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SUMMARY 

The Panel has been asked to reconsider the possible age-dependent toxicokinetics of BPA in 
animals and humans and their implication for hazard and risk assessment of BPA in food. The 
Panel concluded that the exposure of a human fetus to free BPA would be negligible due to the 
maternal capacity for conjugation whereas the fetal rat would be exposed to free BPA from the 
maternal circulation. Taking account of data in human neonates on compounds structurally 
related to BPA which undergo glucuronidation/sulphation, the Panel considers that there is 
sufficient capacity in the neonate to conjugate BPA at doses below 1 mg/kg bw (the Panel noted 
that exposures at the TDI of 0.05 mg/kg bw are 20 fold lower than this).  

Therefore, the Panel concluded that there is sufficient capacity for biotransformation of BPA to 
hormonally inactive conjugates in neonatal humans at exposures to BPA that were considered in 
the EFSA opinion of 2006 and the European Union Risk Assessment Report (EC, 2003, 2008). 

In addition, the Panel notes that because of the metabolic differences described, exposure to free 
BPA in adult, fetal and neonatal rats will be greater than in humans and that rats would therefore 
be more susceptible to BPA-induced toxic effects than humans on a equivalent dose basis.  

The Panel therefore considers that its previous risk assessment based on the overall NOAEL for 
effects in rats and using a default uncertainty factor of 100 can be considered as conservative for 
humans. The Panel concluded that the differences in age-dependent toxicokinetics of BPA in 
animals and humans would have no implication for the EFSA 2006 risk assessment of BPA. 
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1 For citation purposes: Scientific Opinion of the Panel on Food additives, Flavourings, Processing aids and Materials in 

Contact with Food (AFC) on a request from the Commission on the toxicokinetics of Bisphenol A. The EFSA Journal 
(2008) 759, 1-10. 
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BACKGROUND  

In its opinion of November 2006, EFSA re-evaluated Bisphenol A (BPA) for use in food 
contact materials. The Panel’s conclusions were based on the then available, extensive database 
on repeated-dose toxicity, reproductive and developmental toxicity of BPA in rodents and on 
the comparison of toxicokinetics in primates, including humans, and rodents. The Panel 
concluded that the new studies provided a basis for revising the uncertainty factors that were 
used by the SCF to derive the temporary TDI of 0.01 mg/kg bw in 2002. In particular, the Panel 
considered that the database concerning reproduction and development had been considerably 
strengthened and that the additional uncertainty factor of 5, introduced by the SCF in 2002 for 
the uncertainties in the database on reproduction and development, was no longer required. The 
Panel also concluded, in view of the well described species differences in toxicokinetics, 
showing a low level of free BPA in humans compared with rats, that a default uncertainty 
factor of 100 applied to the overall NOAEL from the rodent studies could be considered as 
conservative. 

Since then, there have been ongoing discussions on the reported low-dose effects of BPA, 
particularly neurodevelopmental and behavioural effects in laboratory animals, and on the 
immaturity of metabolic pathways in the fetus and neonate, which are important issues for risk 
assessment. A recent Draft Screening Assessment on BPA   by the Canadian Government 
highlighted the possible sensitivity of the fetus and the infant due to insufficiently developed 
enzymes for clearing BPA from the body. The Canadian risk assessment takes a precautionary 
approach for these sensitive life stages, taking into account the findings in the low-dose studies, 
although commenting that these are limited in rigor, consistency and biological plausibility. 

TERMS OF REFERENCE 

The Commission asks EFSA to assess possible age-dependent toxicokinetics of BPA in 
animals and humans and their implication for hazard and risk assessment of BPA in food as 
soon as possible taking into account the most recent information and data available. 
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 ASSESSMENT 

 Toxicokinetics and metabolism of BPA in adult animals and humans   

The toxicokinetics of BPA in adult humans and in animals are well characterized (EFSA, 2006; 
Willlhite et al., 2008). In humans, orally administered BPA is well absorbed and undergoes 
complete first-pass metabolism in the liver to BPA-glucuronide as major metabolite, which is 
rapidly excreted in the urine, with a half-life of less than 6 hours (Völkel et al., 2002, 2008). 
Bisphenol A-sulphate has been reported as a minor urinary metabolite of BPA in humans (Ye 
et al., 2005, 2006). Because this first-pass metabolism is so effective, there is extremely low 
systemic availability of free BPA in humans after oral exposure. BPA-glucuronide and the 
minor urinary metabolite BPA-sulphate do not interfere with hormonal regulation of 
reproduction (Snyder et al., 2000; Shimizu et al., 2002, Willlhite et al., 2008). Therefore, these 
conjugation reactions represent detoxication pathways.  

In rats, BPA is also predominantly glucuronidated, with sulphation representing a minor 
pathway (Pottenger et al., 2000), but the BPA-glucuronide formed is excreted from the liver 
via bile into the gastrointestinal tract, cleaved back to BPA and reabsorbed into the blood. Thus 
it undergoes enterohepatic recirculation resulting in slower elimination of BPA including its 
conjugate in rodents compared with humans (EFSA, 2006), with terminal elimination half-lives 
between 20 and 80 h. The enterohepatic cycling and decreased first pass metabolism of BPA in 
rats results in higher plasma levels of unconjugated BPA in rats compared to humans given the 
same dose.  

These differences reflect the known species difference in molecular mass threshold for biliary 
elimination in rats and humans. The molecular mass of the BPA-glucuronide (484 D) is well 
above the threshold for rats (300 – 400 D) but below that of humans (500 - 600 D) (Hirom et 
al., 1976; Walton et al., 2001; Ghibellini et al., 2006).  

 Neonates and toxicokinetics of xenobiotics  

In human neonates, some metabolic pathways, e.g. glucuronidation (2-5 fold lower in 
premature neonates), and some excretory functions, e.g. glomerular filtration (1.7 fold lower), 
have a lower efficiency compared to adults; these functions reach their full capacities only 
within one and seven months after birth, respectively (Renwick et al., 2000; Dorne et al., 2005; 
Benedetti et al.,  2007;  Dorne, 2007).  

In the rat, activity of uridine diphosphate glucuronosyltransferases (UDPGT) is also low at 
birth (Matsumoto et al.., 2002), and remains reduced until post-weaning (Renwick et al., 2000; 
Heaton and Renwick, 1991). Considering the more rapid attainment of critical developmental 
points in rats compared with humans, it can be concluded that reduced activity of UDPGT 
persists for a relatively longer period, relative to the equivalent development period in humans. 

 
In contrast to UDPGT, sulphotransferases (SULT), which often share xenobiotic substrates 
with UDPGT, are present with high activity already in the developing fetus and are fully 
functional at birth (Richard et al.. 2001; Strolin and Baltes 2003; Duanmu et al., 2006; Pacifici, 
2007; Blake et al., 2005). BPA is a substrate for several human SULT which catalyse BPA-
sulphate formation with high efficiency (Nishiyama et al., 2002). 
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Levels of human UDPGT activity gradually increase during fetal and neonatal development, 
including the weeks and months following birth. In rodents, several studies indicate that 
maternal liver glucuronidation activity is lower during pregnancy. However, in humans, as 
evidenced by increased oral clearance of lorazepam, paracetamol and lamotrigine, 
glucuronidation activities during pregnancy are induced (Chen et al., 2005; Papini et al., 2006 
Miners et al., 1986; Pennell et al., 2008), This increase in glucuronidation capacity results in a 
reduction in the plasma concentrations of drugs depending on glucuronidation capacity as the 
major metabolic pathway. By analogy with related compounds in humans the maternal 
conjugation capacity is likely to result in negligible fetal exposure to free BPA. However, in 
rats metabolite profiles in non-pregnant and pregnant animals were similar, and therefore there 
would be systemic availability of free BPA (Domoradzki et al., 2003) which could result in 
significant potential fetal exposure to free BPA.  

 Biotransformation of BPA in neonatal animals and humans 

In neonatal rats, orally administered BPA (1 or 10 mg BPA/kg bw at postnatal days 4, 7, or 21) 
is metabolised to BPA-glucuronide at all three ages. Generally, BPA-glucuronide and BPA 
concentrations in the plasma were higher in neonates than in adults, but elimination of BPA-
glucuronide in plasma was more rapid in neonatal animals than in adults. A dose-dependency 
of BPA biotransformation to the glucuronide in neonatal rats was observed, but BPA-
glucuronide accounted for 94 to 100 % of radioactivity in blood at the 1 mg/kg bw dose 
indicating sufficient capacity in neonatal rats to efficiently metabolise low doses of BPA to the 
glucuronide.  (Domoradzki et al., 2004). 

A second study (Taylor et al., 2008) investigated the blood concentrations of 14C-BPA in 
neonatal mice after oral administration and subcutaneous (sc) injection of doses of 35 and 395 
microg/kg bw. Peak levels of BPA in blood and blood areas under the curve (AUC) were 
reported as identical after both routes of application. The available information in the 
publication is limited. BPA was determined only in ether extracts of blood samples, and no 
information on total radioactivity in blood or concentrations of BPA-conjugates in the blood 
samples is presented. Moreover, no mass balance and only a very small portion, less then 5 % 
of the applied dose, is recovered. Therefore, no conclusions can be drawn from this study on 
the systemic availability of unconjugated BPA and the efficiency of first pass metabolism. 

No information on the biotransformation of BPA in human neonates is available. However, 
BPA is a simple phenolic structure without steric hindrance of the OH groups and therefore 
data on other phenols would be equally applicable. Hence, qualitative conclusions on the 
biotransformation of BPA in human neonates may be drawn from toxicokinetic data for 
xenobiotics undergoing sulphation and/or glucuronidation such as the analgesic acetaminophen 
(paracetamol) (Arana et al., 2001; van der Marel, 2003).  

In adults, paracetamol metabolism (expressed as percentages of an oral dose) by 
glucuronidation accounts for 50-60% of biotransformation and sulphation for 25-40%, whereas 
oxidation and renal excretion account for approximately 15 %. In human neonates, 
biotransformation of paracetamol by sulphation and glucuronidation is dose-dependent. 
Sulphation of paracetamol is more pronounced (65-68% expressed as a percentage of dose) 
after a comparatively high oral dose of 10-12 mg/kg bw, but glucuronidation remains a relevant 
pathway (18-22%) (Levy et al., 1975; Miller et al., 1976). After exposure via breast milk to 
doses of approximately 0.3 mg/kg b.w. glucuronidation remained the most important (54 %) 
pathway of paracetamol biotransformation in neonates, and sulphation accounted for only 11 
%, (Notarianni et al., 1987). Depending on post-conceptional and postnatal age (Allegaert et 
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al., 2005), the ratio between the amount of sulphate and glucuronide in paracetamol 
metabolism was between 2 and 3 in neonates as compared to 0.6 in adults. In summary, these 
data show that in human neonates, despite lower activity of UDPGT, there is considerable 
capacity for biotransformation of xenobiotics by this pathway. Moreover, sulphation of BPA in 
humans has been shown in primary hepatocytes; several SULT-enzymes efficiently catalyze 
BPA-sulphate, and BPA-sulphate is a human urinary metabolite of BPA (Pritchett et al., 2002). 
Therefore, sulphation of BPA in fetuses and neonates is also expected to efficiently detoxify 
BPA. 

 CONCLUSIONS 

The Panel has been asked to reconsider the possible age-dependent toxicokinetics of BPA in 
animals and humans and their implication for hazard and risk assessment of BPA in food. The 
Panel concluded that the exposure of a human fetus to free BPA would be negligible due to the 
maternal capacity for conjugation whereas the fetal rat would be exposed to free BPA from the 
maternal circulation. Taking account of data in human neonates on compounds structurally 
related to BPA which undergo glucuronidation/sulphation, the Panel considers that there is 
sufficient capacity in the neonate to conjugate BPA at doses below 1 mg/kg bw (the Panel 
noted that exposures at the TDI of 0.05 mg/kg bw are 20 fold lower than this). Therefore, the 
Panel concluded that there is sufficient capacity for biotransformation of BPA to hormonally 
inactive conjugates in neonatal humans at exposures to BPA that were considered in the EFSA 
opinion of 2006 and the European Union Risk Assessment Report (EC, 2003, 2008). 

In addition, the Panel notes that because of the metabolic differences described, exposure to 
free BPA in adult, fetal and neonatal rats will be greater than in humans and that rats would 
therefore be more susceptible to BPA-induced toxic effects than humans on a equivalent dose 
basis. The Panel therefore considers that its previous risk assessment based on the overall 
NOAEL for effects in rats and using a default uncertainty factor of 100 can be considered as 
conservative for humans. The Panel concluded that the differences in age-dependent 
toxicokinetics of BPA in animals and humans would have no implication for the EFSA 2006 
risk assessment of BPA. 
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GLOSSARY / ABBREVIATIONS 

 

BPA bisphenol A 

NOAEL no observed adverse effect level 

SULT sulphotransferase 

TDI tolerable daily intake 

UDPGT uridine diphosphate glucuronosyltransferase 

 


