection), with anti-Pdm3 (blue) and anti-Aop (red). Only Tm 

neurons observed in the mutants still expressed Pdm3 (arrowheads) and were labeled very 

weakly with GFP, suggesting this is leaky expression from MARCM (incomplete Gal80 

suppression) rather than mutant clones (n=10 brains). F, 3D reconstructions of Tm1,4-Gal4 

driving CD4-tdGFP (flip-out) and UAS-pdm3.short (n=6 brains), displaying representative adult 

Tm1 neurons. Inset shows a max. projection of the indicated soma (arrow) with anti-Pdm3 

(blue) and anti-Drgx (red). Scale bars: 10 μm (B-E), 15 μm (F) and 3 μm (F, inset).  
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Figure S4: pdm3 instructs transcriptionally complete neuronal fate conversions 
(Supplement to Fig. 1) 

A, scRNA-seq of FACSed neurons from P50 optic lobes, TmX/Tm2-Gal4 driving nuclear GFP 

(Stinger) and UAS-pdm3.short. tSNE was calculated using 50 principal components. Cells are 

colored and labeled according to neural network (1) classifications. Red ellipses mark the cells 

subset for further analysis (Fig. 1H-O). B, Max. projections of P25 medulla cortex, with 

TmX/Tm2-Gal4 driving Stinger (green) and UAS-pdm3.short (right), with anti-Pdm3 (blue) and 

anti-cleaved Dcp1 (red) marking apoptotic cells. Arrowheads indicate the nuclei with triple 

labeling. Scale bar: 4 μm. C, Quantification of (B), displaying the percentage of cDcp1+ neurons 

in each indicated group. n= 2313 (control, GFP), 561 (control, GFP+Pdm3), 2640 (UAS-pdm3, 

GFP), 2157 (UAS-pdm3, GFP+Pdm3) neurons in 5 brains per condition. p=0.006 (GFP) and 

p<0.0001 (GFP+Pdm3) for change in the proportion of cDcp1+ neurons. Error bars denote 

SEM. D, Same as in Fig. 1J, with cells colored and labeled according to unsupervised clustering 

(as in 1K). E, Dot plot displaying the log-normalized expression of the 34 differentially 

expressed genes between clusters 4 and 5 in (D), in cells classified as Tm2/4/6 in the control 

library only (top) and in clusters 4 and 5 (bottom). Diameters of the dots indicate the proportion 

of cells in each cluster expressing the genes, while color intensity is proportional to the level of 

expression. Markers highlighted in bold are consistent with cluster 4 cells having been 

converted from the Tm4/6 fate.  



Figure S5
A BP50

Tm4
Tm6

Tm2Tm1

NCad

TmX/Tm4,6-Gal4

Adult (control) UAS-DrgxC

Tm1

Tm1*

Lo1

Lo2

D control DrgxΔTm1

Tm1,4-Gal4

Tm1
Tm1

Tm4

Brp

Lo1

Lo4

Tm1*

Lo2

E DrgxΔTm1

Repo Drgx 

H

co
nt

ro
l

D
rg

xΔ
Tm

1

L3
Drgx

TmX/Tm4,6-Gal4

NCad

control DrgxΔTm1F

Tm
1,4 D

rgx A
op cD

cp1

P25

Tm1

Tm4

Tm1

Tm4

G

Tm4
Tm6



23 
 

Figure S5: Drgx as the terminal selector of Tm1 neurons (Supplement to Fig. 2) 

A-C, 3D reconstructions of TmX/Tm4,6-Gal4 driving CD4-tdGFP (flip-out) and UAS-Drgx (C 

only) with anti-NCad (white), displaying representative Tm neurons in P50 (A) and adult (B-C) 

optic lobes. The Tm1 labeled with an asterisk abnormally targets to Lo2 layer instead of Lo1. 

Quantified in Fig. 2B. D, 3D reconstructions of adult neurons labeled with Tm1,4-Gal4 driving 

CD4-tdGFP (flip-out) in the background of heterozygous (control) or homozygous DrgxΔTm1 

allele (same as in Fig. 2G), with anti-Brp (white). Quantified in Fig. 2H. The Tm1 labeled with 

an asterisk targets to Lo2 and has an abnormal dendritic arbor (arrow). E, Same as in Fig. 2G 

with anti-NCad (white), anti-Repo (blue) and anti-Drgx (red), showing that the only remaining 

Drgx+ cells in the medulla cortex (arrowheads) of DrgxΔTm1 mutants are glia (n=3 brains). F, 
Max. projections of P25 neurons labeled with Tm1,4-Gal4 driving CD4-tdGFP in control or 

DrgxΔTm1 brains, with anti-Drgx (blue), anti-Aop (red) and anti-cleaved Dcp1 (green). White 

arrowheads: Tm1, yellow arrowheads: Tm4 neurons based on the pattern of Aop staining. G, 
Quantification of (F). No Tm1 neurons were stained with cDcp1 in either condition. n= 902 

(control, Tm1), 804 (control, Tm4), 620 (DrgxΔTm1, Tm1), 734 (DrgxΔTm1, Tm4) neurons in 6 

brains per condition. p=0.72 (Tm4), error bars denote SEM. H, Max. projections of L3 optic 

lobes showing anti-Drgx staining in w1118 (control, n=5 brains) and homozygous DrgxΔTm1 

mutants (n=7 brains). Scale bars: 10 μm (A, D-E), 15 μm (B-C), 3 μm (F) and 20 μm (H). Dashed 

lines mark the border of lobula neuropil.  
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Figure S6: Annotation of optic lobe neurons in snATAC-seq datasets 

A-D, Clusters corresponding to the optic lobe neurons in Adult (A), P48 and P24 snATAC-seq 

experiments (28) were isolated, clustered and annotated (B-D) separately at the indicated 

stages (see Methods for details). tSNE visualizations were calculated using the top 120 reduced 

dimensions (LSI), excluding the first dimension. Clusters labeled by numbers are unannotated 

neurons in the reference scRNA-seq atlas (1). Clusters that could not be linked to defined 

(groups of) clusters in the reference atlas were grayed out. Ellipses in (C) indicate the clusters 

used for building the Inferelator priors for lamina (blue) and Tm (red) neurons for GRN 

inference. E, Aggregated accessibility tracks of Drgx locus for the Tm1 cluster, using the TF-

IDF normalized snATAC-seq data at the indicated stages (B-D). Arrow points to the Tm1-

specific enhancer deleted in (Fig. 2G-I). See also Fig. 2D.  
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Figure S7: Additional terminal selectors of optic lobe neurons and regulation of the Tm 
selector network by RTK signaling (Supplement to Figs. 3 and 4) 

A, TmX/Tm4,6-Gal4 driving UAS-SoxN.V5 and CD4-tdGFP (flip-out, n=3 brains). Max. 

projection of an adult optic lobe with anti-NCad (white), anti-SoxN (blue) and anti-V5 (red). 

Insets show the indicated somas (arrows) with anti-SoxN also shown in single channel (bottom). 

B, Max. projections of adult optic lobes in FRT40A (control) and aopE833 MARCM clones (n=3 

brains) labeled with TmX/Tm4,6-Gal4 and CD4tdGFP, with anti-NCad (white), anti-SoxN (blue) 

and anti-Aop (red). C, Max. projections of adult optic lobes with TmX/Tm4,6-Gal4 driving CD4-

tdGFP (flip-out) and aop RNAi (n=8 brains), with anti-NCad (white) and anti-Aop (red). D, Same 

as in Fig. 3F, with Mi15-Gal4 driving UAS-Vsx2 instead of Vsx1. Quantified in Fig. 3E. E, Same 

as in Fig. 3F, max. projection of somas with anti-Vsx1 (blue) and anti-Vsx2 (red) that are also 

shown in single channel (n=3 brains). Note that Vsx1/2 are almost always co-expressed in the 

optic lobe neurons except for the Mi15 neurons in this experiment that express Vsx1 ectopically 

(arrow). F-G, Mi15-Gal4 driving UAS-Vsx1 and CD4-tdGFP in adult brains, displaying single z-

slices. Fluorescence in situ hybridization signal against (F) 5-HT7 (red), Dh44-R1 (blue), and 

(G) Octβ1R (red), Or63a (blue). Also shown in single channel, yellow lines demarcate the 

somas labeled by GFP as shown in the left panels. H, Quantification of (F-G). The ratio of mean 

signal intensities for the indicated channels in Mi15 somas. N=90 (control) and 134 (Vsx1) 

neurons for Dh44-R1/5-HT7, p<0.0001. N=151 (control) and 180 (Vsx1) neurons for 

Or63a/Octβ1R, p<0.0001. Error bars denote SEM. I, Dot plot displaying the log-normalized 

expression of indicated genes in Dm2 and Mi15 clusters in the P96 scRNA-seq dataset (42). 

J,L  Dot plots displaying the log-normalized expression in Tm1/2/4/6 clusters of indicated TFs 

in the P30, P40, P50 and adult scRNA-seq datasets (1) (J), or of all RTK receptors and Ras 

signaling pathway components expressed in the optic lobe at P30 (L). K, TmX/Tm2-Gal4 

driving CD4-tdGFP (flip-out) in P30 medulla cortex (max projection), with anti-P-MAPK (blue) 

and anti-Aop (red). Arrows indicate GFP+Aop- Tm1/2 neurons in which PMAPK (single-channel, 

bottom) can be detected. Note that Aop+ neurons do not display PMAPK signal (n=5 brains). 

Scale bars: 15 μm (A), 20 μm (B-C) and 3 μm (A-insets, E-J).  
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Figure S8: Computational inference and benchmarking of GRNs in optic lobe neurons 
(Supplement to Fig. 5) 

A-B, Curves of Area under Precision and Recall (AUPR), F1 scores, Mathews Correlation 

Coefficient (MCC) and variance explained by the edges inferred (multitask) from (A) Tm1/2/4/6 

and (B) L1-5 cell types using three different priors for each network, and their shuffled negative 

controls. See Methods for detailed description of the priors and displayed metrics. C, 
Reconstruction method for predicting gene expression profiles of the RNA-seq experiments 

shown. TFA is calculated for each cell as described in Fig. 5A using the same priors for the 

respective lamina (for Hr3 and Erm) and Tm (for Pdm3) network inference. Dot products of 

these TFA matrices with the learned betas from the indicated inference tasks, i.e., the weights 

between TFs and their targets as determined by the Inferelator using only the wild-type data, 

generate a predicted expression matrix matching the original data. D, Simulated single-cell 

transcriptomes (100 per replicate, see Methods) from the Erm bulk RNA-seq experiment at P40 

(21). UMAP visualization was calculated using 3 principal components (PCs). E-G, scRNA-seq 

datasets of (E) L1-5 neurons at P48 expressing Hr3 RNAi (39), (F) simulated-single Erm mutant 

L3 neurons from (D), (G) Tm1/2/4/6 neurons at P50 overexpressing UAS-pdm3.short (Fig. 1). 

Both the original (“Real”) and predicted (“Pred”) (based on networks built with the MergedDA 

prior) transcriptomes are shown, and the cells are colored according to this status, as well as 

their condition of origin. UMAPs were calculated using 30 PCs (E,G) or 3 PCs (F) on the non-

integrated gene expression. See Fig. 5D-F for UMAPs of the same data after Seurat integration 

was performed between the real and predicted clusters. H-J, Comparative analysis of real and 

predicted differentially expressed genes (DEGs) between the experimental conditions for cell 

types or clusters shown in E-G (see Fig. 1K for the cluster numbers in J), calculated separately 

using the networks generated with three different priors. Precision is defined as the ratio of 

correctly determined DEGs between the conditions in predicted clusters (i.e., those that were 

also DEGs between the real clusters), and the recall is defined as the ratio of these correctly 

predicted DEGs to all DEGs between the real clusters.   
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Figure S9: Additional validation experiments for the GRN models of Tm neurons 
(Supplement to Fig. 5) 

A, FRT42D (control) and Hr3K10308 MARCM clones labeled with TmX/Tm2-Gal4 and CD4-

tdGFP showing (bottom) 3D reconstructions of representative adult neurons with anti-NCad 

(white), and (top) the max. projections of somas with anti-Mef2 (blue) and anti-Aop (red). Arrows 

point to the nuclei of Tm2 neurons shown in bottom panels (n=5 brains). Dashed lines mark the 

border of lobula neuropil. B, Violin plot displaying the log-normalized expression of ct in 

Tm1/2/4/6 clusters in the P36 scRNA-seq dataset (42). C, TmX/Tm2-Gal4 driving CD4-tdGFP 

(flip-out) and UAS-ct (n=6 brains). 3D reconstructions of GFP expression for the representative 

neurons in each condition with anti-NCad (white). D, Percentages of genes encoding TFs and 

cell-surface proteins (CSPs) in the entire genome (17,551 genes), among all target genes 

included in the filtered GRN model of Tm neurons (the same as in Fig. 5C), and among the 

predicted targets (in the same model) of each TF shown. The total number of genes considered 

for each group are indicated in parentheses. E, GO enrichment analysis of the predicted targets 

of Hr3, Pdm3 and Mef2 in the filtered Tm GRN model (same as in D). Molecular Function terms 

with greater than two-fold enrichment were summarized by REVIGO to eliminate redundant 

terms and group related ones together. Areas within the graphs were determined by the p-

values of the terms. F, TmX/Tm4,6-Gal4 driving CD4tdGFP (flip-out) and UAS-fra (N=37 Tm4 

neurons in 9 brains). 3D reconstructions of GFP expression for the representative adult neurons 

in each condition with anti-NCad (white). Arrowhead points to the dendritic fork normally 

characteristic of Tm2s (compare to control in C). Scale bars: 10 μm (A-bottom), 3 μm (A-top), 

7 μm (C) and 15 μm (F). 
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Table S1 (separate file): Candidate terminal selectors of the optic lobe neurons: Source 

data for Figure S1A. 

Table S2 (separate file): Differential gene expression analysis of the Tm subclusters in 
scRNA-seq 

Table S3 (separate file): Inferelator models learned from the Tm and Lamina neurons: 

Produced using the respective MergedDA priors, multitask from the P30-40-50 and P24-36-48 

datasets. 

Table S4: Genotypes of animals used for all experiments in figure panels and the 
temperature at which each experiment was performed 

Table S5: Origins of all reagents, fly strains, antibodies and software used in the study 

Table S6: Full names of all gene symbols referenced in the study  
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Table S4 
Ctrl: Control, Exp: Experiment, FSF: FRT-stop-FRT 

Panels Genotype Temp 

S3B, 
S5A 

hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R35H01-Gal4/+ 25 

S3C hsFLP2:PEST/+;  TI(CRIMIC.TG4.2)Wnt10CR01661/+ ; UAS-FSF-CD4tdGFP/+ 25 

S3D, 
S7K 

hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R71F05-Gal4/+ 25 

1C, S3E Ctrl: hsFLP122, UAS-CD8GFP/+; FRT42D, tub-Gal80/FRT42D;  
R71F05-Gal4/UAS-CD4tdGFP 
Exp: hsFLP122, UAS-CD8GFP/+; FRT42D, tub-Gal80/FRT42D, pdm31;  
R71F05-Gal4/UAS-CD4tdGFP 

25 

1D-F Ctrl:  hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R71F05-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/ P(TRiP.HMJ21205);  
R71F05-Gal4/+ 

29 

1G Ctrl: Same as above 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/ UAS-pdm3.short; R71F05-Gal4/+ 

25 

1H-O, 
S4B 

Ctrl: ;UAS-Stinger/+; R71F05-Gal4/+ 
Exp: ;UAS-Stinger/UAS-pdm3.short; R71F05-Gal4/+ 

25 

S3F Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; 27b-Gal4/+  
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/UAS-pdm3.short; 27b-Gal4/+ 

25 

2A-C, 
S5B-C 

Ctrl:  hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R35H01-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/ Mi(Hto-WP)DrgxGLO;  
R35H01-Gal4/+ 

29 

2E ; tub-Gal80ts/+; pxb-Gal4, UAS-CD8GFP/+ 29 

2F ; tub-Gal80ts/+; pxb-Gal4, UAS-CD8GFP/UAS-Klu.HA 29 

2G-I, 
S5D-F 

Ctrl: hsFLP2:PEST/+; DrgxΔTm1/+ ; 27b-Gal4/UAS-FSF-CD4tdGFP  
Exp: hsFLP2:PEST/+; DrgxΔTm1/DrgxΔTm1; 27b-Gal4/UAS-FSF-CD4tdGFP  

25 

S5H Ctrl: w1118 ;; 
Exp:  w1118 ; DrgxΔTm1/DrgxΔTm1 ; 

25 

3A-B Ctrl: hsFLP122, UAS-CD8GFP/+; FRT40A, tub-Gal80/FRT40A;  
R35H01-Gal4/UAS-CD4tdGFP 
Exp: hsFLP122, UAS-CD8GFP/+; FRT40A, tub-Gal80/FRT40A, SoxNNC14;  
R35H01-Gal4/UAS-CD4tdGFP 

25 

S7A hsFLP2:PEST/+;  tub-Gal80ts/UAS-SoxN.V5; 
R35H01-Gal4/UAS-FSF-CD4tdGFP 

29 

S7B Ctrl: hsFLP122, UAS-CD8GFP/+; FRT40A, tub-Gal80/FRT40A;  
R35H01-Gal4/UAS-CD4tdGFP 
Exp: hsFLP122, UAS-CD8GFP/+; FRT40A, tub-Gal80/FRT40A, aopE833;  
R35H01-Gal4/UAS-CD4tdGFP 

25 

S7C Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R35H01-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+;  
R35H01-Gal4/ P(TRiP.HMS01256) 

29 

3C Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R71F05-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+;  
R71F05-Gal4/ P(TRiP.HMS01256) 

29 

3F-G, 
S7E-G 

Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R76F01-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/UAS-Vsx1; R76F01-Gal4/+ 

29 
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S7D hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/UAS-Vsx2.CC; R76F01-Gal4/+ 29 

4A,E Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R71F05-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/P(TRiP.HMS01691);  
R71F05-Gal4/+ 

29 

4B,F hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/UAS-aop.WT; R71F05-Gal4/+ 29 

4C,G hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/UAS-aop.ACT; R71F05-Gal4/+ 29 

5H, S9A Ctrl: hsFLP122, UAS-CD8GFP/+; FRT42D, tub-Gal80/FRT42D;  
R71F05-Gal4/UAS-CD4tdGFP 
Exp: hsFLP122, UAS-CD8GFP/+; FRT42D, tub-Gal80/FRT42D, Hr3K10308;  
R71F05-Gal4/UAS-CD4tdGFP 

25 

5J Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R71F05-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/tub-Gal80ts;  
R71F05-Gal4/UAS-Blimp1 

29 

5K Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; 27b-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; 27b-Gal4/P(TRiP.HMS00924) 

29 

S9C Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R71F05-Gal4/+ 
Exp: hsFLP2:PEST/Mi(Hto-WP)ctBRO; UAS-FSF-CD4tdGFP/+; R71F05-Gal4/+ 

29 

S9F Ctrl: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R35H01-Gal4/+ 
Exp: hsFLP2:PEST/+; UAS-FSF-CD4tdGFP/+; R35H01-Gal4/ UAS-fra  

29 
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Table S5 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Critical Commercial Resources 
 

Chromium Next GEM Single Cell 3ʹ 

GEM, Library & Gel Bead Kit v3.1 
10X Genomics 1000128 

Chromium Next GEM Chip G Kit 10X Genomics 1000127 

Single Index Kit T Set A 10X Genomics 1000213 

10x™ Magnetic Separator 10X Genomics 230003 

PCR Tubes 0.2 ml 8-tube strips Eppendorf 0030124286 

DNA LoBind Tubes, 1.5 ml Eppendorf 022431021 

SPRIselect Reagent Kit Beckman Coulter B23318 

High Sensitivity DNA Kit Agilent Technologies 5067-4626 

Hemacytometer C-Chip 0.02 mm Fisher 22-600-109 

Qubit® dsDNA HS Assay Kit 
Thermo Fisher 

Scientific 
Q32854 

pluriStrainer Mini 20 µm pluriSelect 43-10020-40 

Chemicals, Peptides, and Recombinant Proteins 
 

Ethanol, Pure (200 Proof, anhydrous) Sigma 459836 

10% Tween 20 Bio-Rad  1610781 

Formaldehyde Merck KGaA 1.03999.1000 

PBS 20X Growcells.com MRGF-6396 

Triton X-100 Sigma T8787 

Schneider's Drosophila Medium [+] 

L-Glutamine 
Gibco 21720-024 

Collagenase (C. histolyticum) Sigma C0130 

Dispase II Sigma D4693-1G 

BSA Sigma A7906 

DPBS Corning/Fisher 21-031-CV 

SSC 20X Quality Biological 351-003-131 

Experimental Model: Organisms/Strains 
 

Drosophila, w1118 WellGenetics N/A 

Drosophila, hsFLP2:PEST (X) Ref (66) N/A 

Drosophila, 27b-Gal4 (III) Ref (30) N/A 

Drosophila, pxb-Gal4 (III) Ref (29) N/A 

Drosophila, UAS-pdm3.short (II) Ref (25) N/A 

Drosophila, UAS-Vsx1 (II) Ref (5) N/A 

Drosophila, FRT40A, aopE833 Ref (32) N/A 
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Drosophila, FRT42D, pdm31 Ref (24) N/A 

Drosophila, R35H01-Gal4 
Bloomington Drosophila Stock 

Center (BDSC) 
49922 

Drosophila, R71F05-Gal4 BDSC 48303 

Drosophila, R76F01-Gal4 BDSC 39934 

Drosophila, Wnt10-Gal4 BDSC 86484 

Drosophila, hsFLP122 (X) BDSC 8862 

Drosophila, UAS-CD4:tdGFP (III) BDSC  35836 

Drosophila, UAS-Stinger (II) BDSC 1956 

Drosophila, UAS-pdm3.RNAi (II) BDSC 53887 

Drosophila, UAS-Mef2.RNAi (II)  BDSC 38247 

Drosophila, UAS-aop.RNAi (III) BDSC 34909 

Drosophila, UAS-ct.RNAi (III) BDSC 33967 

Drosophila, UAS-aop.WT (II) BDSC 5790 

Drosophila, UAS-aop.ACT (II) BDSC 5789 

Drosophila, UAS-Drgx (II) BDSC 56546 

Drosophila, UAS-ct (X) BDSC 56538 

Drosophila, UAS-SoxN.V5 (II) BDSC 83300 

Drosophila, tub-Gal80ts (II) BDSC 7108 

Drosophila, FRT40A BDSC 8212 

Drosophila, FRT42D BDSC 1802 

Drosophila, FRT40A, tub-Gal80 BDSC 5192 

Drosophila, FRT42D, tub-Gal80 BDSC 9917 

Drosophila, FRT40A, SoxNNC14 BDSC 91794 

Drosophila, UAS-fra (III) BDSC 8814 

Drosophila, UAS-Klu.HA (III) FlyORF F000578 

Drosophila, UAS-Vsx2.CC (II) FlyORF F003265 

Drosophila, FRT42D, Hr3K10308 Kyoto Stock Center 111288 

Drosophila, UAS-FSF-CD4:tdGFP 

(II) 
Gift from Robin Hiesinger N/A 

Drosophila, UAS-FSF-CD4:tdGFP 

(III) 
Gift from Robin Hiesinger N/A 

Drosophila, UAS-Blimp-1 (III) 
Gift from Jens Rister and Gerald 

Call 
N/A 

Drosophila, DrgxΔTm1 (II) This paper (WellGenetics) N/A 

Deposited Data   

Single-cell RNA sequencing (Raw 

and analyzed data) 
This paper GEO: GSE199734 
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Antibodies   

Mouse anti-Brp 
Developmental Studies 

Hybridoma Bank (DSHB) 
nc82 

Mouse anti-Aop DSHB 8B12H9 

Rat anti-NCad DSHB DN-ex8 

Mouse anti-V5:DyLight550 BioRad MCA1360D550GA 

Chicken anti-GFP Millipore Sigma 06-896 

Rabbit anti-(cleaved)Dcp1 Cell Signaling Technology 9578 

Rabbit P-p44/42 anti-MAPK Cell Signaling Technology 9101S 

Guinea Pig anti-Pdm3 Ref (24) N/A 

Rabbit anti-Vmat (N-term) Ref (56) N/A 

Guinea Pig anti-Vsx1 Ref (5) N/A 

Guinea Pig anti-Runt Ref (6) N/A 

Guinea Pig anti-Brp This paper N/A 

Rabbit anti-SoxN This paper N/A 

Rabbit anti-Mef2 This paper N/A 

Rat anti-Drgx This paper N/A 

Rat anti-Pdm3 This paper N/A 

Guinea Pig anti-Repo This paper N/A 

Rabbit anti-Vsx2 This paper N/A 

Donkey anti-chicken Alexa 488 Jackson ImmunoResearch 703-545-155 

Donkey anti-rabbit DyLight 405 Jackson ImmunoResearch 711-475-152 

Donkey anti-rabbit Alexa 488 ThermoFisher Scientific A31570 

Donkey anti-rabbit Cy3 Jackson ImmunoResearch 711-165-152 

Donkey anti-rabbit Alexa 647 Jackson ImmunoResearch 711-605-152 

Donkey anti-mouse Alexa 488 Jackson ImmunoResearch 715-545-150 

Donkey anti-mouse Alexa 555  ThermoFisher Scientific A31570 

Donkey anti-mouse Alexa 647 Jackson ImmunoResearch 715-605-151 

Donkey anti-rat Alexa 647 Jackson ImmunoResearch 712-605-153 

Donkey anti-rat Cy3 Jackson ImmunoResearch 712-165-153 

Donkey anti-rat Alexa 488 Jackson ImmunoResearch 712-545-150 

Donkey anti-guinea pig DyLight 405 Jackson ImmunoResearch 706-475-148 

Donkey anti-guinea pig Alexa 488 Jackson ImmunoResearch 706-545-148 

Donkey anti-guinea pig Cy3 Jackson ImmunoResearch 706-165-148 

Donkey anti-guinea pig Alexa 647 Jackson ImmunoResearch 706-605-148 

Software and Algorithms   

Prism 9 GraphPad N/A 

Imaris Bitplane, Switzerland  N/A 

CellRanger 10X Genomics N/A 
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R Statistical Computing Software 

version 4 
R Project N/A 

RStudio RStudio, Inc N/A 

Python 2.7 Anaconda, Inc N/A 

Python 3.6 Anaconda, Inc N/A 
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Table S6 
Symbol Gene Name  Symbol Gene Name 
bsh  brain-specific homeobox  eIB  elbow B 
hth  homothorax  Ets65A E26 transformation specific at 65A 
vvl ventral veins lacking  Vsx1  Visual system homeobox 1 
Lim1 LIM homeobox 1  Vsx2 Visual system homeobox 2 
erm earmuff  5-HT7 5-hydroxytryptamine (serotonin) 

receptor 7 
SoxN SoxNeuro  Octβ1R Octopamine β1 receptor 
Drgx Dorsal root ganglia homeobox  Or63a  Odorant receptor 63a 
TfAP-2 Transcription factor AP-2  Dh44-R1  Diuretic hormone 44 receptor 1 
aop Anterior open  MAPK  mitogen activated protein kinase 
Wnt10 Wnt oncogene analog 10  InR Insulin-like receptor 
ap apterous  Alk Anaplastic lymphoma kinase 
scro scarecrow  Hr3 Hormone receptor 3 
ct cut  Hr39 Hormone receptor-like in 39 
Camta Calmodulin-binding transcription 

activator 
 Eip74EF Ecdysone-induced protein 74EF 

pdm3 pou domain motif 3  Eip93F Ecdysone-induced protein 93F 
Mef2 Myocyte enhancer factor 2  Fezf2 FEZ Family Zinc Finger 2 
Dcp-1 Death caspase-1  Dscam4 Down syndrome cell adhesion 

molecule 4 
Wnt4 Wnt oncogene analog 4  fra frazzled 
Klu Klumpfuss   Pet1  PC12 ETS Domain-Containing 

Transcription Factor 1 
repo reversed polarity   Lmx1a LIM Homeobox Transcription 

Factor 1 Alpha 
Vmat Vesicular monoamine transporter  Lmx1b LIM Homeobox Transcription 

Factor 1 Beta 
Dll Distal-less  Nurr1  Nuclear receptor related 1 protein 
fd59A forkhead domain 59A  Imp  IGF-II mRNA-binding protein 
ham hamlet  Syp Syncrip 
noc no ocelli  
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FACS Gating Strategy 
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