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Figure S1. Quantile-quantile plots of the logarithm of each morphological trait for 10 most 

highly sampled species in the Chicago dataset. The first and second half of the data are shown in 

the left, and right panels, respectively. Different species are indicated by different colors. 
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Figure S2. Quantile-quantile plots of the logarithm of each morphological trait for the most 

highly sampled species in the Amazon dataset. The first and second half of the data are shown in 

the left, and right panels, respectively. Different species are indicated by different colors. 
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Figure S3. The relationships between body size and tarsus, wing, and bill lengths are linear on a 

log-log scale. Left panels show the relationships between raw data for the Chicago species, with 

each dot representing an individual specimen and different colors representing species. On this 

non-transformed scale, body size has non-linear allometric relationships with the length 

measurements (tarsus, wing, and bill lengths), as is expected based on geometry (1); these 

patterns generally conform to a 1/3 power law (Appendix SI, Methods S2). Right panels 

demonstrate that, as expected, these relationships become linear when the data are log-

transformed.  
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Figure S4. The logarithm of species’ mean body size and the logarithm of generation length in 

the Chicago dataset are positively and linearly correlated, but this correlation is relatively low. 

The Pearson’s correlation coefficient r and adjusted R2 based on simple linear regression for all 

species are given in the upper left corner.  
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Figure S5. Estimates of the correlations between time trends in tarsus, wing, and bill lengths, 

and species’ mean body size (Size) and generation length (GL) for 46 species from the Chicago 

dataset. Estimates are based on Bayesian hierarchical multi-species models that include all trait 

observations. All models also included sex and age covariates, and a phylogeny. Dots show 

median estimates, bars show 95% Bayesian credible intervals (CIs), and numbers show one-

sided % posterior support values.  
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Figure S6. Estimates of the correlations between time trends in body mass and wing length, and 

species’ mean body size (Size) for 77 species from the Amazon dataset. Estimates are based on 

Bayesian hierarchical multi-species models that include all trait observations and phylogeny. 

Dots show median estimates, bars show 95% Bayesian credible intervals (CIs), and numbers 

show one-sided % posterior support values.  
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Figure S7. Estimate of the correlation between time trend in wing length and species’ mean 

body size (Size) for 123 bird species (52 from the Chicago dataset and 77 from the Amazon 

dataset). Estimate is based on Bayesian hierarchical multi-species models that include all trait 

observations and a phylogeny. Dot shows median estimate, bars show 95% Bayesian credible 

intervals (CIs), and number shows the one-sided % posterior support value. 
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Table S1. Taxonomic sampling in the Chicago (North American) dataset 

(https://doi.org/10.5061/dryad.8pk0p2nhw). The dataset included 70,716 specimens from 52 

species. Mean mass is species’ mean body mass (g) estimated from this dataset, generation 

length is based on observed vital rates provided in (2), and n is sample size for each species. 

Taxonomy follows (3). 

Family Scientific name 
Mean 

mass 

Generation 

Length 
n 

Cardinalidae Passerina cyanea 14.42 1.96 711  

Cardinalidae Pheucticus ludovicianus 44.88 2.27 377  

Cardinalidae Piranga olivacea 28.87 2.24 119  

Certhiidae Certhia americana 7.23 1.59 2,607  

Icteridae Quiscalus quiscula 107.90 2.00 227  

Mimidae Dumetella carolinensis 34.92 2.13 582  

Mimidae Toxostoma rufum 66.94 2.54 153  

Parulidae Cardellina canadensis 9.57 1.87 250  

Parulidae Cardellina pusilla 7.24 1.81 181  

Parulidae Geothlypis philadelphia 11.67 1.97 427  

Parulidae Geothlypis trichas 9.76 2.00 1,569  

Parulidae Mniotilta varia 9.84 2.17 618  

Parulidae Oporornis agilis 13.35 NA 361  

Parulidae Leiothlypis celata 8.84 1.80 232  

Parulidae Leiothlypis peregrina 9.01 NA 2,649  

Parulidae Leiothlypis ruficapilla 7.95 1.54 1,665  

Parulidae Parkesia noveboracensis 16.53 2.22 928  

Parulidae Seiurus aurocapilla 18.69 2.25 4,518  

Parulidae Setophaga caerulescens 9.25 2.11 183  

Parulidae Setophaga castanea 11.41 NA 282  

Parulidae Setophaga coronata 11.88 1.88 892  

Parulidae Setophaga fusca 9.15 2.24 199  

Parulidae Setophaga magnolia 7.82 1.78 1,220  

Parulidae Setophaga palmarum 9.73 NA 680  

Parulidae Setophaga pensylvanica 9.09 1.85 296  

Parulidae Setophaga ruticilla 7.77 2.07 853  

Parulidae Setophaga striata 11.38 1.93 791  
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Parulidae Setophaga tigrina 9.88 NA 183  

Parulidae Setophaga virens 8.46 1.69 215  

Passerellidae Ammodramus savannarum 16.44 1.61 103  

Passerellidae Junco hyemalis 18.48 1.85 6,164  

Passerellidae Melospiza georgiana 15.43 1.75 4,897  

Passerellidae Melospiza lincolnii 15.91 1.80 1,986  

Passerellidae Melospiza melodia 19.80 1.96 5,070  

Passerellidae Passerculus sandwichensis 17.38 2.22 277  

Passerellidae Passerella iliaca 34.58 2.11 2,433  

Passerellidae Spizella pusilla 12.34 1.78 320  

Passerellidae Spizelloides arborea 16.91 1.99 1,247  

Passerellidae Zonotrichia albicollis 24.63 1.61 9,953  

Passerellidae Zonotrichia leucophrys 26.93 1.96 1,107  

Picidae Sphyrapicus varius 47.09 2.04 2,057  

Rallidae Porzana carolina 67.1 NA 380  

Regulidae Corthylio calendula 5.98 1.56 412  

Regulidae Regulus satrapa 5.47 1.20 1,020  

Troglodytidae Troglodytes aedon 9.72 1.59 101  

Troglodytidae Troglodytes hiemalis 7.78 1.55 449  

Turdidae Catharus fuscescens 31.52 2.54 744  

Turdidae Catharus guttatus 28.83 1.88 3,662  

Turdidae Catharus minimus 30.11 1.91 849  

Turdidae Catharus ustulatus 28.51 2.46 2,485  

Turdidae Hylocichla mustelina 48.37 1.81 462  

Turdidae Turdus migratorius 77.89 2.08 570  
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Table S2. Taxonomic sampling in the Amazonian (Brazil) dataset 

(https://doi.org/10.5061/dryad.fqz612jsp). The dataset included 15,415 specimens from 77 

species. Mean mass is species’ mean body mass (g) estimated from this dataset and n is sample 

size for each species. Taxonomy follows (4). 

Family Scientific name 

Mean 

mass n  

Bucconidae Bucco capensis 51.02 22 

Bucconidae Malacoptila fusca 43.65 119 

Cardinalidae Cyanoloxia rothschildii 25.37 63 

Conopophagidae Conopophaga aurita 23.24 69 

Cotingidae Lipaugus vociferans 69.73 24 

Formicariidae Formicarius analis 61.85 101 

Formicariidae Formicarius colma 45.81 265 

Furnariidae Automolus infuscatus 31.48 248 

Furnariidae Automolus ochrolaemus 34.09 38 

Furnariidae Clibanornis rubiginosus 36.50 82 

Furnariidae Campylorhamphus procurvoides 34.50 35 

Furnariidae Deconychura longicauda 27.76 60 

Furnariidae Certhiasomus stictolaemus 16.72 207 

Furnariidae Dendrocincla fuliginosa 40.25 137 

Furnariidae Dendrocincla merula 53.01 288 

Furnariidae Dendrocolaptes certhia 67.06 57 

Furnariidae Glyphorynchus spirurus 13.54 954 

Furnariidae Hylexetastes perrotii 112.51 49 

Furnariidae Philydor erythrocercum 23.66 90 

Furnariidae Philydor pyrrhodes 29.42 30 

Furnariidae Sclerurus caudacutus 39.12 71 

Furnariidae Sclerurus obscurior 25.21 48 

Furnariidae Sclerurus rufigularis 20.91 154 
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Furnariidae Synallaxis rutilans 16.73 31 

Furnariidae Xenops minutus 12.16 151 

Furnariidae Xiphorhynchus pardalotus 37.38 363 

Galbulidae Galbula albirostris 17.80 173 

Grallariidae Grallaria varia 123.28 13 

Grallariidae Hylopezus macularius 42.07 32 

Momotidae Momotus momota 131.00 88 

Parulidae Myiothlypis rivularis 13.02 24 

Pipridae Corapipo gutturalis 7.92 195 

Pipridae Ceratopipra erythrocephala 11.80 91 

Pipridae Pseudopipra pipra 11.77 992 

Pipridae Lepidothrix serena 10.47 260 

Polioptilidae Microbates collaris 10.72 282 

Thamnophilidae Frederickena viridis 67.12 64 

Thamnophilidae Gymnopithys rufigula 28.98 567 

Thamnophilidae Hylophylax naevius 12.37 45 

Thamnophilidae Willisornis poecilinotus 16.68 797 

Thamnophilidae Hypocnemis cantator 11.79 289 

Thamnophilidae Myrmoderus ferrugineus 24.29 150 

Thamnophilidae Myrmornis torquata 43.82 102 

Thamnophilidae Myrmotherula axillaris 7.65 171 

Thamnophilidae Isleria guttata 10.24 112 

Thamnophilidae Epinecrophylla gutturalis 8.71 303 

Thamnophilidae Myrmotherula longipennis 8.42 388 

Thamnophilidae Myrmotherula menetriesii 8.15 223 

Thamnophilidae Myrmelastes leucostigma 24.23 81 

Thamnophilidae Percnostola rufifrons 28.55 296 

Thamnophilidae Pithys albifrons 20.13 1203 

Thamnophilidae Thamnomanes ardesiacus 17.97 521 
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Thamnophilidae Thamnomanes caesius 17.42 521 

Thamnophilidae Thamnophilus murinus 17.64 102 

Thraupidae Lanio fulvus 25.67 29 

Thraupidae Tachyphonus surinamus 20.36 176 

Tityridae Myiobius barbatus 10.47 306 

Tityridae Onychorhynchus coronatus 14.46 48 

Tityridae Schiffornis olivacea 33.80 250 

Tityridae Terenotriccus erythrurus 6.71 67 

Trochilidae Campylopterus largipennis 8.71 47 

Trochilidae Phaethornis bourcieri 4.09 136 

Trochilidae Phaethornis superciliosus 5.50 167 

Trochilidae Thalurania furcata 4.08 134 

Troglodytidae Cyphorhinus arada 20.08 185 

Troglodytidae Microcerculus bambla 16.58 77 

Trogonidae Trogon rufus 50.52 28 

Turdidae Turdus albicollis 48.84 343 

Tyrannidae Attila spadiceus 32.63 27 

Tyrannidae Corythopis torquatus 14.68 173 

Tyrannidae Mionectes macconnelli 12.23 664 

Tyrannidae Platyrinchus coronatus 8.57 229 

Tyrannidae Platyrinchus platyrhynchos 11.92 22 

Tyrannidae Platyrinchus saturatus 10.34 158 

Tyrannidae Rhynchocyclus olivaceus 19.30 49 

Tyrannidae Rhytipterna simplex 33.43 25 

Vireonidae Tunchiornis ochraceiceps 10.06 234 
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Table S3. Species explained far more variance than year in a model with logarithm of mass as 

dependent variable and species and year as independent variables. Δ𝑅2s (squared semi-partial 

correlation coefficients) were estimated using (5). 

Dataset Variable Δ𝑅2 

Chicago Species 0.9684 

Chicago Year 0.0002 

Amazon Species 0.9782 

Amazon Year 0.0005 
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Table S4. Relationship between rates of change in morphological traits and generation length 

and species’ mean body size. For the Chicago dataset (Chi), rates of change in tarsus, bill, and 

wing lengths were modeled as a function of log-transformed estimates of species generation 

length (Gen. length) and mean body size (Body size). For the Amazon dataset (Ama), rates of 

change in body mass and wing length were modeled as a function of log-transformed estimates 

of mean body size (Body size). Finally, rates of change in wing length of the Chicago and the 

Amazon datasets combined were modeled as a function of log-transformed estimates of mean 

body size (Body size). All models were run with simultaneous estimation of Pagels’ λ (Lambda).  

Trait Dataset Variable Coefficient Standard 

Error 

T-Value P-Value Lambda 

(95% CI) 

Tarsus  Chi Intercept -1.11E-03 1.28E-04 -8.989 <0.0001 0.93 

length  Gen. length 3.65E-05 1.01E-04 0.361 0.720 (0.74, 1.11) 

  Body size 1.81E-04 2.86E-05 6.327 <0.0001  

Bill  Chi Intercept -5.63E-03 7.87E-04 -7.151 <0.0001 0.94 

length  Gen. length 3.66E-04 5.87E-04 0.622 0.537 (0.75, 1.13) 

  Body size 9.12E-04 1.72E-04 5.294 <0.0001  

Wing  Chi Intercept 6.16E-04 2.22E-04 2.774 0.008 0.83 

length  Gen. length -1.84E-04 2.09E-04 -0.879 0.384 (0.58, 1.08) 

  Body size -1.08E-04 5.43E-05 -1.990 0.053  

Body  Ama Intercept -1.76E-03 1.01E-04 -17.408 <0.0001 0.06 

mass  Body size 2.51E-04 3.17E-05 7.910 <0.0001 (-0.16, 0.27) 

Wing  Ama Intercept 6.42E-04 8.58E-05 7.484 <0.0001 0.53 

length  Body size -1.44E-04 2.30E-05 -6.263 <0.0001 (0.18, 0.88) 

Wing  Chi & Intercept 6.25E-04 9.58E-05 6.524 <0.0001 0.68 

length Ama Body size -1.37E-04 2.23E-05 -6.147 <0.0001 (0.46, 0.89) 
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Table S5. Comparison of models testing the effects of species’ mean body size and generation 

length (Gen. length) on rates of change in tarsus, bill, and wing lengths. Models were fit using 

PGLS with maximum likelihood. Int is the model intercept, K is the number of estimated 

parameters, logLik is log likelihood, AIC is Akaike's Information Criterion, ΔAIC is the 

difference in AIC value between a model and the best-fitting model in the set. Mean body size 

and generation length were log-transformed.  

Tarsus length rate         

Model K logLik AIC ΔAIC 

Int + Gen. length + Body size 4 365.30 -722.60 0.00 

Int + Body size 3 364.14 -722.30 0.33 

Int + Gen. length 3 352.85 -699.70 22.90 

Int 2 349.15 -694.30 28.30 

     
Bill length rate       

Model K logLik AIC ΔAIC 

Int + Body size 3 282.93 -559.90 0.00 

Int + Gen. length + Body size 4 283.43 -558.90 1.01 

Int + Gen. length 3 273.70 -541.40 18.48 

Int 2 271.19 -538.40 21.48 

     
Wing length rate         

Model K logLik AIC ΔAIC 

Int + Body size 3 327.58 -649.20 0.00 

Int + Gen length + Body size 4 328.22 -648.40 0.71 

Int + Gen length 3 326.51 -647.00 2.14 

Int 2 324.90 -645.80 3.36 
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Table S6. Relationships between rates of change in morphological traits and generation length 

and species’ mean body size are robust to the inclusion of sample size. Rates of change in tarsus, 

bill, and wing lengths, and body mass were modeled as a function of log-transformed estimates 

of species generation length (Gen. length), log-transformed mean body size (Body size), and 

sample size (n). All models were run with simultaneous estimation of Pagels’ λ. Sample size was 

never significantly associated with the rate of change in traits and controlling for sample size did 

not impact the effects of mean body size or generation length in any of the models. 

Morphological 

Trait 

Dataset Variable Coefficient Standard 

Error 

T-Value P-Value 

Tarsus length Chicago Intercept -1.13E-03 1.28E-04 -8.80 < 0.001 

  Gen. length -3.21E-06 1.02E-04 -0.03 0.98 

  Body size 1.85E-04 2.84E-05 6.53 < 0.001 

  n -9.10E-09 5.73E-09 -1.59 0.12 

Bill length Chicago Intercept -5.61E-03 7.70E-04 -7.28 < 0.001 

  Gen. length 2.76E-04 6.27E-04 0.44 0.66 

  Body size 9.27E-04 1.73E-04 5.38 < 0.001 

  n -1.20E-08 3.53E-08 -0.34 0.73 

Wing length Chicago Intercept 5.99E-04 2.18E-04 2.74 0.01 

  Gen. length -1.57E-04 2.17E-04 -0.72 0.47 

  Body size -1.10E-04 5.44E-05 -2.03 0.05 

  n 7.60E-09 1.26E-08 0.60 0.55 

Body mass Amazon Intercept -1.75E-03 1.10E-04 -15.99 < 0.001 

  Body size 2.49E-04 3.27E-05 7.61 < 0.001 

  n -2.19E-08 1.04E-07 -0.21 0.83 

Wing length Amazon Intercept 6.48E-04 8.94E-05 7.25 < 0.001 

  Body size -1.45E-04 2.36E-05 -6.15 < 0.001 

  n -1.74E-08 6.43E-08 -0.27 0.79 

Wing length Chicago Intercept 6.01E-04 9.33E-05 6.44 < 0.001 

 & Body size -1.37E-04 2.21E-05 -6.21 < 0.001 

 Amazon n 1.35E-08 1.03E-08 1.31 0.19 
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Table S7. The interaction between body size and migration phenology does not affect the 

relationship between morphological shifts and species’ mean body size in the Chicago birds. The 

logarithms of tarsus, wing, and bill lengths were modeled as a function of year (transformed to 

start at 0), sex, age, and a three-way interaction between year, mean body size, and Julian day 

(Day) of the collection date for each specimen, with random intercepts and slopes for the effect 

of year for each species using linear mixed-effects models. Julian day was scaled to a mean of 

zero and a standard deviation of one to facilitate model convergence. 

Morphological 

Trait 
Variable Estimate Std. Error t-value P-value 

Tarsus length Intercept 2.37E+00 3.29E-02 72.22 <0.001 

 Year -1.24E-03 1.14E-04 -10.90 <0.001 

 Sex(m) 1.87E-02 2.62E-04 71.24 <0.001 

 Age (HY) -3.82E-04 4.06E-04 -0.94 0.35 

 Body size 2.67E-01 1.14E-02 23.42 <0.001 

 Day -2.69E-03 2.40E-03 -1.12 0.26 

 Year * Body size  2.25E-04 3.95E-05 5.70 <0.001 

 Year * Day 1.17E-04 8.74E-05 1.34 0.18 

 Body size * Day 6.15E-04 8.04E-04 0.77 0.44 

 Year * Body size * Day -3.53E-05 2.93E-05 -1.21 0.23 

Wing length Intercept 3.38E+00 3.54E-02 95.56 <0.001 

 Year 6.84E-04 1.25E-04 5.46 <0.001 

 Sex(m) 4.88E-02 2.14E-04 227.64 <0.001 

 Age (HY) -1.36E-02 3.29E-04 -41.42 <0.001 

 Body size 3.14E-01 1.23E-02 25.62 <0.001 

 Day 8.15E-03 1.99E-03 4.09 <0.001 

 Year * Body size  -1.29E-04 4.35E-05 -2.96 <0.01 

 Year * Day -1.14E-04 6.96E-05 -1.64 0.10 

 Body size * Day -1.16E-03 6.68E-04 -1.74 0.08 

 Year * Body size * Day 3.76E-05 2.33E-05 1.61 0.11 

Bill length Intercept 1.25E+00 5.21E-02 24.02 <0.001 

 Year -5.59E-03 3.48E-04 -16.06 <0.001 

 Sex(m) 1.53E-02 4.75E-04 32.30 <0.001 

 Age (HY) -1.75E-02 7.27E-04 -24.09 <0.001 

 Body size 3.14E-01 1.81E-02 17.36 <0.001 



 20 

 Day 6.90E-03 4.48E-03 1.54 0.12 

 Year * Body size  8.43E-04 1.21E-04 6.94 <0.001 

 Year * Day -5.07E-05 1.58E-04 -0.32 0.75 

 Body size * Day -4.10E-03 1.50E-03 -2.73 0.01 

 Year * Body size * Day 5.95E-05 5.33E-05 1.12 0.26 
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Table S8. Phylogenetic uncertainty has minimal effects on PGLS model coefficients. We 

repeated our PGLS analyses using 100 randomly selected phylogenetic trees from the posterior 

distribution of the global phylogeny of birds (6) and calculated the means and standard 

deviations of the resulting coefficients. The mean coefficients were nearly identical to those 

generated with models that use a consensus tree (see Table S4). As in the models reported in 

Table S4, rates of change in tarsus, bill, and wing lengths were modeled as a function of log-

transformed estimates of species generation length (Gen. length) and mean body size (Body size) 

for the Chicago dataset (Chi). For the Amazon dataset (Ama), rates of change in body mass and 

wing length were modeled as a function of log-transformed estimates of mean body size (Body 

size). Finally, rates of change in wing length of the Chicago and the Amazon datasets combined 

were modeled as a function of log-transformed estimates of mean body size (Body size). All 

models were run with simultaneous estimation of Pagels’ λ.  

 

Trait Dataset Variable 
Mean 

Coefficient 

Standard 

Deviation 

Tarsus length Chi Gen. length 4.22E-05 3.43E-05  
   Body size 1.82E-04         4.49E-06 

Bill length Chi Gen. length 3.50E-04 9.57E-05  
   Body size 8.96E-04 2.49E-05  

Wing length Chi Gen. length 2.04E-04 1.40E-05  
   Body size 9.96E-05 6.91E-06  

Body mass Ama Body size 2.52E-04 1.41E-06  

Wing length Ama Body size 1.43E-04 1.39E-06  

Wing length Chi & Ama Body size 1.35E-04 2.21E-06  
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Table S9. The relationships between rates of change in morphological traits, generation length, 

and body mass are not related to census population size in the Chicago species. Rates of change 

in tarsus, bill, and wing lengths were modeled as a function of log-transformed estimates of 

species generation length (Gen. length), log-transformed species’ mean body size (Body size) 

and population size (Pop. size) using our PGLS analyses. All models were run with simultaneous 

estimation of Pagels’ λ. For population size estimates, we used the North American population 

size estimates from Partners in Flight (7) available for all 46 species.  

 

Morphological 

Trait 

Variable Coefficient Standard 

Error 

T-Value P-Value 

Tarsus length Intercept -1.15E-03 1.29E-04 -8.89 <0.001 

 Gen. length 3.10E-05 1.02E-04 0.30 0.76 

 Body size 1.83E-04 2.91E-05 6.28 <0.001 

 Pop. size 0.00E+00 0.00E+00 -0.50 0.62 

Bill length Intercept -5.62E-03 7.79E-04 -7.22 <0.001 

 Gen. length 3.22E-04 6.03E-04 0.53 0.60 

 Body size 9.26E-04 1.74E-04 5.32 <0.001 

 Pop. size 0.00E+00 0.00E+00 -0.41 0.69 

Wing length Intercept 5.99E-04 2.06E-04 2.91 0.01 

 Gen. length -1.39E-04 2.10E-04 -0.66 0.51 

 Body size -1.20E-04 5.30E-05 -2.27 0.03 

 Pop. size 0.00E+00 0.00E+00 1.63 0.11 
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Table S10. Pearson’s correlation coefficients (r) between the logarithm of species’ mean body 

size and variance in log-transformed traits in the Chicago and Amazon datasets. 

 

Morphological 

Trait 

Dataset r 

Tarsus Length Chicago 0.44 

Wing Length Chicago 0.02 

Bill Length Chicago -0.10 

Body Mass Amazon -0.19 

Wing Length Amazon 0.08 
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Methods S1. Why log transform morphological data? 

In this study, we use linear regressions to estimate the rates of change of several 

morphological measurements through time in many species of different sizes. That is, we 

estimate the slope (change in measurement through time) knowing that each species has a 

different intercept (starting measurement value). This requires transformation of the 

morphological response variables because a regression predicting raw measurement values 

would estimate change expressed in measurement units through time, rather than percent change 

(change proportional to the starting value). Log-transformation (natural log) of raw 

measurements (the response variables) produces regression slopes that show percent rates of 

change (rather than change in measurement units). Mathematically, this is because changing a 

value by e.g., 1% changes the log of that value by approximately 0.01. Thus, we log-transformed 

our response variables prior to modeling. We show in the simulation below that failure to log 

transform (i.e., estimating change in raw units of measurement) could lead to the false 

conclusion that larger species are changing more through time, as they have a greater magnitude 

of change for a given % change due to their size, whereas log transformation allows accurate 

estimation of the percent change (rate of change). 

Library(tidyverse) 
library(lme4) 

We start by imagining 10 species, ranging in body size from 5 to 50 grams. We call their starting 

average mass values “t1”, indicating mass in year 1. 

T1 <- seq(5, 50, by = 5); t1 

##  [1]  5 10 15 20 25 30 35 40 45 50 

species <- paste(“species”, 1:length(t1)); species 

##  [1] “species 1”  “species 2”  “species 3”  “species 4”  “species 5”  
##  [6] “species 6”  “species 7”  “species 8”  “species 9”  “species 10” 
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Next, we generate normal distributions of 100 individuals for each species in year 1, centered 

around the mean starting (t1) value for that species. (We could instead use a log normal 

distribution). Then we replicate that distribution for each species 20 times (representing 20 

consecutive time steps or years), but each year we reduce the measurement values by 5% (that is, 

every “species” experiences the same percent change in mass every year). 

nyears = 20 
 
sim.dat <- list() 
for(i in 1:length(t1)){ 
  sim.dat[[i]] <- matrix(NA, 100, nyears)  
  sim.dat[[i]][,1] <- rnorm(100, mean = t1[[i]]) ## normal distribution of 10
0 measurements, centered on the starting mean value for each species 
  for(j in 2:nyears){ 
    sim.dat[[i]][,j] <- sim.dat[[i]][,(j-1)]*0.95 ## reduce measurements by 5
% for 19 more years 
  }  
  sim.dat[[i]] <- data.frame(cbind(sim.dat[[i]])) 
  colnames(sim.dat[[i]]) <- paste0("year_", 1:nyears) 
} 
 
names(sim.dat) <- species 
 
## convert list into dataframe 
dat <- bind_rows(sim.dat, .id = "species") %>% 
  pivot_longer(!species, names_to = "year_name", values_to = "mass") %>% 
  mutate(year = rep(rep(1:nyears, 100),length(t1))) 

Plot the data to visualize what’s happening. First, we plot the changing distributions. 

dat$species <- fct_reorder(dat$species, parse_number(dat$species)) 
 
dat %>%  
  group_by(species, year) %>% 
  ggplot(aes(year, mass)) +  
  geom_point() + 
  facet_wrap(~species) 
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We can also plot the changing means: 

dat %>%  
  group_by(species, year) %>% 
  summarize(mean_mass = mean(mass)) %>% 
  ggplot(aes(year, mean_mass)) +  
  geom_point() + 
  facet_wrap(~species) 
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Note that species 1 through 10 get progressively “larger” (larger starting intercept value). In the 

plots above, it looks like the larger species are changing more, even though every species 

experienced a 5% change in measurement every year. We can show this apparent trend further 

by plotting the slopes (change through time) in every measurement. First, we show the slopes of 

the raw measurements (without log transformation). 

dat %>%  
  ggplot(aes(year, mass, group = species)) +  
  geom_smooth(method = "lm", se = F) 
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Again, in the above plot it looks like the larger species are changing more through time, but this 

is because the magnitude of the change is greater. By contrast, if we log transform the data, each 

slope becomes approximately the same and the slopes represent percent change (5% decrease for 

every species, in this case). 

dat %>%  
  ggplot(aes(year, log(mass), group = species)) +  
  geom_smooth(method = "lm", se = F) 
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We can replicate the same phenomenon in a mixed modeling framework with random slopes for 

each species, which is the approach we take for analyzing the data in this paper. We produce a 

mixed model and use the random slope coefficients to represent percent change. 

## mixed linear model without log transformation of "mass" 
no_log_m<-lmer(mass~year + (1+ year|species), data=dat) 
 
## mixed linear model with log transformation of "mass"  
log_m<-lmer(log(mass)~year + (1+ year|species), data=dat) 
 
## extract slope coefficients (we round them because there are very slight di
fferences) 
rates_log_m <- round(coef(log_m)$species$year, 4) 
rates_no_log_m <- round(coef(no_log_m)$species$year, 4) 
 
## calculate species' mean mass across all years 
means <- dat %>% 
  group_by(species) %>% 
  summarize(mean_mass = mean(mass)) 
 
## combine species mean mass with model rates 
rates <- cbind(means, rates_no_log_m, rates_log_m) 

The model with raw (not logged) mass indicates larger species change faster (they have more 

strongly negative slopes). 
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rates %>%  
  ggplot(aes(mean_mass, rates_no_log_m)) +  
  geom_point()+ 
  xlab("Species Mean Mass") + 
  ylab("Slope Coefficients") 

 

The model with log transformed mass has slope coefficients that are all approximately the same, 

representing the same percent change in mass for every species. 

rates %>%  
  ggplot(aes(mean_mass, rates_log_m)) +  
  geom_point() + 
  xlab("Species Mean Mass") + 
  ylab("Slope Coefficients") 
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Therefore, log transformation allows us to accurately model the proportional change in a 

measurement, rather than the magnitude of the change. 
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Methods S2. Allometric scaling does not predict the observed relationship between species’ 

mean body size and intraspecific rates of morphological change.  

Body mass has allometric relationships with most morphological traits (1, 8–12). 

Specifically, larger individuals tend to have morphological characters such as tarsi, bills and 

wings that are relatively short for their body size compared to small individuals (13). 

Consequently, across taxa with varying body sizes, 1-dimensional traits (e.g., appendage lengths) 

vary at a constant rate that is a fraction of the rate of change in body size (3-dimensional volume 

or mass); this relationship often follows a 1/3 power law (1, 14). However, because this 

relationship is constant across body sizes, the same proportional decline in volume through time 

in a large versus a small bird should lead to the same proportional decline in tarsus length or bill 

length relative to body size (Fig. S8). That is, although smaller species have relatively longer 

appendages than larger species, this does not imply that their appendage length should shrink 

proportionately more when body size (volume) shrinks. Thus, the patterns we document are 

indicative of a faster rate of morphological change in small species than in large species that is 

not simply an artefactual outcome of allometric scaling. 
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Figure S8. Equivalent reductions in percent body size (Mass) are expected to result in the same 

percent reduction in a length measurement. In our data, tarsus length approximates mass1/3, as 

predicted by allometry. In a perfect mass1/3 relationship (grey curve), a 60% reduction in body 

mass is predicted to result in a 26% reduction in tarsus length, despite the absolute value of these 

mass reductions differing depending on the initial mass of a species. This is shown for two species 

(red and black, moving from the circle symbols to the square symbols). Thus, if all species in our 

dataset were changing by the same proportional amount of body mass through time, then they 

would also be expected to change by the same proportional amount in measurements including 

tarsus, bill, and wing lengths, regardless of their mean body mass. Instead, we observed that 

smaller species are experiencing greater percent changes in tarsus, bill, and wing lengths than 

larger species. 
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Methods S3. Simulation examining the effects of potential error in generation length 

estimates on its relationship with rates of morphological change 

Our estimates of species’ mean body size are very precise as we have body mass 

measurements for all individuals in our study. For generation length (GL), however, estimates 

come from another published source (2), and it is difficult to estimate the uncertainty in these 

values. To better understand the consequences of potential error in the GL estimates, we 

conducted a simulation using the Chicago dataset. We ask, if rates of change in tarsus length (Δ 

tarsus) were in fact as highly correlated with GL as they are with mean body size (one of our 

strongest relationships; r2 = 0.705), how much random error in GL estimates would it take to 

reduce the correlation to what we observe between rates of change in tarsus length and GL (r2 = 

0.121).  

To do this, we first modified GL estimates for each species by the minimal amount 

necessary to achieve a correlation equivalent to the Δ tarsus ~ body size relationship (r2 = 0.705). 

Specifically, we iteratively moved all estimates slightly closer to the best fit regression line, at a 

rate proportional to their residual values (1% of residual value per iteration), until we achieved 

an equivalent r2 value for the Δ tarsus ~ GL relationship (original r2 = 0.121, simulated r2 >= 

0.705). We used these simulated best-fit GL estimates in the next part of our simulation. 

Next, we introduced increasingly larger normally distributed random error to each of these best-

fit GL estimates. The added error had a mean of zero and a standard deviation that started as 1% 

of the mean simulated best-fit estimated GL across species (0.019 years) and increased by an 

additional 1% per step. For each standard deviation level step, we ran 500 iterations to generate a 

confidence interval around mean estimates of r2 values for each standard deviation level. We 
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then calculated the mean standard deviation of error that would be required to reduce the 

simulated r2 value of 0.705 to that observed empirically in our dataset (r2 = 0.121). 

We found that introducing error into our simulated best-fit GL estimates with a mean of 

zero and a standard deviation of 0.271 years (95% CI: 0.136 – 0.873 years) was sufficient to 

reduce the r2 values from 0.705 to 0.121 (Fig. S9). This indicates that adding values drawn 

randomly from the normal distribution N(μ = 0, sd = 0.271) to each best-fit simulated GL 

estimate resulted in an r2 value equivalent to what we observe in our dataset using published GL 

estimates. Fig. S10a shows a histogram of the randomly generated absolute error values resulting 

from this distribution, in years (i.e., in absolute terms).  

Finally, to think about how large errors would have to be in relative terms (% of GL by 

species), we calculated the median absolute error of standard deviation as a percent of best-fit 

GL estimates. To visualize what the median absolute error from the above distribution (median = 

0.184 years) looks like across species in terms of % of species’ simulated best-fit GL estimates, 

we divided the best-fit GL estimate for each species by that median value (Fig. S10b). This 

median absolute error is the equivalent of an absolute error that is 9.7% of the simulated best-fit 

generation length estimate of the median species and ranges from 8.1% to 10.9% across all 

species.  
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Figure S9. Relationship between the standard deviation of error in simulated best-fit generation 

length (GL) estimates and r2 values in a Δ tarsus length ~ GL linear model. Dots show median of 

500 iterations, and lines show 95% confidence interval. Horizontal dashed line indicates r2 value 

of 0.121 (the relationship observed in our dataset). 
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Figure S10. The median absolute error necessary to reduce model fit between Δ tarsus length 

and simulated best-fit generation length (GL) estimates to the value observed in our data. A) 

Distribution of raw absolute error values (in years). B) Distribution of the median absolute error 

value as a % of best-fit GL for each species. 
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