SUPPLEMENTAL INFORMATION

Table S1: CyCIF Antibody Information (Related to Figure 1)

Target Name	Source	Identifier				
TTF1	Abcam	Clone EPR5955(2); Cat# ab206726; RRID: AB_2857980				
B220 (CD45R)	ThermoFisher Scientific	Clone RA3-6B2; Cat# 41-0452-80; RRID: AB_2573598				
CD45	BioLegend	Clone 30-F11; Cat# 103123; RRID: AB_493534				
FOXP3	ThermoFisher Scientific	Clone FJK-16s; Cat# 11-5773-82; RRID: AB_465243				
CD4	ThermoFisher Scientific	Clone 4SM95; Cat# 41-9766-82; RRID: AB_2573637				
CD8a*	Cell Signaling Technology	Clone D4W2Z; Cat# 98941; RRID: AB_2756376				
CD103**	R&D Systems	Clone Polyclonal; Cat# AF1990; RRID: AB_2128618				
CD11c*	Cell Signaling Technology	Clone D1V9Y; Cat# 97585; RRID: AB_2800282				
CD11b	Abcam	Clone EPR1344; Cat# ab204471; RRID: AB_2650514				
Nkp46	R&D Systems	Clone Polyclonal; Cat# FAB2225F-025; RRID: AB_2149149				
CD3e*	Cell Signaling Technology	Clone D4V8L; Cat# 99940; RRID: AB_2755035				
Ki-67	Cell Signaling Technology	Clone D3B5; Cat# 12075; RRID: AB_2728830				
PD-L1*	Cell Signaling Technology	Clone D5V3B; Cat# 64988; RRID: AB_2799672				
PD-1	Cell Signaling Technology	Clone D7D5W; Cat# 61237; RRID: AB_2799604				
Granzyme B*	Cell Signaling Technology	Clone E5V2L; Cat# 44153; RRID: AB_2857976				
Perforin*	Cell Signaling Technology	Clone E3W4I; Cat# 31647; RRID: AB_2857978				
TIM-3*	Cell Signaling Technology	Clone D3M9R; Cat# 83882; RRID: AB_2800033				
Ly6G	eBioscience	Clone 1A8-Ly6G; Cat#: 12-9668-82; RRID: AB_2572720				
TCF1	Cell Signaling Technology	Clone C63D9; Cat# 6709; RRID: AB_2797631				
Vimentin	Cell Signaling Technology	Clone D21H3; Cat# 9854; RRID: AB_10829352				
αSMA	Cell Signaling Technology	Clone D4K9N; Cat# 76113; RRID: AB_2857972				
F4/80*	Cell Signaling Technology	Clone D2S9R; Cat# 70076; RRID: AB_2799771				

Pan-Keratin	ThermoFisher Scientific	Clone AE1/AE3; Cat# 53-9003-82; RRID: AB_1834350					
PCNA	Abcam	Clone PC10; Cat# ab201674; RRID: AB_2857977					
CD4	R&D	Clone Polyclonal; Cat# FAB8165G; RRID: AB_2728839					
CCR6	Abcam	Clone EPR22259; Cat# ab243852; RRID: AB_2860033					
Granzyme B	Agilent Dako	Clone GrB-7; Cat# M7235; RRID: AB_2114697					
TCF1	Cell Signaling Technology	Clone C63D9; Cat# 6444; RRID: AB_2797627					
FOXP3	eBioscience	Clone 236A/E7; Cat# 41-4777-82; RRID: AB_257360					
CD8α	eBioscience	Clone AMC908; Cat# 50-0008-82; RRID: AB_2574149					
PD-L1	Cell Signaling Technology	Clone E1L3N; Cat# 14123; RRID: AB_2798397					
CD20	eBioscience	Clone L26; Cat# 50-0202-82; RRID: AB_11150959					
TIM-3	Cell Signaling Technology	Clone D5D5R; Cat# 54669; RRID: AB_2799468					
CD45	BioLegend	Clone HI30; Cat# 304008; RRID: AB_314396					
PD-1	Abcam	Clone EPR4877(2); Cat# ab201825; RRID: AB_2728811					
CD163	Abcam	Clone EPR14643-36; Cat# ab218293; RRID: AB_2889155					
CD68	Cell Signaling Technology	Clone D4B9C; Cat# 79594; RRID: AB_2799935					
Ki-67	Cell Signaling Technology	Clone D3B5; Cat# 12075; RRID: AB_2728830					
HLA-DPB1	Abcam	Clone EPR11226; Cat# ab201527; RRID: AB_2890211					
CD3D	Abcam	Clone EP4426; Cat# ab208514; RRID: AB_2728789					
HLA A	Abcam	Clone EP1395Y; Cat# ab199837; RRID: AB_2728798					
PCNA	Cell Signaling Technology	Clone PC10; Cat# 8580; RRID: AB_11178664					
αSMA	Abcam	Clone EPR5368; Cat# ab202509; RRID: AB_2868435					
Vimentin	Cell Signaling Technology	Clone D21H3; Cat# 9856; RRID: AB_10834530					
CD16	Santa Cruz	Clone DJ130c; Cat# sc-20052 AF488; RRID: AB_2890161					
Pan-Keratin	eBioscience	Clone AE1/AE3; Cat# 41-9003-82; RRID: AB_11218704					
CD14	Abcam	Clone EPR3653; Cat# ab196169; RRID: AB_2890135					
CD19	Abcam	Clone EPR5906; Cat# ab196468; RRID: AB_2889156					
CD103	Abcam	Clone EPR4166(2); Cat# ab225153; RRID: AB_2884945					

*Custom Conjugated Antibody from Cell Signaling Technology **In-House Conjugated See Star Methods for labeling details.

А

С

Figure S1. Multiplexed tissue imaging and cell type calling in the KP genetically engineered mouse model of cancer (Related to Figures 1 and 2)

(A) Representative image of H&E-stained section with pathology annotations indicated. Left, Scale bar: 1mm. Right, Scale bar: 100μm. (B) Representative multiplexed CyCIF images (whole lung lobe and single tumor inset) of tumor and immune markers from whole FFPE sections of KP LucOS tumor-bearing lung. Scalebar:1mm. Scalebar: 100 μm. Left, Scale bar: 1mm. Right, Scale bar: 100μm. (C) Cell type calling dendrogram for CyCIF image analysis; first immune, epithelial, and 'other' cell types were identified (Level 1, Lv1; shown in heat map of all cells), and then the immune cells were further clustered into lymphoid cells and myeloid cells (Level 2; Lv 2) and immune cell subtypes (Level 3 and Level 4; Lv3, Lv4: Treg, CD4 Th, CD8 Tc, B cells, NK cells (lymphoid marker-defined, 'NK-L'), alveolar macrophages, dendritic cells, NK cells (myeloid marker-defined, 'NK-M'), neutrophils, and tumor associated macrophages (CD11b⁺CD11c⁻).

		Viral	Sac					Imaging
Expt #	Mouse	Construct	Week	Treatment	# mice	Lobes	Tumors	modality
	KrasLSL-							
	G12D/+;				_		= 0.4	0.015
1	I rp53fl/fl	I/fl Cre 8		none	5	10	531	CyCIF
	KrasLSL-							
1	G12D/+; Trp52fl/fl		0	2020	E	10	107	
- 1	Krool SI	Lucos	0	none	5	10	107	CyCIF
	C12D/+·							
1	Trp53fl/fl	Cre+Cxcl10a	8	none	5	10	447	CVCIE
1	Krasl SI -		0	none	0	10		Oyon
	G12D/+:							
2	Trp53fl/fl	Cre	8	none	5	8	599	RNAScope
	KrasLSL-							•
	G12D/+;							
2	Trp53fl/fl	LucOS	8	none	5	8	113	RNAScope
	KrasLSL-							
	G12D/+;				_			
2	Trp53fl/fl	Cre+Cxcl10a	8	none	5	8	515	RNAScope
	KrasLSL-			0110				
2	G12D/+;		c	Ctrl 6	c	10	107	
<u> </u>	Krael SI	Lucos	0	weeks	0	10	107	CyCIF
	C12D/+·			Ctrl Q				
3	Trn53fl/fl		a	weeks	6	18	230	CVCIE
0	Krasl SI -	Lucco		Weeks	0	10	200	Oyon
	G12D/+:			ICB 9				
3	Trp53fl/fl	LucOS	9	weeks	6	18	324	CvCIF
	KrasLSL-							
	G12D/+;			PBS				
4	Trp53fl/fl	LucOS	9	(control)	7	14	198	CyCIF
	KrasLSL-							
	G12D/+;							
4	Trp53fl/fl	LucOS	9	Vax	8	16	201	CyCIF
5	Trp53fl/fl	Cre	4	none	3	3	0 (n/a)	CyCIF
5	Trp53fl/fl	LucOS	4	none	3	3	0 (n/a)	CyCIF
5	Trp53fl/fl	Cre	8	none	2	2	0 (n/a)	CyCIF
5	Trp53fl/fl	LucOS	8	none	3	3	0 (n/a)	CyCIF

 Table S2: Mouse Experiment Information (Related to Figure 2-6)

S

G

Figure S2. Spatial analysis of immune cell-type composition in KP LucOS versus Cre tumor-bearing lung (Related to Figure 2)

(A) Representative CyCIF images of KP LucOS tumor shown in Figure 2B, showing coexpression patterns of myeloid markers CD11c, CD103, and CD11b. In the cell type dendrogram (Figure S1C) alveolar macrophages are defined as CD11c⁺ cells that are negative for the conventional type 1 dendritic cell (cDC1) marker CD103 and having no appreciable expression of CD11b. The cDC1 population identified is CD11c⁺ CD11b⁻ CD103⁺. The high level CD11c⁺ CD11b⁺ "myeloid" gate also captured CD11b⁺ CD11c⁺ conventional type 2 dendritic cells (cDC2), but this cell population could not be distinguished from CD11b⁺ CD11c⁺ tumor associated macrophages (TAMs), and, thus, was not described as an individual subset. Spatial maps of cell types (four plots on right) show that the CD11c⁺ cells depicted in Figure 2B are alveolar macrophages and not dendritic cells. Alveolar macrophages express high levels of CD11c and are the most abundant myeloid population in the lung. Scale bar: 50µm. Additional representative CyCIF images of lymphocyte and myeloid markers are shown for (B) KP LucOS (Scale bar: 100µm) and (C) KP Cre (Scale bar: 50µm). (D) Log2 fold ratio of cell-type densities between LucOS and Cre in areas outside tumor (n = 5 mice/group, color: two tailed t-test p-value). (E) Ratio of CD8 Tc to Treg cell density measurements outside and inside of annotated tumor areas in LucOS versus Cre mice (n = 5 mice/group, bar = mean, two-tailed t-test). (F) T cell numbers in LucOS versus Cre mice calculated by flow cytometric analysis of dissociated tumor-bearing lung tissue (n = 5mice/group, bar = mean, two-tailed t-test ns p<0.1). (G) Spatial frequency of indicated cell types relative to vessels (Cre and LucOS, n = 5 mice/group, mean +/- SEM).

Figure S3. Characterization of lymphocyte networks (Related to Figure 3)

(A) Neighborhood embedding generated by the Visinity algorithm displaying all cells. (B) Density plots of normal and tumor cells in Visinity embedding of KP LucOS and KP Cre lung tissue. Color key represents relative cell density. (C) Visinity plots, black dots are cells in lymphonets. Arrows indicate Visinity cluster enriched in lymphonets, and pie charts summarize the composition and fraction of each cluster derived from LucOS and Cre and from tumor and normal tissues. (D) Plot of fraction of cells in lymphonets for LucOS and Cre together (n = 10 mice, 5 per group, bar = mean). (E) Fraction of lymphonets with indicated single-cell type majority for LucOS, Cre, and both combined (n = 5 mice per group). (F) Bar graph of lymphonet number (left) and size (right) in KP Cre versus KP LucOS mice (n = 5 mice/group, bar=mean, two-tailed t-test). (G) Histogram of number of lymphonets per lung lobe by lymphonet size for P fl/fl mice (treated with Cre and LucOS lentiviruses which do not induce tumors due to lack of Kras allele and harvested 4 or 8 weeks later; n = 11 mice and 11 lung lobes; see Table S4 for details) and KP Cre mice (n = 5 mice and 10 lobes). Dashed line placed for comparative reference. (H-I) Scatter plot of (H) number of lymphonets and (I) average size of lymphonets per Cre and LucOS by fraction of tumor cells per mouse (n = 5 mice/group, Pearson correlation and two-tailed p-value). (J) Kernel estimate probability density functions of distance of indicated cell populations from lymphonets in KP Cre and KP LucOS lung tissue (separate plots for each mouse analyzed; n = 5 mice/group). (K) Bar graphs of fraction of cells per cell type interacting with lymphonets for indicated cell populations in Cre and LucOS lung tissue (for whole lung area, tumor area, and nontumor area, n = 5 mice/group, bar=mean). (L) Bar graphs of mean lymphonet size and lymphonet number and (M) immune cell composition in KP LucOS mice 6 weeks and 9 weeks after tumor induction (n = 6 mice/group, bar=mean, two-tailed t-test). (N) Lymphonet composition across network sizes. Left, B and T cells; right, T cell subtypes for KP LucOS mice 6 weeks and 9 weeks after tumor induction (n = 6 mice/group, mean +/- 25th percentile).

Figure S4. Spatial analysis of *Cxcl10* overexpression on lymphonets (Related to Figure 4)

(A) Bar plot of percent of *Cxcl9* expressing cells and *Cxcl10* expressing cells by cell type in KP Cre and KP LucOS lung tissues and (B) stacked bar graph showing fraction of positive cell per type in KP Cre and KP LucOS lung tissues (n = 4 mice/group mean +/- 25th percentile). 'DC' = CD103⁺ dendritic cells. (C) Map of all cells colored by distance to nearest *Cxcl9* mRNA positive cell measured by RNAScopeTM *in situ* hybridization in KP Cre and KP LucOS lung tissue. (D) Spatial autocorrelation of *Cxcl9* and *Cxcl10* mRNA-expressing cells using Ripley's L function ('Ripley's clustering index') in KP Cre and KP LucOS mice (n = 4 mice/group, bar = mean). (E) Left, density plots of lymphonets by distance from closest blood vessel (y-axis) and tumor (x-axis) for KP *Cxcl10* cohort. Color key represents relative lymphonet density. Right, scatter plot lymphonets used to generate density plot (dot size represents the lymphonet size, n = 4 mice).

Figure S5. Multiparametric analysis of Tc functional states after anti-PD-1/anti-CTLA-4 immune checkpoint blockade (ICB) (Related to Figure 5)

(A) Schematic of treatment of KP LucOS mice with a SIIN and SIY long-peptide vaccine or anti-PD-1/anti-CTLA-4 immune checkpoint blockade therapy. (B) Bar graphs of total number of tumors (left), percent of tumor area cells (center), and percent epithelial cells (right) normalized by total cells for KP LucOS mice control (n = 7 mice) and with vax treatment (n = 8 mice). Vax treatment resulted in a significant reduction of tumor burden when immune cell infiltrate was excluded from tumor area calculations (bar=mean, twotailed t-test). (C) Bar graphs of total number of tumors (left), percent of tumor area cells (center), and percent epithelial cells (right) normalized by total cells for KP LucOS mice control (n = 6 mice) and with immune checkpoint blockade (ICB) treatment (n = 6 mice, bar=mean, two-tailed t-test). (D) Palantir projection of CD8 Tc populations in KP LucOS mice treated with anti-PD-1/anti-CTLA-4 immune checkpoint blockade (ICB) or isotype control antibodies (Ctrl) (n = 10^4 cells sampled from n = 6 mice per treatment, see panel A for treatment schematic). The expression levels of the indicated markers are mapped to color (normalized between 0.1 and 99th percentile). Tc states defined by multiparameter measurements are indicated at the extremes of the representation (S1, S2, and S3) connected by transitional phenotypes (T1-T3) shown in the schematic to the right. (E) Plot of the normalized fluorescence units for each of the markers in the indicated Tc cell states and transitions (mean ± 25th percentile). (F) Heat map of Tc cell densities in Palantir projections for Ctrl and ICB groups (n = 10⁴ cells per group). Right, stacked bar graph of the fraction of Tc cells in each state and transition. (G) Heat map of Tc cell densities in Palantir plots for KP LucOS following PBS treatment (Ctrl, vaccine cohort) separated by distance from tumor boundary (distal: >50 µm from the tumor boundary; proximal: <50 μ m from the tumor boundary; and inside tumor, n = 10⁴ cells). (H) Heat map of Tc densities in Palantir projections for KP LucOS mice following Ctrl or ICB treatment separated by distance from tumor boundary as in G (n = 10^4 cells per treatment). (I) Frequency of Tc cell states and transitions from tumor boundaries in ICB cohort. (J) Plot of the percent of Tc cells that are TCF1⁺ PD-1⁺ in each Tc cell state in ICB cohort. (K, L) Graph of flow cytometric analysis of dissociated tumor-bearing lung tissue from KP LucOS mice treated with Vax (K) or ICB (L) showing the percent of CD8

T cells expressing the indicated markers and the proportion of these populations that are SIIN and SIY peptide-MHC Tetramer+ versus Tetramer- (mean + SD, n = 5-7 mice per group; p-value *p<0.05, **p<0.01, ***p<10⁻³, ****p<10⁻⁴). Peptide-MHC tetramers do not fully capture low affinity TCR interactions, and some Tetramer negative cells analyzed may also be specific to the SIIN and SIY antigens.

Figure S6. Characterization of lymphonets after vaccine and immune checkpoint blockade immunotherapies (Related to Figure 6)

(A) Plot of the number of cells in lymphonets and the average number of lymphonets in KP LucOS mice without treatment (Ctrl) or treated with vaccination (Vax) (n = 7 and 8 mice, bar=mean, two-tailed t-test). (B) Kernel density probability density function of lymphonet spatial frequency relative to the tumor boundary for Ctrl (n = 7) and Vax (n = 8) mice. (C) Plot of the fraction of lymphonets comprised of T and B cells as a function of lymphonet size in Ctrl and Vax mice (mean +/- 25th percentile). (D) Kernel density probability density function of number of CD8 cytotoxic T cells per lymphonet for Ctrl (n = 7) and Vax (n = 8) mice (two-tailed KS test). (E) Bar graph of the number of lymphonets with >8 CD8 Tc cells in Ctrl (n = 7) and Vax (n = 8) mice (FC = fold change, two-tailed t-test) (F-G) Heat map of cell densities of non-tumor Tc cells present outside and inside lymphonets in Palantir projections for Vax (F, n = 14,480 and 978 cells) and ICB-treated (G, n = 13,948 and 735 cells) cohorts.

Case	Age (yrs)	Sex	Pathology	AJCC 8th Edition Stage	Size (cm)	Side	Site	Histologic type	Grade	Treatment
1	68	F	Lung Adenocarcinoma	pT1b pNx	1.3	Right	Lower lobe	acinar predominant	G2: Moderately differentiated	None
2	56	F	Lung Adenocarcinoma	pT1cN2	2.3	Left	Upper lobe	solid predominant	G3: Poorly differentiated	None
3	60	М	Lung Adenocarcinoma	pT1bN0	1.4	Right	Lower lobe	acinar predominant	G3: Poorly differentiated	None
4	66	М	Lung Adenocarcinoma	pT2a pN0	2.2	Left	Upper lobe	acinar predominant	G2: Moderately differentiated	None
5	73	F	Lung Adenocarcinoma	pT2a pN0	2.2	Left	Upper lobe	solid predominant	G3: Poorly differentiated	None
6	73	F	Lung Adenocarcinoma	pT1a pN0	1	Right	Lower lobe	acinar predominant	G2: Moderately differentiated	None
7	73	М	Lung Adenocarcinoma	pT1cpN0	2.2	Left	Upper lobe	acinar predominant	G2: Moderately differentiated	None
8	63	F	Lung Adenocarcinoma	pT1bN0	1.2	Right	Upper lobe	papillary predominant	G2: Moderately differentiated	None
9	79	М	Lung Adenocarcinoma	pT2a pN0	2.1	Left	Upper lobe	acinar predominant	G2: Moderately differentiated	None
10	53	F	Lung Adenocarcinoma	pT3pN2	1.9	Right	Upper lobe	solid predominant	G3: Poorly differentiated	None
11	66	F	Lung Adenocarcinoma	pT1bN0	1.7	Right	Lower lobe	acinar predominant	G2: Moderately differentiated	None
12	66	F	Lung Adenocarcinoma	pT1bN0	1.3	Left	Lower lobe	papillary predominant	G2: Moderately differentiated	None
13	59	М	Lung Adenocarcinoma	PT3N0M1b	2	Right	Upper lobe	solid predominant	G3: Poorly differentiated	None
14	70	F	Lung Adenocarcinoma	PT1cN0	2.9	Right	Upper lobe	acinar predominant	G2: Moderately differentiated	None

Figure S7. Analysis of early-stage human lung adenocarcinoma (Related to Figure 7)

(A) Representative images of H&E and CyCIF images of human lung adenocarcinoma (Table S2; tumor areas outlined in red and lymphonets outlined in blue. Color map indicates lymphonet size. Scale bar: 1mm. (B) Scatter plot of number of TLS identified by pathology review versus number of large lymphonets (defined as >500 cells) in human lung tumor samples. Dashed lined linear regression from origin. (C) Bar graph and scatter plot of number of lymphonets per sample normalized by number of total cells in sample. Left, lymphonets <100 cells, right, lymphonets >100 cells. Pearson correlation and two-tailed test. (D) Spatial correlation of lymphocytes' likelihood of belonging to a lymphonet and the likelihood of myeloid cells expressing the indicated markers (n =1 4 samples, bar = mean, Pearson correlation and two-tailed test). (E) Kernel density probability density function of marker expression in indicated cell types.

CASE	< 10 cells	11-30	31-64	65-500	>500	TLS (manual annotation)
1	1168	642	112	112	36	n/a
2	1132	450	80	61	14	12
3	308	161	36	30	4	5
4	2385	988	109	69	3	7
5	2713	1232	219	152	17	12
6	1315	610	112	62	5	4
7	1100	537	124	95	1	1
8	1293	672	148	132	26	36
9	1184	584	118	83	17	18
10	1302	752	186	113	11	9
11	1260	679	143	100	18	12
12	502	279	59	41	3	8
13	2149	1180	202	86	17	13
14	580	366	74	75	18	40

Table S4: Lymphonets and Tertiary Structures in Human Lung Adenocarcinoma(Related to Figure 7)