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Supporting Information Text12

Materials13

Additional information on satellite data. We rely on estimates of the temperature of the lower stratosphere (TLS), mid-14

troposphere (TMT), and lower troposphere (TLT) derived from satellite-borne Microwave Sounding Units (MSU) and Advanced15

Microwave Sounding Units (AMSU). These data sets are produced by Remote Sensing Systems (RSS) (1) and the University of16

Alabama at Huntsville (UAH) (2). We also use TLS and TMT data from the Center for Satellite Applications and Research17

(STAR) (3, 4). STAR does not currently provide TLT data.18

Information on temperature changes in the mid- to upper stratosphere is available from channels 1, 2, and 3 of the19

Stratospheric Sounding Unit (SSU). The SSU temperature data are from STAR (5). We use the most recent versions of the20

MSU/AMSU and SSU/AMSU-A data:21

• RSS 4.0 and UAH 6.0 for TLS, TMT, and TLT;22

• STAR 5.0 for TLS and TMT;23

• STAR 3.0 for SSU1, SSU2, and SSU3.24

Version 3 of the STAR SSU data merged the version 2 SSU data set (6) with 8 channels of AMSU-A observations. Merging25

extends the SSU time series from 2006 to present (5). MSU data are merged with AMSU data after 1998. We refer to these26

merged products subsequently as “SSU” and “MSU”.27

We employed a standard regression-based method to adjust TMT for the influence it receives from lower stratospheric28

cooling (7). This adjustment yields TTT, the temperature of the “total” troposphere (see SI section “Method for correcting29

TMT data”).30

Our fingerprint analysis employs zonally averaged temperature changes for SSU3, SSU2, SSU1, TLS, TTT, and TLT. The31

approximate peaks of the weighting functions for these layers are 45, 38, 30, 19, 5.6, and 3.1 km, respectively.32

All satellite temperature data sets analyzed here are in the form of monthly means on the same 2.5◦× 2.5◦ latitude/longitude33

grid. At the time this analysis was performed, satellite temperature data for full 12-month years were available for the34

528-month period from January 1979 to December 2022 for TLS, TTT, and TLT and for the 444-month period from January35

1986 to December 2022 for SSU3, SSU2, and SSU1. We use the latter period here since we require non-missing temperature36

data over a common time window for all six layers of interest.37

As noted above, STAR does not have a TLT product. To include STAR MSU data in our study, we first calculated TTT38

from STAR TLS and TMT data, and then generated data sets in which the STAR SSU, TLS and TTT data were “paired”39

with either RSS TLT or UAH TLT:40

STAR1 = STAR SSU3/2/1 + STAR TLS/TTT + RSS TLT
STAR2 = STAR SSU3/2/1 + STAR TLS/TTT + UAH TLT

Relative to STAR1, S/N ratios obtained with STAR2 data are approximately 30% smaller for the TROP case (because the41

lower tropospheric warming is smaller in UAH than in RSS; see main text Fig. 2). This means that for the TROP domain,42

S/N ratios estimated with STAR2 data are more conservative. Nevertheless, the model-predicted TROP fingerprints can be43

identified at the 1% level in both the STAR1 and STAR2 observational temperature data sets.44

Whether we use STAR1 or STAR2 has minimal impact on S/N results for the SSU+MSU and MSU domains. This lack of45

sensitivity is due the fact that the TLT layer is only one-sixth and one-third of the SSU+MSU and MSU domains (respectively).46

In the main text (in Fig. 5) and in Figs. S2, S5, S7, and S8) we show STAR2 results only.47

Additional information on model data. We analyze synthetic SSU3, SSU2, SSU1, TLS, TTT, and TLT data from simulations48

performed under phase 6 of the Coupled Model Intercomparison Project (CMIP6) (8). “Synthetic” denotes the calculation of a49

vertically weighted average of atmospheric temperature in order to facilitate the comparison of simulations and satellite SSU or50

MSU data (see SI section “Calculation of synthetic satellite temperatures”). The synthetic SSU and MSU temperatures are51

from three different types of numerical experiment:52

1. Simulations with estimated historical changes in natural and anthropopogenic external forcings, which typically commence53

from January 1850 and end in December 2014.54

2. Scenario runs with post-2014 changes in anthropogenic external forcings that are specified according to a Shared55

Socioeconomic Pathway (SSP). The SSP used here is referred to as SSP5-8.5 (or as SSP5) because it reaches radiative56

forcing of 8.5 W/m2 by 2100. We adopt the SSP5 nomenclature here (9).57

3. Preindustrial control integrations with no year-to-year changes in external forcings.58

Each historical simulation was spliced together with a companion SSP5 run initiated from the end of the historical run.59

This extension of the historical run allows us to compare simulated and observed atmospheric temperatures over the full period60

with continuous availability of monthly-mean MSU and SSU data (1986 to 2022; see SI section “Additional information on61

satellite data”). We refer to these subsequently as HISText runs.62
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To calculate synthetic SSU data, we require simulation output from CMIP6 models with sufficient vertical resolution in the63

mid- to upper stratosphere. We follow the recommendations of Thompson et al. here (10) and require models with a top located64

at 0.1 hPa or higher in order to compute synthetic temperatures for all three SSU channels. Output fulfilling this requirement is65

available from models participating in the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP) (11). Here,66

we use the AerChemMIP “plev39” data with zonal-mean monthly-mean atmospheric temperatures at 39 standard pressure67

levels.∗68

In addition to the requirement of a sufficiently high top, there were three further requirements for inclusion of a CMIP6 model69

in the fingerprint analysis. First, given the large warming signatures of major volcanic eruptions on stratospheric temperatures70

(10, 12), only models that explicitly included the full radiative effects of volcanic aerosols were considered (13). Neglecting the71

large effect of the 1991 Pinatubo eruption would bias comparisons between simulated and observed stratospheric temperature72

changes over 1986 to 2022. Second, any model with spurious variability in stratospheric temperature was excluded.†73

Finally, we required that the data for computing synthetic MSU temperatures had to exist for the same simulations74

from which we had calculated synthetic SSU temperatures. These three requirements were satisfied in 32 different HISText75

realizations performed with 9 different CMIP6 models. We analyzed control integrations from the same 9 models. Details of76

the model HISText and control simulations are given in Tables S1 and S2, respectively.77

Methods78

Calculation of synthetic satellite temperatures. We used a local weighting function method developed at RSS to calculate79

synthetic MSU temperatures from the CMIP6 HISText and preindustrial control runs (15). At each grid-point, simulated80

temperature profiles were convolved with local weighting functions. Weights depend on the grid-point surface pressure, the81

surface type (land, ocean, or sea ice), and the selected satellite channel (TLS, TMT, or TLT).82

Because the influence of topography on weighting functions is not important in the mid- to upper stratosphere, use of a83

local weighting function method is not necessary for calculating synthetic SSU temperatures. We applied weighting functions84

available from STAR (5) to the zonal-mean monthly-mean plev39 atmospheric temperature data (see SI section “Additional85

information on model data”) in order to derive synthetic SSU1, SSU2, and SSU3 data.86

Method for correcting TMT data. Trends in TMT estimated from microwave sounders receive a substantial contribution from the87

cooling of the lower stratosphere (7). This contribution hampers reliable interpretation of the warming of the free troposphere –88

which is why most analysts adjust satellite TMT measurements and model simulations of TMT for the influence of stratospheric89

cooling (14–21).90

An additional complication in comparing and interpreting uncorrected TMT results is that stratospheric cooling can vary91

appreciably in different observational data sets (22) and in different climate models (14, 15). In models, this is often due to92

large differences in stratospheric ozone forcing over the satellite era (13), or to systematic changes in stratospheric ozone forcing93

between different generations of CMIP models (14, 23).94

Adjustment of TMT using the regression-based method introduced by Fu et al. (7) simplifies the interpretation of data-data,95

model-model, and model-data comparisons of tropospheric temperature change.‡ This method has been validated with both96

observed and model atmospheric temperature data (16, 24, 25).97

In the following, we refer to adjusted TMT as total tropospheric temperature (TTT). It is calculated as follows:98

TTT = a24TMT + (1 − a24)TLS [1]99

We compute two different versions of total tropospheric temperature: TTT1 and TTT2. TTT1 was first used for adjusting100

tropical averages of TMT, with a24 = 1.1 at each latitude (17). In TTT2, a24 = 1.1 between 30◦N and 30◦S, and a24 = 1.2101

poleward of 30◦.102

The advantage of TTT2 is that lower stratospheric cooling makes a larger contribution to unadjusted TMT trends at mid-103

to high latitudes. The latitudinally varying regression coefficients in TTT2 remove more of this extratropical cooling. We use104

TTT2 throughout the main text and the SI, and do not use the subscript “2” to identify TTT2.105

In practice, whether we use TTT1 or TTT2 has minimal influence on our S/N results.106

We note that TTT2 is calculated in the same way in all simulations and observations and for all months. This ensures that107

model-versus-observed temperature comparisons of TTT2 are not affected by the application of regression coefficients that108

differ in the CMIP6 simulations and in satellite data.109

Fingerprint analysis. Detection methods generally require an estimate of the true but unknown climate-change signal in response110

to an individual forcing or set of forcings (26). This is often referred to as the fingerprint, which we denote here by F (x, p),111

where x is an index over latitude and p is an index over atmospheric layers.112

Fingerprints can be defined in different ways. Here, F (x, p) is the first Empirical Orthogonal Function (EOF) of the113

multi-model ensemble-mean change in temperature across the CMIP6 HISText simulations.114

∗The plev39 levels (in hPa) are 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 170, 150, 130, 115, 100, 90, 80, 70, 50, 30, 20, 15, 10, 7, 5, 3, 2, 1.5, 1, 0.7, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.07, 0.05, and
0.03. For further details, see https://cmip6dr.github.io/Data_Request_Home/Documents/CMIP6_pressure_levels.pdf

†This is the case with CanESM5, which “exhibits anomalous aperiodic 1–2-month lower-stratospheric warming events in certain ensemble members” (14).
‡For example, differences between simulated and observed trends in unadjusted TMT could arise from the combined effects of model climate sensitivity errors (which would affect tropospheric temperature)

and from unrelated model errors in stratospheric ozone forcing (which would primarily affect lower stratospheric temperature). Use of adjusted TMT reduces the contribution of stratospheric ozone forcing
errors to model-versus-data differences in tropospheric temperature trends.
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Let Thst(i, j, x, p, t) represent the temperature anomaly for the ith HISText realization of the jth CMIP6 model, where:115

116

i = 1, . . . Nr(j) (no. of HISText realizations for the jth model)
j = 1, . . . Nmod (no. of CMIP6 models used in the fingerprint analysis)
x = 1, . . . Nx (no. of latitude bands with zonal-mean temperatures)
p = 1, . . . Np (total no. of SSU and MSU atmospheric layers)
t = 1, . . . Nt (time in years)

117

Here, Nr(j) varies from 1 to 10 realizations and Nmod = 9. After transforming synthetic MSU temperature data from each118

model’s native grid to a common 5◦× 5◦ latitude/longitude grid and calculating zonal averages, Nx = 36 latitude bands.119

Synthetic SSU data (which are already in zonal-mean form; see SI section “Additional infoprmation on model data”) are120

transformed to the same 36 latitude nodes. Np varies from 2 to 6 layers (see below). Fingerprint estimation is over the period121

of common coverage in SSU and MSU (1986 to 2022), so Nt is 37 years.122

Anomalies in Thst(i, j, x, p, t) were defined relative to climatological annual means over 1986 to 2022. The multi-model123

ensemble-mean change, Thst(x, p, t), was calculated by first averaging over the Nr(j) individual realizations in the jth model124

and then averaging over all Nmod models. The fingerprint F (x, p) is the first EOF of Thst(x, p, t). The time period used for125

determining Tobs(x, p, t), the change in zonal-mean annual-mean atmospheric temperature in a selected combination of observed126

SSU and MSU data sets, is the same as used for calculating the fingerprint (1986 to 2022).127

We estimate one fingerprint for each of the four different sets of the six atmospheric layers considered here:128

1. SSU+MSU (six layers; SSU3, SSU2, SSU1, TLS, TTT, and TLT);129

2. TROP (two layers; TTT and TLT);130

3. MSU (three layers; TLS, TTT, and TLT);131

4. SSU (three layers; SSU3, SSU2, and SSU1).132

The TROP and SSU cases provide information on the S/N properties of satellite era temperature changes in the troposphere133

and in the mid- to upper stratosphere (respectively). Comparison of S/N results for the MSU and SSU+MSU domains yields134

insights into the impact of extending previous “vertical fingerprint” studies to the upper stratosphere. Previous studies were135

conducted using MSU information only (27) and were therefore restricted to the troposphere and lower stratosphere.136

For each of these four different sets of atmospheric layers, we seek to determine whether the pattern similarity between137

F (x, p) and Tobs(x, p, t) shows a statistically significant increase over time. We also consider whether there is a significant138

increase in pattern similarity between the fingerprint and each individual HISText realization – i.e., between F (x, p) and139

Thst(i, j, x, p, t).140

To address these two questions, we require control run estimates of internally generated variability in which we know a141

priori that there is no expression of the fingerprint, except by chance. We obtain such variability estimates from control runs142

performed with the same nine CMIP6 models used to estimate F (x, p). Layer-average atmospheric temperatures from each143

control run are regridded to the same 5◦× 5◦ latitude/longitude grid used for fingerprint estimation. After regridding and144

calculation of zonal averages, layer-average atmospheric temperature anomalies are defined relative to climatological annual145

means computed over the full length of each control run.146

Because the length of the nine CMIP6 control runs varies by a factor of approximately 2 (see Table S2), models with longer147

control integrations could have a disproportionately large impact on our noise estimates. To guard against this possibility, we148

rely on the last 450 years of each model’s pre-industrial control run. Use of the last 450 years reduces the contribution of149

initial residual drift and guarantees that each model is given equal weight in calculating the denominator of our S/N ratios.150

Concatenation yields 9 × 450 = 4,050 years of control run atmospheric temperature output.151

Use of the last 450 years of each control run may not fully remove non-physical residual drift, which can inflate and bias152

S/N estimates (28). Here, we assume that drift behavior can be well-approximated by a least-squares linear trend and the drift153

is removed at each latitude band and for each atmospheric layer. Drift removal is performed over the last 450 control run years154

only (since only the last 450 years are concatenated).155

In processing the observations, layer-average atmospheric temperature data from STAR, RSS, and UAH are first regridded156

to the same target 5◦× 5◦ latitude/longitude grid used for the model HISText simulations and control runs. Observations are157

then zonally averaged and expressed as anomalies relative to climatological annual means over 1986 to 2022. The observed158

temperature anomaly data, Tobs(x, p, t), are then projected onto F (x, p), the time-invariant fingerprint:159

Zobs(t) =
Nx∑
x=1

Np∑
p=1

Tobs(x, p, t) F (x, p)

t = 1, . . . , 37.

[2]160
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This projection is equivalent to a spatially uncentered covariance between the Tobs(x, p, t) and F (x, p) patterns at year t. The161

signal time series Zobs(t) provides information on the fingerprint strength in the observations. If Tobs(x, p, t) is becoming162

increasingly similar to F (x, p), Zobs(t) should increase over time.163

The projection of an individual HISText realization onto F (x, p) is defined analogously:164

Zhst(i, j, t) =
Nx∑
x=1

Np∑
p=1

Thst(i, j, x, p, t) F (x, p)

i = 1, . . . , Nr(j); j = 1, . . . , Nmod ; t = 1, . . . , 37.

[3]165

To assess the significance of the changes in Zobs(t) or in Zhst(i, j, t), we compare trends in Zobs(t) and in Zhst(i, j, t) with a166

null distribution of trends. To generate a suitable null distribution, we require a case in which Tobs(x, p, t) or Thst(i, j, x, p, t) is167

replaced by a record in which we know a priori that there is no expression of the fingerprint, except by chance. Here, we use a168

concatenated multi-model noise data set, Tctl(x, p, t), which has been regridded and detrended as described above.§ The noise169

time series Nctl(t) is the projection of Tctl(x, p, t) onto the fingerprint:170

Nctl(t) =
Nx∑
x=1

Np∑
p=1

Tctl(x, p, t) F (x, p)

t = 1, . . . , Nt{ctl}.

[4]171

where Nt{ctl} is 4,050, the total number of years in the multi-model noise estimate.172

As in our previous work (29, 30), we fit least-squares linear trends of increasing length L years to Zobs(t). This yields Sobs(L).173

We then form the signal-to-noise ratios SNobs(L) by dividing Sobs(L) by σctl(L), the standard deviation of the distribution174

of non-overlapping L-length noise trends in Nctl(t). Signal trends in Zhst(i, j, t) are treated analogously – i.e., we calculate175

Shst(i, j, L) from Zhst(i, j, t), divide Shst(i, j, L) by σctl(L), and obtain SNhst(i, j, L).176

We assess statistical significance by comparing these calculated S/N ratios with a Gaussian distribution, as in (31). This177

assumes that L-year trends in Nctl(t) have a Gaussian distribution. This assumption is reasonable for multi-model estimates of178

internal variability given the large sample sizes that we have here. Signal detection is stipulated to occur at the trend length179

Ld for which the S/N ratio first exceeds some stipulated significance level (typically 1% here) and then remains above that180

level for all values of L > Ld. The test is one-tailed.181

Empirical estimates of the significance of our S/N ratios yield very similar results. These estimates are based on comparisons182

of signal trends with the actual distributions of L-year noise trends obtained from Nctl(t).183

The start date for fitting linear trends to Zo(t) is 1986, the first complete year of common continuous temporal coverage of184

the observational SSU and MSU data. We use a minimum trend length of 5 years, so the first S/N ratio (and the earliest185

possible detection time) is for 5-year trends ending in 1990. The analysis period increases in increments of one year, i.e., L = 5,186

6, 7, . . . , 37. The L = 37 case corresponds to the full satellite era (1986 to 2022).187

Finally, we note that all model and observational temperature data used in the fingerprint analysis are appropriately188

area-weighted. Weighting involves multiplication by the square root of the cosine of the grid node’s latitude (32). For visual189

display purposes only, the EOFs shown in Fig. 6 of the main text and in Figs. S3, S4, and S6 are unweighted (i.e., the grid-point190

values of each EOF are divided by the square root of the cosine of the grid node’s latitude). There is no weighting of the191

individual atmospheric layers – each layer has equal weight. Mass-weighted fingerprint results are discussed below (see SI192

section on “Mass and area weighting”).193

The S/N analysis described in the main text relies on the HISText fingerprints of zonal-mean annual-mean atmospheric194

temperature change. The CMIP6 HISText simulations involve combined anthropogenic and natural external forcing. Because195

anthropogenic forcing is substantially larger than natural external forcing over 1986 to 2022, the HISText fingerprints are very196

similar to fingerprint patterns obtained from integrations with anthropogenic forcing only (33). The HISText fingerprint patterns197

primarily reflect the tropospheric warming in response to human-caused changes in greenhouse gases and the stratospheric198

cooling caused by anthropogenic CO2 increases and stratospheric ozone depletion (33).199

For the SSU+MSU and SSU domains, the timescale-dependent S/N ratios in Fig. 5C of the main text show strong correlations200

across individual HISText realizations, despite the fact that the internal variability in each realization should not be correlated201

(except by chance). The explanation for this correlation across realizations is that the Shst(i, j, L) signals for the SSU+MSU202

and SSU domains are very large relative to the amplitude of the σctl(L) noise for these domains (compare Figs. 5A and B in203

the main text). This is why relatively small “noise” in the decay of σctl(L) as a function of increasing L, arising from our use204

of non-overlapping trends to estimate σctl(L), has large impact on SN(L) values and imparts correlation to SN(L) across the205

32 HISText realizations.206

§Unlike Thst(i, j, x, p, t), Tctl(x, p, t) has no index over i or over j. This is because there is typically only one realization of each control run and because the noise data from each of the 9 models
have been concatenated.
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Removal of spatial means. In comparing simulated and observed patterns of atmospheric temperature change and interpreting207

S/N results, we are interested in assessing contributions to S/N ratios from global- and from sub-global spatial scales. Our208

“baseline” fingerprint analysis in Fig. 5 of the main text relies on an uncentered spatial covariance statistic which retains the209

spatial means of the two fields that are being compared. The baseline case, therefore, incorporates both the global- and the210

sub-global components of temperature change.211

As in our previous fingerprint work (34), it is of interest to determine whether large global-mean tropospheric warming212

and stratospheric cooling signals are the main driver of our consistent identification of model-predicted F (x, p) fingerprints in213

satellite observations and in individual model HISText realizations (see Fig. 5C in main text). We address this question by214

comparing S/N ratios for the baseline case (Case 1, which includes global-mean temperature changes at each atmospheric level)215

with S/N results from two additional types of calculation:216

1. For each of the Np layers, Nx latitude bands, and Nt years, we remove the global-mean atmospheric temperature change217

for that layer, latitude band, and year (Case 2);218

2. The overall global-mean tropospheric temperature change in year t (the average of the global-mean temperature changes219

for TTT and TLT in year t) is removed from the individual TTT and TLT layers. A similar subtraction is performed220

for each of the four stratospheric layers (SSU3, SSU2, SSU1, and TLS) using the overall global-mean stratospheric221

temperature change in year t (Case 3).222

For example, for the observational zonal-mean annual-mean atmospheric temperature change used in Case 2:223

<Tobs(p, t)> =
Nx∑
x=1

Tobs(x, p, t) W (x) /

Nx∑
x=1

W (x)

p = 1, . . . , Np; t = 1, . . . , 37.

[5]224

where <Tobs(p, t)> is the global-mean temperature change for layer p and year t, the angle brackets denote a spatial average,225

and W (x) are area weights for each latitude band. Subtraction of the global-mean temperature change yields:226

Tobs(x, p, t)∗ = Tobs(x, p, t) − <Tobs(p, t)>

x = 1, . . . , Nx; p = 1, . . . , Np; t = 1, . . . , 37.

[6]227

where ∗ denotes departures from the global-mean.228

In Case 3, < Tobs{STRAT}(t) > and < Tobs{TROP}(t) > are the overall global-mean temperature changes for the four229

stratospheric layers and the two tropospheric layers, respectively. These are removed from the individual stratospheric and230

tropospheric layers as follows:231

Tobs(x, p, t)∗∗ = Tobs(x, p, t) − <Tobs{STRAT}(t)>

x = 1, . . . , Nx; p = 1, . . . , 4; t = 1, . . . , 37.

Tobs(x, p, t)∗∗ = Tobs(x, p, t) − <Tobs{TROP}(t)>

x = 1, . . . , Nx; p = 5, 6; t = 1, . . . , 37.

[7]232

where it is assumed that the ordering of layers is from the highest layer to the lowest layer and that the ordering of layers is233

identical in each data set, i.e., p = 1 is SSU3, p = 2 is SSU2, p = 3 is SSU1, p = 4 is TLS, p = 5 is TTT, and p = 6 is TLT.234

The double asterisk notation denotes a departure from the overall stratospheric or tropospheric global-mean (c.f. the single235

asterisk notation for Case 2).236

While equations (5) though (7) are for observations, the processing is similar for HISText and for control simulations. In237

each model HISText or control run data set processed, we remove the global-mean temperature change for layer p from each238

latitude band of that layer (Case 2), or we remove the overall global-mean stratospheric temperature change from each latitude239

of each stratospheric layer and we subtract the overall global-mean tropospheric temperature change from each latitude of each240

tropospheric layer (Case 3).241

For the HISText runs, these two different global-mean subtraction methods yield the multi-model ensemble means Thst(x, p, t)∗
242

(Case 2) and Thst(x, p, t)∗∗ (Case 3). The Case 2 fingerprint shown in Fig. S6B is F (x, p)∗, the leading EOF of Thst(x, p, t)∗.243

The Case 3 fingerprint in Fig. S6C is F (x, p)∗∗, the leading EOF of Thst(x, p, t)∗∗.244

The key difference between Case 2 and Case 3 is that in the latter, we retain global-scale signals of interest in the observations245

and HISText runs, such as the increase in the size of stratospheric cooling with increasing altitude in the stratosphere (35) and246

the amplification of tropical tropospheric warming in TTT relative to TLT (20, 36). These global-scale signals are removed in247

Case 2.248
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Mass and area weighting. The focus of our study is on the value of including the mid- to upper stratosphere in climate249

fingerprinting. We seek to determine whether including temperature information from the S25−50 layer aids in separating250

anthropogenic climate change from natural internal variability. To address this question, each of the six atmospheric layers251

considered here was assigned a vertical weight of 1 in the fingerprint analysis. With uniform vertical weighting, including the252

S25−50 layer significantly enhances our ability to discriminate between human-caused climate change and internal variability253

(see Fig. 5C in the main text).254

To explore the impact of mass weighting on our fingerprint results, we require a set of suitable weights that reflect the255

sampling of atmospheric mass by the weighting functions of each of the six layers we consider (SSU3, SSU2, SSU1, TLS, TTT,256

and TLT).257

Our calculation relies on the vertical profile of atmospheric density from the U.S. standard atmosphere and on the publicly258

available values of the weighting functions for the three SSU and three MSU layers. The mass weights β(p) are defined as259

follows for each of the Np layers:260

β(p) =
∫ zp(TOP)

zp(BOT)
ρ(z) V (p, z) ∆(z)

p = 1, . . . , Np.

[8]261

where ρ(z) is the density of the standard atmosphere as a function of the height z (in meters), V (p, z) is the SSU or MSU262

weighting function for the pth atmospheric layer, ∆(z) is the vertical resolution to which ρ(z) and V (p, z) have been interpolated263

(z =100 meters here), and Np = 6. The vertical integration is from the height of the lowest layer of the pth weighting function,264

zp(BOT), to the height of the top layer of the pth weighting function, zp(TOP). Realistic land topography is used in the265

calculation of the density ρ(z).266

For each layer, therefore, β(p) is the vertical integration of air density weighted by the SSU or MSU weighting function. We267

normalize each value of β(p) by β(TOT), the sum of the six individual β(p) values:268

β(p)′ = β(p) / β(TOT)

p = 1, . . . , Np.

[9]269

where the ′ denotes a normalized quantity.270

The values of the normalized mass weights (expressed as percentages of the total atmospheric mass sampled by the six271

sounding channels) are listed below:272

273

1 SSU3 = 0.4%
2 SSU2 = 0.9%
3 SSU1 = 2.1%
4 TLS = 6.6%
5 TTT = 39.4%
6 TLT = 50.6%

In the case of “no mass weighting” shown in Figs. 5 and 6 of the main text and in Figs. S3-S8, all input model and274

observational latitude-height temperature data sets are multiplied by
√

W (x), the square root of the area weights for each275

latitude band. In the “mass weighting” case in Fig. S7, all input temperature data sets are multiplied by γ(x, p), the square276

root of the combined area and mass weights:277

γ(x, p) =
√

W (x) β(p)′

x = 1, . . . , Nx; p = 1, . . . , Np

[10]278

The three SSU layers, therefore, sample less than 3.5% of the total mass of the atmosphere. Weighting all input model and279

observed data sets with the atmospheric mass sampled by individual SSU and MSU layers markedly damps the influence of280

stratospheric cooling and emphasizes tropospheric warming. In a mass-weighted fingerprint analysis of the SSU+MSU domain,281

signal strength decreases, noise is amplified, and S/N is reduced by a factor of roughly 4 relative to the case of uniform vertical282

weights (see Fig. S7).This reduction in S/N is due to multiple factors: the down-weighting of the large global-mean cooling283

signals in the three SSU channels and TLS, and the reduced impact of the quasi-orthogonality between the signal and noise284

patterns in the S25−50 layer (Fig. S2).285

Despite this large reduction in S/N, the mass-weighted fingerprints are still identifiable at the 1% level in each of the 32286

individual CMIP extended historical runs and in each of the three observational data sets (Fig. S7).287
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Weighting function overlap. In all four atmospheric domains considered here (TROP, MSU, SSU, and SSU+MSU; see SI section288

“Fingerprint analysis”) there is overlap between the individual weighting functions used to sample atmospheric temperature289

changes (22). This overlap can introduce correlation between temperature changes in different atmospheric layers. Of particular290

concern here is the question of whether S/N results for the six-layer SSU+MSU domain are biased by our use of TTT and291

TLT (which provide overlapping information about tropospheric temperature change) and by our inclusion of three SSU layers292

(which provide overlapping information about temperature change in the mid- to upper stratosphere).293

We address this question by performing a sensitivity test in which the fingerprint analysis is repeated with three layers only:294

SSU3, TLS, and TLT. Our choice of these three layers reduces the substantial overlap between weighting functions in the295

six-layer SSU+MSU case. We refer to the three-layer reduced-space representation of signal, noise, and observations as RED,296

and we compare fingerprint results in the RED and SSU+MSU cases. This comparison is performed without removal of the297

global-mean temperature changes in individual atmospheric layers and without any mass weighting of individual layers (see SI298

sections on “Removal of spatial means” and “Mass and area weighting”, respectively).299

Results are given in Fig. S8. Relative to the SSU+MSU case, RED systematically reduces signal strength. This reduction300

occurs because certain signal attributes present in SSU+MSU are absent in RED, such as the amplification of lower tropospheric301

temperature changes in tropical TTT. Additionally, RED downweights the amplification of cooling in the mid- to upper302

stratosphere by including results from only one of the three SSU channels used in the six-layer SSU+MSU case.303

Figure S8B reveals that the noise amplitude is smaller in RED than in SSU+MSU. This result is partly due to the fact that304

the noise amplitude is larger in the troposphere than in the stratosphere (see Fig. 5B in the main text). Because RED includes305

information from only one tropospheric channel (rather than from the two tropospheric channels that are used in SSU+MSU),306

the noise contribution from the troposphere is smaller in RED than in SSU+MSU.307

Additionally, the fingerprint and leading noise modes are spatially more similar in the troposphere than in the mid- to308

upper stratosphere (compare the TROP and SSU cases in Fig. S2). This pattern similarity contributes to the higher noise in309

the TROP case in Fig. 5B of the main text – the TROP fingerprint is less successful than the MSU, SSU, and SSU+MSU310

fingerprints in filtering out internal variability variability. By removing TTT from RED, we are reducing the pattern similarity311

between tropospheric signal and noise modes, thereby enhancing the effectiveness of noise filtering in RED.312

S/N ratios are very similar in the SSU+MSU and RED cases (see Fig. S8C). This similarity occurs because of the313

compensating effects described above: relative to SSU+MSU, RED has reduced signal strength but also has reduced noise.314

The RED sensitivity test shows that a simple way of accounting for weighting function overlap – by selectively reducing the315

number of layers considered in the fingerprint analysis – has a systematic impact on signal and noise, but has relatively little316

effect on S/N ratios. In both the SSU+MSU and RED cases, S/N ratios by the end of the full 37-year analysis period (1986 to317

2022) invariably exceed 35. This holds for fingerprint identification in the three satellite data sets and in all 32 individual318

CMIP6 HISText realizations. We conclude, therefore, that the SSU+MSU fingerprint results presented in the main text are319

unlikely to be biased by weighting function overlap.320

Other statistical analysis details. The sampling distributions of unforced trends in atmospheric temperature shown in Figs. 2321

and 3 of the main text were calculated from non-overlapping 37-year and 25-year chunks (respectively) of the same nine CMIP6322

pre-industrial control runs used in the fingerprint analysis (see Table S2). While the fingerprint analysis used only 450 years of323

each control run to ensure that S/N ratios were not biased by models with longer control runs (see SI section “Fingerprint324

analysis”), the control run trend distributions in Figs. 2 and 3 of the main text were generated using the full length of each325

control run. The reason for this decision is that unlike in the fingerprint analysis, the “no signal” trend distributions in Figs. 2326

and 3 are not being used for statistical significance testing: their primary use is simply to provide visual information regarding327

differences in the magnitude of forced and unforced trends.328

The histograms in Figs. 2 and 3 were plotted with the Matplotlib pyplot.hist function with arrays of weights and with the329

“density=True” option. This option ensures that “each bin will display the bin’s raw count divided by the total number of330

counts and the bin width... so that the area under the histogram integrates to 1”.¶ The array of weights is defined as:331

w(j, k) = 1/Nchunk(j)

j = 1, . . . , Nctl; k = 1, . . . , Nchunk(j)
[11]332

where j is an index over the number of pre-industrial control runs, k is an index over the number of non-overlapping 37-year or333

25-year least-squares linear trends, and Nchunk(j) is the total number of non-overlapping 37-year or 25-year least-squares linear334

trends in the jth control run.335

¶https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.hist.html
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Table S1. Basic information relating to the start dates, end dates, and lengths (Nm, in months) of the 32 CMIP6 historical and SSP5-8.5
simulations used in this study. EM is the “ensemble member" identifier.

Model EM HIST HIST HIST SSP5-8.5 SSP5-8.5 SSP5-8.5

Start End Nm Start End Nm

1-2 CESM2 r10i1p1f1, r11i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

3-5 CESM2-WACCM r1i1p1f1-r3i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

6-8 HadGEM3-GC31-LL r1i1p1f3–r3i1p1f3 1850-01 2014-12 1980 2015-01 2100-12 1032

9 IPSL-CM6A-LR r1i1p1f1 1950-01 2014-12 780 2015-01 2300-12 3432

10 IPSL-CM6A-LR r2i1p1f1 1950-01 2014-12 780 2015-01 2100-12 1032

11-12 IPSL-CM6A-LR r3i1p1f1, r4i1p1f1 1950-01 2014-12 780 2015-01 2054-12 480

13 IPSL-CM6A-LR r6i1p1f1 1950-01 2014-12 780 2015-01 2100-12 1032

14 MIROC-ES2L r1i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

15-16 MPI-ESM-1.2-HR r1i1p1f1, r2i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

17-26 MPI-ESM-1.2-LR r1i1p1f1–r10i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

27 MRI-ESM2.0 r1i1p1f1 1850-01 2014-12 1980 2015-01 2300-12 3432

28-31 UKESM1.0-LL r1i1p1f2–r4i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

32 UKESM1.0-LL r8i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032
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Table S2. Start dates, end dates, and lengths (Nm, in months) of the nine CMIP6 pre-industrial control runs used in this study. EM is the
“ensemble member” identifier.

Model EM Start End Nm

1 CESM2 r1i1p1f1 1-01 1301-12 14400

2 CESM2-WACCM r1i1p1f1 1-01 499-12 5988

3 HadGEM3-GC31-LL r1i1p1f1 1850-01 2349-12 6000

4 IPSL-CM6A-LR r1i1p1f1 1850-01 3049-12 14400

5 MIROC-ES2L r1i1p1f2 1850-01 2349-12 6000

6 MPI-ESM-1.2-HR r1i1p1f1 1850-01 2349-12 6000

7 MPI-ESM-1.2-LR r1i1p1f1 1850-01 2849-12 12000

8 MRI-ESM2.0 r1i1p1f1 1850-01 2550-12 8412

9 UKESM1.0-LL r1i1p1f2 1960-01 2709-12 9000
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Fig. S1. Trends in zonal-mean annual-mean atmospheric temperature in satellite data and observations. Results are least-squares linear trends over 1986 to 2000 (left column)
and over 2001 to 2022 (right column). These two periods are characterized (respectively) by depletion and recovery of observed lower stratospheric ozone concentrations over
Antarctica (5, 37, 38). The earlier period is also affected by recovery from the large stratospheric warming signal caused by the 1991 eruption of Pinatubo (see Figs. 1A-D in
main text). Observations (panels A, B) are from STAR for the three SSU channels (SSU3, SSU2, and SSU1) (5) and from RSS for MSU TLS, TTT, and TLT (1). Model results
(panels C, D) are the multi-model average synthetic SSU and MSU atmospheric temperature trends calculated from 32 realizations of HISText runs performed with nine
different CMIP6 models. In all panels, global-mean temperature changes are retained for each of the six atmospheric layers considered. The black dots in panels C and D
denote latitude bands and layers with local S/N ratios ≥ 2: i.e., locations where the multi-model average trend over the analysis period is at least a factor of two larger than the
standard deviation of individual model trends. Black dots are plotted at the approximate peaks of the three SSU and three MSU weighting functions.
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Fig. S2. Values of the uncentered pattern correlations between the fingerprint F and the first two noise modes in CMIP6 simulations. Results are for four spatial domains:
SSU+MSU, TROP, MSU, and SSU. For each domain, F was estimated from three sources: the 32 individual model HISText realizations performed with 9 different CMIP6
models (filled circles), the multi-model average HISText atmospheric temperature changes (filled diamonds), and the satellite data (unfilled symbols). The first two noise
Empirical Orthogonal Functions (EOFs) were calculated using 4,050 years of concatenated pre-industrial control run data. Pattern correlations between F and noise EOFs 1
and 2 are plotted on the x-axis and y-axis (respectively). Noise EOFs 1 and 2 are shown in the middle and right columns of Fig. 6 of the main text; the fingerprints estimated
from the CMIP6 multi-model average HISText data are in the left column of Fig. 6. For the SSU+MSU domain, the F patterns for selected individual HISText realizations are
displayed in Figs. S3A-I and the F patterns for the two satellite data sets are given in Figs. S3K and L. In calculating fingerprints and noise EOFs, global-mean temperature
changes were retained for each of the six atmospheric layers considered. The data used for computing EOFs were area-weighted but not mass-weighted. Since the signs of
the fingerprints and noise EOFs are arbitrary, we show the absolute value of the pattern correlation.
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Fig. S3. Fingerprint pattern of zonal-mean annual-mean atmospheric temperature change in simulations and observations for the SSU+MSU domain. Results are the first
Empirical Orthogonal Function (EOF) of HISText simulations in individual CMIP6 models (panels A-I) and in the CMIP6 multi-model average (panel J). The leading EOF for two
satellite data sets is also shown (panels K, L). EOFs are calculated over 1986 to 2022 using temperature changes for six atmospheric layers (SSU3, SSU2, SSU1, TLS, TTT,
and TLT). For models with multiple HISText realizations in panels A-I, results are for the first realization only. In all EOF calculations, global-mean temperature changes are
retained for each of the six atmospheric layers considered. The dotted horizontal grey lines are plotted at the approximate peaks of the three SSU and three MSU weighting
functions. The explained variance of each EOF is indicated in the panel title (in parentheses). The data used for computing EOFs were area-weighted but not mass-weighted.
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Fig. S4. As for Fig. S3 but for EOF 2.
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Fig. S5. Signal, noise, and S/N ratios (panels A-C, respectively) in model and observational SSU and MSU data. Results are for the six-layer SSU+MSU case (SI section
“Fingerprint analysis”). The latitude-height temperature changes for these six layers are used in three sets of calculations. In Case 1, the global-mean temperature change
over time is retained in each layer. In Case 2, each layer’s global-mean temperature-change is removed. Case 3 is similar to Case 2, but involves subtraction of the
stratospheric-average global-mean change from each individual stratospheric layer and the tropospheric-average global-mean change from each individual tropospheric layer
(see SI section “Removal of spatial means”). As in Figs. 5A and C of the main text, all signals and S/N ratios in which observed temperature data are used for signal calculation
are plotted with symbols and dashed lines. “Model only” results are plotted with solid lines. The dashed horizontal line in panel C is the 1% significance level. The data used for
computing EOFs were area-weighted but not mass-weighted.
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Fig. S6. Fingerprints and leading noise modes in CMIP6 simulations. Results are for the SSU+MSU domain. The fingerprint (row 1) is EOF 1 of the multi-model average
atmospheric temperature changes computed from 32 realizations of HISText runs performed with nine CMIP6 models. The first two noise EOFs (rows 2 and 3) were calculated
from concatenated pre-industrial control runs with the same nine models. Fingerprints and noise EOFs are for Cases 1, 2, and 3 (columns 1-3). These three cases consider the
impact of different decisions regarding removing or retaining global-mean temperature changes (see SI section “Removal of spatial means”). The data used for computing EOFs
were area-weighted but not mass-weighted. The dotted horizontal gray lines are plotted at the approximate peaks of the SSU and MSU weighting functions. The noise modes in
Cases 1, 2, and 3 are highly similar because their patterns are dominated by variability at smaller spatial scales, and are therefore relatively unaffected by removal or inclusion
of the global-mean temperature changes in Cases 2 and 3. The prominent latitudinally coherent maximum at TLS level in panel C is due to the fact that the global-mean cooling
of TLS over 1986 to 2022 is at least a factor of three smaller than the global-mean cooling in the three SSU channels (see Fig. 2 in the main text).
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Fig. S7. Sensitivity of signal, noise, and S/N ratios to vertical weighting (panels A-C, respectively). Results are for the six-layer SSU+MSU domain; the global-mean temperature
changes are included for each layer. The annual-mean latitude-height temperature changes for these six layers are used in two different sets of calculations. In the “no mass
weighting” case, each of the six individual layers is given equal weight in the fingerprint analysis. Results for this case are identical to the results shown for the SSU+MSU case
in Fig. 5 of the main text. In the “mass weighting” case, weights representative of the atmospheric mass sampled by each of the SSU and MSU weighting functions are applied
to the temperature changes in each layer (see SI section “Mass and area weighting”). Mass weighting is performed for each model and observational data set. As in Figs. 5A
and C of the main text, all signals and S/N ratios in which observed temperature data are used for signal calculation are plotted with symbols and dashed lines. “Model only”
results are plotted with solid lines. The dashed horizontal line in panel C is the 1% significance level.
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Fig. S8. Sensitivity of signal, noise, and S/N ratios to the degree of overlap between weighting functions (panels A-C, respectively). Results are for two different cases:
SSU+MSU and RED. SSU+MSU comprises annual-mean latitude-height temperature-change information from six atmospheric layers (the three SSU channels and MSU TLS,
TTT, and TLT). There is substantial overlap between the weighting functions for these six layers (22), leading to overlap in the portions of the atmosphere that the weighting
functions sample. RED reduces this overlap by using information from three selected layers only: SSU3, TLS, and TLT (see SI section “Weighting function overlap”). Both
SSU+MSU and RED include global-mean temperature changes for each layer considered. As in Figs. 5A and C of the main text, all signals and S/N ratios in which observed
temperature data are used for signal calculation are plotted with symbols and dashed lines. “Model only” results are plotted with solid lines. The dashed horizontal line in panel
C is the 1% significance level. The data used for computing EOFs were area-weighted but not mass-weighted.
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