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Supporting Information Text12

1. Calculation of joint distribution of goodnesses13

This section proposes an analytical method to obtain the reputation structure under indirect reciprocity. We assume a situation14

where rare mutants with norm M of ratio δ invade other wild-types with norm W of ratio 1− δ. We denote the population ratio15

of norm A ∈ {W,M} as ρA; ρA = 1− δ when A = W, while ρA = δ when A = M. To characterize the reputation structure, we16

define piA as a proportion of individuals of norm A who assign good reputations to individual i. We call piA a goodness of17

individual i from norm A ∈ {W,M}.18

In the following, let us consider a stochastic transition of piA in each round. In a single round, a recipient and a donor are19

chosen and labeled as iR and iD, respectively. In this round, piDAO , i.e., the goodness of donor from norm AO, changes into20

the next goodness p′iDAO for all AO ∈ {W,M}. Below, we formulate the stochastic change separately for cases that the donor21

chooses to cooperate or defect.22

C-map case: First, we consider a case that the donor cooperates with the recipient, occurring with a probability of

h(piRAD ) := piRAD (1− e1) + (1− piRAD )e1. [1]

Here, e1 is the probability of action error, with which the donor chooses an opposite action to the intended one. In this case,
NρAOp

′
iDAO , i.e., the number of observers with norm AO who give good reputations to the donor in the next round, follows a

probability distribution of

NρAOp
′
iDAO ∼ N1 +N2, [2]

N1 ∼ B(NρAOpiRAO , a
GC
AO ), [3]

N2 ∼ B(NρAO (1− piRAO ), aBC
AO ). [4]

Here, B(n, a) denotes a binomial distribution with success probability a and trial number n. In addition, aXY
AO denotes the

probability that an observer with norm AO who evaluates the recipient as X ∈ {G,B} newly gives a good reputation to the
donor whose action is Y ∈ {C,D}. aGC

AO , a
BC
AO , a

GD
AO , and a

BD
AO are obtained by converting corresponding G and B pivots into

1− e2 and e2 in Table 1 of the main manuscript. Instead of Eq. (3), we use a shorthand notation;

NρAOp
′
iDAO ∼ B(NρAOpiRAO , a

GC
AO ) + B(NρAO (1− piRAO ), aBC

AO ). [5]

Because NρAO is sufficiently large, the mean and variance of p′iDAO are given by

E[p′iDAO ] = piRAO (aGC
AO − a

BC
AO︸ ︷︷ ︸

=:∆fC
AO

) + aBC
AO (=: fC

AO
(piRAO )), [6]

Var[p′iDAO ] =
piRAOa

GC
AO (1− aGC

AO ) + (1− piRAO )aBC
AO (1− aBC

AO )
NρAO

= e2(1− e2)
NρAO

(=: ρ−1
AO
s2). [7]

Here, e2 is the probability of assessment error, with which an observer assigns an opposite reputation to the intended one. In23

Eq. (6), fC
AO represents a map from the recipient’s goodness in the present round to the donor’s goodness in the next round.24

Because this map is applied only when the donor cooperates, we call it “C-map”.25

D-map case: On the other hand, we consider a case that the donor defects with the recipient, occurring with a probability
of

1− h(piRAD ) = (1− piRAD )(1− e1) + piRADe1. [8]

In this case, NρAOp
′
iDAO follows a probability distribution of

NρAOp
′
iDAO ∼ B(NρAOpiRAO , a

GD
AO ) + B(NρAO (1− piRAO ), aBD

AO ). [9]

From this equation, the mean and variance of p′iDAO are given by

E[p′iDAO ] = piRAO (aGD
AO − a

BD
AO︸ ︷︷ ︸

=:∆fD
AO

) + aBD
AO (=: fD

AO (piRAO )), [10]

Var[p′iDAO ] =
piRAOa

GD
AO (1− aGD

AO ) + (1− piRAO )aBD
AO (1− aBD

AO )
NρAO

= e2(1− e2)
NρAO

(=: ρ−1
AO
s2). [11]

Because the map fD
AO is applied when the donor defects, we call it D-map in the same way as C-map.26

The above C-map fC
Sk

and D-map fD
Sk

are illustrated in Fig. S1 for all Sk ∈ S.27
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Fig. S1. Materials for the reputation structure for all the second-order norms W = Sk . Green solid (resp. dashed) lines indicate C-map fC
W (resp. D-map fD

W) of the norm.
Gray lines indicate the identity map, which shows the fixed points of the C-map and D-map as the crossing points with these maps. The orange distribution shows the probability
density function of goodnesses pWW when W = Sk . All the panels are output under N = 2000, δ = 0, and (e1, e2) = (0, 0.1). Numbers over each peak indicate j.

Yuma Fujimoto, and Hisashi Ohtsuki 3 of 15



2. Time evolution of reputation structure28

Because the population of wild-types and mutants are sufficiently large, we can continualize the distribution of individual
goodness piA with separating into the cases that the norm of individual i is W or M. In the following, pAA′ denotes a
continualized goodness of an individual with norm A in the eyes of individuals with norm A′. Let us consider a time change of
the distribution of pAA′ . As shown above, however, we should keep in mind that pAW and pAM are simultaneously changed by
the C-map or D-map. Thus, we consider dynamics of ΦA(pAW, pAM), a joint probability distribution of pAW and pAM. Note
that a norm of the chosen recipient is M only with a probability of δ, which contributes the dynamics of ΦA only in a scale of
O(δ). By ignoring this scale of O(δ), the dynamics of ΦA is given by

d
dtΦA(pAW, pAM) = −ΦA(pAW, pAM) +

∫ 1

0

∫ 1

0
{h(p′WA)g(pAW; fC

W(p′WW), ρ−1
W s2)g(pAM; fC

M(p′WM), ρ−1
M s2)

+ (1− h(p′WA))g(pAW; fD
W(p′WW), ρ−1

W s2)g(pAM; fD
M(p′WM), ρ−1

M s2)}
× ΦW(p′WW, p

′
WM)dp′WWdp′WM. [12]

Here, g(p;µ, σ2) denotes a Gaussian function with the mean µ and variance σ2 as

g(p;µ, σ2) := 1√
2πσ2

exp
(
− (p− µ)2

2σ2

)
. [13]

Equation (12) explains an update of the donor’s goodness per time. The first (resp. second) term on the right side represents29

decrements (increments) by updating goodnesses. In detail, ΦW(p′WW, p
′
WM) in the second term shows the density that the30

recipient’s goodness is p′WW (resp. p′WM) in the eyes of wild-types (resp. mutants). h(p′WA) shows the probability that the31

donor cooperates, and the donor’s goodnesses after the update in the eyes of observers with norm W and M are described by32

g(pAW; fC
W(p′WW), ρ−1

W s2) and g(pAM; fC
M(p′WM), ρ−1

M s2), respectively. A similar explanation holds when the donor chooses to33

defect.34

The equilibrium state of Eq. (12), i.e., Φ∗A, satisfies

Φ∗A(pAW, pAM) =
∫ 1

0

∫ 1

0
{h(p′WA)g(pAW; fC

W(p′WW), ρ−1
W s2)g(pAM; fC

M(p′WM), ρ−1
M s2)

+ (1− h(p′WA))g(pAW; fD
W(p′WW), ρ−1

W s2)g(pAM; fD
M(p′WM), ρ−1

M s2)}
× Φ∗W(p′WW, p

′
WM)dp′WWdp′WM. [14]

To solve this equation, we assume that the equilibrium state can be described by a summation of two-dimensional Gaussian
functions without correlation as

Φ∗A(pAW, pAM) =
∑

j

qAjg(pAW;µAWj , ρ
−1
W σ2

AWj)g(pAM;µAMj , ρ
−1
M σ2

AMj). [15]

The assumption of Gaussian is justified by the above transition process of the donor’s goodness, where the goodness is virtually35

determined only by the mean and variance in a sufficiently large population. No correlation is assumed because the variance is36

given independently by observers with different norms.37

We now derive equations in which the equilibrium state satisfies for each norm A ∈ {W,M}. First, substituting Eq. (15)
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into Eq. (14) for A = W, we obtain∑
j

qWjg(pWW;µWWj , ρ
−1
W σ2

WWj)g(pWM;µWMj , ρ
−1
M σ2

WMj)

=
∫ 1

0

∫ 1

0
{h(p′WW)g(pWW; fC

W(p′WW), ρ−1
W s2)g(pWM; fC

M(p′WM), ρ−1
M s2)

+ (1− h(p′WW))g(pWW; fD
W(p′WW), ρ−1

W s2)g(pWM; fD
M(p′WM), ρ−1

M s2)}

×
∑

j

qWjg(p′WW;µWWj , ρ
−1
W σ2

WWj)g(p′WM;µWMj , ρ
−1
M σ2

WMj)dp′WWdp′WM,

=
∑

j

qWj

∫ 1

0

∫ 1

0
{h(p′WW)g(pWW; fC

W(p′WW), ρ−1
W s2)g(pWM; fC

M(p′WM), ρ−1
M s2)

+ (1− h(p′WW))g(pWW; fD
W(p′WW), ρ−1

W s2)g(pWM; fD
M(p′WM), ρ−1

M s2)}
× g(p′WW;µWWj , ρ

−1
W σ2

WWj)g(p′WM;µWMj , ρ
−1
M σ2

WMj)dp′WWdp′WM,

'
∑

j

qWj

∫ ∞
−∞

∫ ∞
−∞
{h(µWWj)g(pWW; fC

W(p′WW), ρ−1
W s2)g(pWM; fC

M(p′WM), ρ−1
M s2)

+ (1− h(µWWj))g(pWW; fD
W(p′WW), ρ−1

W s2)g(pWM; fD
M(p′WM), ρ−1

M s2)}
× g(p′WW;µWWj , ρ

−1
W σ2

WWj)g(p′WM;µWMj , ρ
−1
M σ2

WMj)dp′WWdp′WM,

=
∑

j

qWj{h(µWWj)g(pWW; fC
W(µWWj), ρ−1

W (s2 + (∆fC
W)2σ2

WWj))g(pWM; fC
M(µWMj), ρ−1

M (s2 + (∆fC
M)2σ2

WMj))}

+ (1− h(µWWj))g(pWW; fD
W(µWWj), ρ−1

W (s2 + (∆fD
W)2σ2

WWj))g(pWM; fD
M(µWMj), ρ−1

M (s2 + (∆fD
M)2σ2

WMj))}. [16]

This equation gives a constraint for (qWj , µWWj , σ
2
WWj , µWMj , σ

2
WMj). Next, when A = M, in a similar manner, we obtain∑

j

qMjg(pMW;µMWj , ρ
−1
W σ2

MWj)g(pMM;µMMj , ρ
−1
M σ2

MMj)

=
∫ 1

0

∫ 1

0
{h(p′WM)g(pMW; fC

W(p′MW), ρ−1
W s2)g(pMM; fC

M(p′MM), ρ−1
M s2)

+ (1− h(p′WM))g(pMW; fD
W(p′MW), ρ−1

W s2)g(pMM; fD
M(p′MM), ρ−1

M s2)}

×
∑

j

qMjg(p′MW;µMWj , ρ
−1
W σ2

MWj)g(p′MM;µMMj , ρ
−1
M σ2

MMj)dp′MWdp′MM

=
∑

j

qMj

∫ 1

0

∫ 1

0
{h(p′WM)g(pMW; fC

W(p′MW), ρ−1
W s2)g(pMM; fC

M(p′MM), ρ−1
M s2)

+ (1− h(p′WM))g(pMW; fD
W(p′MW), ρ−1

W s2)g(pMM; fD
M(p′MM), ρ−1

M s2)}

×
∑

j

qMjg(p′MW;µMWj , ρ
−1
W σ2

MWj)g(p′MM;µMMj , ρ
−1
M σ2

MMj)dp′MWdp′MM

'
∑

j

qMj

∫ ∞
−∞

∫ ∞
−∞
{h(µWMj)g(pMW; fC

W(p′MW), ρ−1
W s2)g(pMM; fC

M(p′MM), ρ−1
M s2)

+ (1− h(µWMj))g(pMW; fD
W(p′MW), ρ−1

W s2)g(pMM; fD
M(p′MM), ρ−1

M s2)}

×
∑

j

qMjg(p′MW;µMWj , ρ
−1
W σ2

MWj)g(p′MM;µMMj , ρ
−1
M σ2

MMj)dp′MWdp′MM

=
∑

j

qMj{h(µWMj)g(pMW; fC
W(µMWj), ρ−1

W (s2 + (∆fC
W)2σ2

MWj))g(pMM; fC
M(µMMj), ρ−1

M (s2 + (∆fC
M)2σ2

MMj))}

+ (1− h(µWMj))g(pMW; fD
W(µMWj), ρ−1

W (s2 + (∆fD
W)2σ2

MWj))g(pMM; fD
M(µMMj), ρ−1

M (s2 + (∆fD
M)2σ2

MMj))}. [17]

This equation gives a constraint for (qMj , µMWj , σ
2
MWj , µMMj , σ

2
MMj).38

To solve Eq. (16), let us consider a set of solutions {(µWWj , µWMj)}j . From the equilibrium condition of Eq. (16), the equal
set must be restored by applying C-map and D-map to all the elements of the set. In other words, the condition is given by

{(µWWj , µWMj)}j = {(fC
W(µWWj), fC

M(µWMj))}j ∪ {(fD
W(µWWj), fD

M(µWMj))}j . [18]
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Similarly, to obtain the equilibrium condition for Eq. (17), we should consider a set of solutions {(µMWj , µMMj)}j satisfying

{(µMWj , µMMj)}j = {(fC
W(µMWj), fC

M(µMMj))}j ∪ {(fD
W(µMWj), fD

M(µMMj))}j . [19]

Here, although the appearance of the variables is different, the problems are essentially between Eq. (18) and Eq. (19). Thus,
the problem to be solved is

{(µj,W, µj,M)}j = {(fC
W(µj,W), fC

M(µj,M))}j ∪ {(fD
W(µj,W), fD

M(µj,M))}j . [20]

Furthermore, because W,M ∈ S, we can generalize the problem as

{(µj,S01 , · · · , µj,S16 )}j = {(fC
S01 (µj,S01 ), · · · , fC

S16 (µj,S16 ))}j ∪ {(fD
S01 (µj,S01 ), · · · , fD

S16 (µj,S16 ))}j . [21]

Now, for all Sk ∈ S and, let us consider a set {µj,Sk}j∈Z\{0} satisfying

µ+1,Sk = fC
Sk

(µ−1,Sk ) = fC
Sk

(µ−2,Sk ) = · · · , [22]

µ+(j+1),Sk
= fC

Sk
(µ+j,Sk ), [23]

µ−1,Sk = fD
Sk

(µ+1,Sk ) = fD
Sk

(µ+2,Sk ) = · · · , [24]

µ−(j+1),Sk
= fD

Sk
(µ−j,Sk ), [25]

(the proof for these equations will be given later). This set {µj,Sk}j∈Z\{0} gives a solution to problem Eq. (21), and thus39

solves Eq. (16) and Eq. (17). In Eq. (22)-Eq. (25), we consistently label each µj,Sk such that sequentially applying C-map40

(resp. D-map) j(> 0) times leads to label +j (resp. −j) (see the illustration in Fig. S1). In the following, we show that such41

{µj,Sk}j∈Z\{0} actually exists for all k.42

1. When neither C-map nor D-map is constant: First, we consider a case of ∆fC
Sk
6= 0 and ∆fD

Sk
6= 0. Four norms of43

k = 06, 07, 09, 10 correspond to this case. In this case, C-map and D-map have the same fixed point (at 1/2). Only the position44

given by this fixed point is achieved at equilibrium. Indeed, if we substitute µj,Sk = 1/2 for all j ∈ Z\{0}, Eq. (22)-Eq. (25)45

are simultaneously satisfied without any contradiction.46

2. When both C-map and D-map are constant: Second, we consider a case of ∆fC
Sk

= 0 and ∆fD
Sk

= 0. Four norms47

of k = 01, 04, 13, 16 correspond to this case. Because fC
Sk

is a constant map, Eq. (22) and Eq. (23) are satisfied by substituting48

the mapped value of this map into µ+j,Sk for all j = 1, 2, · · · . In the same way, because fD
Sk

is a constant map, Eq. (24) and49

Eq. (25) are satisfied by substituting the mapped value into µ−j,Sk for all j = 1, 2, · · · . Thus, no contradiction occurs.50

3. When only C-map is constant: Third, we consider a case of ∆fC
Sk

= 0 and ∆fD
Sk
6= 0. Four norms k = 02, 03, 14, 1551

correspond to this case. Because fC
Sk

is a constant map, Eq. (22) and Eq. (23) are satisfied by substituting the mapped value52

of this map into µ+j,Sk for all j = 1, 2, · · · . Then, we define µ−1,Sk as the value to which D-map maps all the same value53

µ+1,Sk = µ+2,Sk = · · · , and Eq. (24) is satisfied. Finally, we sequentially define µ−2,Sk , µ−3,Sk , · · · by applying D-map to54

µ−1,Sk one by one. Thus, no contradiction occurs.55

4. When only D-map is constant: Finally, we consider a case of ∆fC
Sk
6= 0 and ∆fD

Sk
= 0. Four norms k = 05, 08, 09, 1256

correspond to this case. Because fD
Sk

is a constant map, Eq. (24), Eq. (25) are satisfied by substituting the mapped value57

of this map into µ−j,Sk for all j = 1, 2, · · · . Then, we define µ+1,Sk as the value to which D-map maps all the same value58

µ−1,Sk = µ−2,Sk = · · · , and Eq. (24) is satisfied. Finally, we sequentially define µ+2,Sk , µ+3,Sk , · · · by applying C-map to59

µ+1,Sk one by one. Thus, no contradiction occurs.60

As summarized in Table S1, the set {µj,Sk}j∈Z\{0} can be analytically described. Furthermore, we also define σ2
j,Sk

as the
variance in Gaussian corresponding to the mean µj,Sk . Similarly to the mean values above, we solve the variances as

(σ2
WWj , σ

2
WMj) = (σ2

MWj , σ
2
MMj) = (σ2

j,W, σ
2
j,M). [26]

The recursion that the set {σ2
j,Sk
}j∈Z\{0} should satisfy is

σ2
+1,Sk

= s2 + (∆fC
Sk

)2σ2
−1,Sk

= s2 + (∆fC
Sk

)2σ2
−2,Sk

= · · · , [27]

σ2
+(j+1),Sk

= s2 + (∆fC
Sk

)2σ2
+j,Sk

, [28]

σ2
−1,Sk

= s2 + (∆fD
Sk

)2σ2
+1,Sk

= s2 + (∆fD
Sk

)2σ2
+2,Sk

= · · · , [29]

σ2
−(j+1),Sk

= s2 + (∆fD
Sk

)2σ2
−j,Sk

, [30]

and the solution exists for all Sk (see Table. S1 for the solution of these equations). Table. S1 shows {(µj,Sk , σ
2
j,Sk

)}j∈Z\{0}.61
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Sk µ+j,Sk
µ−j,Sk

σ2
+j,Sk

σ2
−j,Sk

S01 1− e2 1− e2
e2(1− e2)

N

e2(1− e2)
N

S02 1− e2
1 + (1− 2e2)j+1

2
e2(1− e2)

N

1− (1− 2e2)2(j+1)

4N

S03 1− e2
1− {−(1− 2e2)}j+1

2
e2(1− e2)

N

1− (1− 2e2)2(j+1)

4N

S04 1− e2 e2
e2(1− e2)

N

e2(1− e2)
N

S05
1 + (1− 2e2)j+1

2
1− e2

1− (1− 2e2)2(j+1)

4N
e2(1− e2)

N

S07
1
2

1
2

1
4N

1
4N

S08
1− (1− 2e2)j+1

2
e2

1− (1− 2e2)2(j+1)

4N
e2(1− e2)

N

S09
1− {−(1− 2e2)}j+1

2
1− e2

1− (1− 2e2)2(j+1)

4N
e2(1− e2)

N

S12
1 + {−(1− 2e2)}j+1

2
e2

1− (1− 2e2)2(j+1)

4N
e2(1− e2)

N

S13 e2 1− e2
e2(1− e2)

N

e2(1− e2)
N

S14 e2
1− (1− 2e2)j+1

2
e2(1− e2)

N

1− (1− 2e2)2(j+1)

4N

S15 e2
1 + {−(1− 2e2)}j+1

2
e2(1− e2)

N

1− (1− 2e2)2(j+1)

4N

S16 e2 e2
e2(1− e2)

N

e2(1− e2)
N

Table S1. Analytical solution of Gaussian functions. We omit S06, S10, and S11 because the results are identical to those of S07(SJ).

We also calculate a set of the masses of Gaussian functions, i.e., {qWj}j∈Z\{0} and {qMj}j∈Z\{0}. By substituting the values
in Table S1 into Eq. (16), we obtain the following relational expressions

qW+1 =
∞∑

j=1

h(µ−j,W)qW−j , [31]

qW+j = h(µ+(j−1),W)qW+(j−1) (j = 2, · · · ,∞), [32]

qW−1 =
∞∑

j=1

(1− h(µ+j,W))qW+j , [33]

qW−j = (1− h(µ−(j−1),W))qW−(j−1) (j = 2, · · · ,∞). [34]

Similarly, by substituting the values in Table S1 into Eq. (17), we obtain

qM+1 =
∞∑

j=1

h(µ−j,M)qW−j , [35]

qM+j = h(µ+(j−1),M)qW+(j−1) (j = 2, · · · ,∞), [36]

qM−1 =
∞∑

j=1

(1− h(µ+j,M))qW+j , [37]

qM−j = (1− h(µ−(j−1),M))qW−(j−1) (j = 2, · · · ,∞). [38]

Eq. (31)-Eq. (38) includes the infinite summations. Because these infinite summations cannot be analytically calculated, one62

should set a cutoff of the summations in the numerical calculation of Eq. (31)-Eq. (38).63

Fig. 2-B in the main manuscript shows an example of Φ∗W(pWW, pWM). In this example, the elements in {(µj,W, µj,M)}j∈Z\{0}64

are all different for different j, and thus the labeling in this study is at least necessary for the description of the reputation65

structure. This figure also shows that the obtained analytical solutions well approximate simulations of the image matrix.66

3. Calculation of expected payoff67

In order to consider an evolutionary process, we derive expected payoffs of wild-types W and mutants M from joint probability68

distribution of goodnesses, i.e., Φ∗W and Φ∗M. In the limit that mutants are rare δ → 0, the expected payoffs of the wild-types69
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uW and mutants uM are given by70

uW = (b− c)p̄WW,

uM = bp̄MW − cp̄WM,
[39]71

Here, p̄AA′ indicates the average goodnesses of pAA′ , i.e., described as72

p̄WW =
∫ 1

0

∫ 1

0
pWWΦ∗W(pWW, pWM)dpWWdpWM,

p̄WM =
∫ 1

0

∫ 1

0
pWMΦ∗W(pWW, pWM)dpWWdpWM,

p̄MW =
∫ 1

0

∫ 1

0
pMWΦ∗M(pMW, pMM)dpMWdpMM,

[40]73

This average goodness can be analytically calculated by Gaussian approximation of Φ∗A(pAW, pAM). According to the conditions74

for the ESS, mutants can invade the population of wild-types if uW > uM.75

Regions, where a mutant norm can invade a wild-type norm, are given by Fig. S2. From this figure, we can obtain the76

invasibilities for each b/c, as shown in Fig. 3-A in the main manuscript.77

Fig. S2. Regions for possible invasions in the evolutionary processes. The row and column indicate the wild-type and mutant norms, respectively. The matrix shows the region
of b/c(> 1) where the mutant invades the wild-type. In some pairs of wild-type and mutant norms, the mutant always or never succeeds in invading the wild-types for all
b/c(> 1). The calculation is based on e1 = 0 and e2 = 0.1.

4. Calculation of equilibrium state in public reputation78

In this section, we derive the equilibrium distribution of reputations under public assessment, based on the previous study (1).79

The basic setting is the same whether the reputation is publicly shared or privately held. We assume a population of size N80

which consists of mutants with norm M and wild-type individuals with norm W 6= M. A donor and a recipient are randomly81

chosen every round. The donor chooses cooperation to the good recipient and defection to the bad recipient. Here, the donor82

erroneously chooses the opposite action to the intended one with probability 0 ≤ e1 < 1/2. Then, all the individuals update83

their reputations of the donor. The difference between the public and private reputation cases is seen in the observers’ ways84

to update reputations. We assume that one mutant observer and one wild-type observer are chosen as representatives of85

each norm, and each gives a good or bad reputation to the donor according to its norm. Here, each representative observer86

commits an assignment error independently, in which case it erroneously assigns the opposite reputation to the intended one87

with probability 0 < e2 < 1/2. (such an assessment error was not assumed in (1)) Then, all the individuals with the same88

norm copy the reputation of the donor assigned by their representative. Thus, the reputation of the same individual, even an89

erroneously assigned one, is shared among all the individuals with the same norm. In other words, each individual at any given90

time has two reputations, one is shared by all the mutant individuals, and the other is shared by all the wild-type individuals91

in the population.92
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Here we specifically consider the situation where rare mutants with norm M = S16(ALLB) invades a wild-type population93

with norm W 6= M. We use the same definition of pAA′ , i.e., goodness of an individual with norm A in the eyes of norm A′94

users. Because reputations are public, pAA′ can be either 1 (the individual is assigned as good from all) or 0 (the individual is95

assigned as bad from all). Below we will derive p̄AA′ , the probability that a norm A user has a good reputation in the eyes of96

norm A′ users.97

Since the mutant norm is ALLB, the probability that mutants assign a good reputation to the donor is always aGC
M = aBC

M =98

aGD
M = aBD

M = e2. Thus we obtain p̄WM = p̄MM = e2.99

Next we aim to solve the equilibrium average goodnesses in the eyes of wild-types, p̄WW and p̄MW. First, let us calculate100

p̄WW, which is relevant when the donor and the observer use norm W. Note that we can assume that the recipient uses norm101

W, because mutants are rare. p̄WW should satisfy102

p̄WW = p̄WW{(1− e1)aGC
W + e1a

GD
W }+ (1− p̄WW){e1a

BC
W + (1− e1)aBD

W }, [41]103

The equality between the left- and right-hand sides shows that the proportion of good individuals balances before and after104

updating the chosen donor’s reputation. In the right-hand side, p̄WW and 1− p̄WW in the first and the second terms indicate105

the probabilities that a randomly chosen recipient of norm W is good or bad from the viewpoint of norm W, respectively.106

When the recipient is good, the donor chooses cooperation or defection with probabilities (1− e1) and e1. Then, aGC
W and aGD

W107

indicate the probabilities that the cooperating or defecting donor receives a good reputation from observers of norm W. When108

the recipient is bad, the donor chooses cooperation or defection with probabilities e1 and (1− e1). Then, aBC
W and aBD

W indicate109

the probabilities that the cooperating or defecting donor receives a good reputation from observers of norm W. The solution is110

p̄WW = (1− e1)aBD
W + e1a

BC
W

1− {(1− e1)(aGC
W − aBD

W ) + e1(aGD
W − aBC

W )}
. [42]111

Second, let us calculate p̄MW, which is relevant when the donor uses norm M and the observer uses norm W. Note that we
can once again assume that the recipient uses norm W because mutants are rare. p̄MW should satisfy

p̄MW = p̄WW{h(e2)aGC
W + (1− h(e2))aGD

W }+ (1− p̄WW){h(e2)aBC
W + (1− h(e2))aBD

W }. [43]

Here, p̄WW and (1− p̄WW) in the first and second terms of the right-hand side indicate the probabilities that the recipient is112

good or bad from the viewpoint of norm W, respectively. In both terms, h(e2)(= e2(1− e1) + (1− e2)e1) and 1− h(e2) are the113

probabilities that the donor with norm M executes cooperation or defection, which is independent of whether the recipient is114

good or bad from the viewpoint of norm W. In the first term, aGC
W and aGD

W indicate the probabilities that the cooperating115

and defecting donor receives a good reputation from the observers of norm W. In the second term, aBC
W and aBD

W indicate the116

probabilities that the cooperating and defecting donor receives a good reputation from the observers of norm W.117

We summarize the solutions, p̄WW and p̄MW, in Table S2.118
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Based on Table S2, we can see how the reputation structure differs between the public and private reputation cases. The119

reputation structure for norms S03(SS) and S07(SJ) are illustrated in Fig. 3-D and E in the main manuscript, while that of120

S08(SH) is in Fig. S3.121

Fig. S3. Illustration of how the wild-type SH gives reputations to the self and mutant ALLB norms. In each panel, the horizontal and vertical axes indicate the goodness and its
frequency, respectively. Positions and heights of bars are correct only up to order e2

2. By comparing the upper panels with the lower ones, we can see that the reputation from
SH differs significantly between the public and private reputation cases. In the private reputation case, SH still manages to distinguish the self norm with ALLB, but only with the
difference of the order of e2

2.

5. Numerical algorithm and error estimate122

This section provides how to computationally calculate Eq. (31)-Eq. (34) and Eq. (35)-Eq. (38) with sufficient accuracy.123

Instead of Eq. (31)-Eq. (34), we aim to compute

QW+1 := 1, [44]
QW+j := h(µ+(j−1),W)QW+(j−1) (j = 2, · · · ,∞), [45]

QW−1 :=
∞∑

j=1

(1− h(µ+j,W))QW+j , [46]

QW−j := (1− h(µ−(j−1),W))QW−(j−1) (j = 2, · · · ,∞), [47]

(see Fig. S4 for the illustration of this computation). Via these equations, we obtain qWj by rescaling QWj as

qWj = QWj∑±∞
k=±1 QWk

, [48]

which satisfies Eq. (31)-Eq. (34). We should also obtain average goodnesses

p̄WA =
∑±∞

j=±1 QWjµj,A∑±∞
j=±1 QWj

, [49]

in order to obtain Fig. S2.124

In a practical computer simulation, we approximate Eq. (44)-Eq. (47) by

Q̂W+1 := 1, [50]

Q̂W+j := h(µ+(j−1),W)Q̂W+(j−1) (j = 2, · · · , jmax), [51]

Q̂W+j := 0 (j = jmax + 1, · · · ,∞), [52]

Q̂W−1 :=
∞∑

j=1

(1− h(µ+j,W))Q̂W+j =
jmax∑
j=1

(1− h(µ+j,W))Q̂W+j , [53]

Q̂W−j := (1− h(µ−(j−1),W))Q̂W−(j−1) (j = 2, · · · , jmax), [54]

Q̂W−j := 0 (j = jmax + 1, · · · ,∞), [55]
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with sufficient large jmax(= 104) (see Fig. S4 for the illustration of this computation). We will show below that these
computationally obtained Q̂Wj well approximate QWj . Note that in the following calculations we use the fact that

e2 ≤ µj,A ≤ 1− e2 [56]

holds for all j = ±1, · · · ,±∞ and A.125

Fig. S4. An illustration of numerical algorithm and error estimation of the masses. The black and gray arrows show how theoretical calculations of Eq. (44)-Eq. (47) are
performed, whereas only black arrows are relevant in the computation of Eq. (50)-Eq. (55). Each box shows the size of QWj . The gray part in each box shows the size of
approximation error, QWj − Q̂Wj . Apart from QWj , the area surrounded by dots show the calculation of QM+1.

From the definition, we obtain

QW+j − Q̂W+j = 0 (j = 1, · · · , jmax). [57]

Then, we obtain

QW+j = QW+1

j−1∏
k=1

µ+k,W ≤ (1− e2)j−1, [58]

⇒
∞∑

j=jmax+1

(QW+j − Q̂W+j) =
∞∑

j=jmax+1

QW+j ≤
∞∑

j=jmax+1

(1− e2)j−1 = 1
e2

(1− e2)jmax . [59]

Then, we have

QW−1 =
∞∑

j=1

QW+j(1− µ+j,W) =
jmax∑
j=1

QW+j(1− µ+j,W)︸ ︷︷ ︸
=Q̂W−1

+
∞∑

j=jmax+1

QW+j(1− µ+j,W) ≤ Q̂W−1 + 1
e2

(1− e2)jmax , [60]

⇒ QW−j = QW−1

j−1∏
k=1

(1− µ−k,W) = Q̂W−1

j−1∏
k=1

(1− µ−k,W)︸ ︷︷ ︸
=Q̂W−j

+(QW−1 − Q̂W−1)
j−1∏
k=1

(1− µ−k,W) ≤ Q̂W−j + 1
e2

(1− e2)jmax+j−1,

[61]

⇒
jmax∑
j=1

(QW−j − Q̂W−j) ≤ 1
e2

2
(1− e2)jmax , [62]

We also obtain

QW−1 =
∞∑

j=1

QW+j(1− µ+j,W) ≤
∞∑

j=1

QW+j ≤
1
e2
, [63]

⇒ QW−j = QW−1

j−1∏
k=1

(1− µ−k,W) ≤ 1
e2

(1− e2)j−1, [64]

⇒
∞∑

j=jmax+1

(QW−j − Q̂W−j) =
∞∑

j=jmax+1

QW−j ≤
∞∑

j=jmax+1

1
e2

(1− e2)j−1 = 1
e2

2
(1− e2)jmax . [65]
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From the above error estimations, we can obtain upper and lower bounds of Eq. (48) and Eq. (49) as

Q̂Wj∑±jmax
j=±1 Q̂Wj + 3

e2
2
(1− e2)jmax

≤ qWj ≤
Q̂Wj + 1

e2
(1− e2)jmax∑±jmax

j=±1 Q̂Wj

. [66]

∑±jmax
j=±1 Q̂Wjµj,A∑±jmax

j=±1 Q̂Wj + 3
e2

2
(1− e2)jmax

≤ p̄WA ≤

∑±jmax
j=±1 Q̂Wjµj,A + 3

e2
2
(1− e2)jmax∑±jmax

j=±1 Q̂Wj

. [67]

Here, we used

Q̂Wj ≤ QWj = Q̂Wj + (QWj − Q̂Wj) [68]

≤ Q̂Wj + max
j

(QWj − Q̂Wj)︸ ︷︷ ︸
=QW−1−Q̂W−1≤ 1

e2
(1−e2)jmax

≤ Q̂Wj + 1
e2

(1− e2)jmax , [69]

±jmax∑
j=±1

Q̂Wj ≤
±∞∑

j=±1

QWj =
±jmax∑
j=±1

Q̂Wj +
±∞∑

j=±1

(QWj − Q̂Wj) [70]

=
±jmax∑
j=±1

Q̂Wj +
jmax+1∑

j=1

(QWj − Q̂W−j)︸ ︷︷ ︸
≤ 1

e2
2

(1−e2)jmax

+
∞∑

j=jmax+1

(QW+j − Q̂W+j)︸ ︷︷ ︸
≤ 1

e2
(1−e2)jmax

+
∞∑

j=jmax+1

(QW−j − Q̂W−j)︸ ︷︷ ︸
≤ 1

e2
2

(1−e2)jmax

[71]

≤
±jmax∑
j=±1

Q̂Wj + 3
e2

2
(1− e2)jmax , [72]

±jmax∑
j=±1

Q̂Wjµj,A ≤
±∞∑

j=±1

QWjµj,A ≤
±jmax∑
j=±1

Q̂Wjµj,A +
±∞∑

j=±1

(QWj − Q̂Wj) [73]

≤
±jmax∑
j=±1

Q̂Wjµj,A + 3
e2

2
(1− e2)jmax . [74]

In the same way, let us consider Eq. (35)-Eq. (38) and compute

QM+1 :=
∞∑

j=1

h(µ−j,M)QW−j , [75]

QM+j := h(µ+(j−1),M)QW+(j−1) (j = 2, · · · ,∞), [76]

QM−1 :=
∞∑

j=1

(1− h(µ+j,M))QW+j , [77]

QM−j := (1− h(µ−(j−1),M))QW−(j−1) (j = 2, · · · ,∞). [78]

Via these equations, we obtain qWj by rescaling QMj as

qMj = QMj∑±∞
k=±1 QMk

, [79]

which satisfies Eq. (35)-Eq. (38). We also need to obtain average goodnesses

p̄MA =
∑±∞

j=±1 QMjµj,A∑±∞
j=±1 QMj

, [80]

in order to obtain Fig. S2.126
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In a practical computer simulation, we approximate Eq. (75)-Eq. (78) by

Q̂M+1 :=
∞∑

j=1

h(µ−j,M)Q̂W−j =
jmax∑
j=1

h(µ−j,M)Q̂W−j , [81]

Q̂M+j := h(µ+(j−1),M)Q̂W+(j−1) (j = 2, · · · , jmax), [82]

Q̂M+j := 0 (j = jmax + 1, · · · ,∞), [83]

Q̂M−1 :=
∞∑

j=1

(1− h(µ+j,M))Q̂W+j =
jmax∑
j=1

(1− h(µ+j,M))Q̂W+j , [84]

Q̂M−j := (1− h(µ−(j−1),M))Q̂W−(j−1) (j = 2, · · · , jmax), [85]

Q̂M−j := 0 (j = jmax + 1, · · · ,∞), [86]

with sufficient large jmax(= 104).127

By exactly similar calculations, we obtain

QM+j − Q̂M+j = 0 (j = 2, · · · , jmax), [87]
∞∑

j=jmax +1

(QM+j − Q̂M+j) ≤ 1
e2

(1− e2)jmax , [88]

jmax∑
j=1

(QM−j − Q̂M−j) ≤ 1
e2

2
(1− e2)jmax , [89]

∞∑
j=jmax +1

(QM−j − Q̂M−j) ≤ 1
e2

2
(1− e2)jmax . [90]

The difference from QWj exists only in j = +1, as

QM+1 =
∞∑

j=1

QW−jµ−j,M =
jmax∑
j=1

Q̂W−jµ−j,M︸ ︷︷ ︸
=q̂M+1

+
jmax∑
j=1

(QW−j − Q̂W−j)µ−j,M︸ ︷︷ ︸
≤ 1

e2
2

(1−e2)jmax

+
∞∑

j=jmax+1

Q̂W−jµ−j,M︸ ︷︷ ︸
≤ 1

e2
2

(1−e2)jmax

[91]

≤ Q̂M+1 + 2
e2

2
(1− e2)jmax , [92]

(see the area surrounded by dots in Fig. S4 for the illustration of this computation).128

From the above error estimations, we can obtain upper and lower bounds of Eq. (79) and Eq. (80) as

Q̂Mj∑±jmax
j=±1 Q̂Mj + 5

e2
2
(1− e2)jmax

≤ qMj ≤
Q̂Mj + 2

e2
2
(1− e2)jmax∑±jmax

j=±1 Q̂Mj

, [93]

∑±jmax
j=±1 Q̂Mjµj,A∑±jmax

j=±1 Q̂Mj + 5
e2

2
(1− e2)jmax

≤ p̄MA ≤

∑±jmax
j=±1 Q̂Mjµj,A + 5

e2
2
(1− e2)jmax∑±jmax

j=±1 Q̂Mj

. [94]
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Here, we used

Q̂Mj ≤ QMj = Q̂Mj + (QMj − Q̂Mj) [95]

≤ Q̂Mj + max
j

(QMj − Q̂Mj)︸ ︷︷ ︸
=QM+1−Q̂M+1≤ 1

e2
2

(1−e2)jmax

≤ Q̂Mj + 1
e2

2
(1− e2)jmax , [96]

±jmax∑
j=±1

Q̂Mj ≤
±∞∑

j=±1

QMj =
±jmax∑
j=±1

Q̂Mj + (QM+1 − Q̂M+1)︸ ︷︷ ︸
≤ 2

e2
2

(1−e2)jmax

+
jmax∑
j=1

(QM−j − Q̂M−j)︸ ︷︷ ︸
≤ 1

e2
2

(1−e2)jmax

[97]

+
∞∑

j=jmax+1

(QM+j − Q̂M+j)︸ ︷︷ ︸
≤ 1

e2
(1−e2)jmax

+
∞∑

j=jmax+1

(QM−j − Q̂M−j)︸ ︷︷ ︸
≤ 1

e2
2

(1−e2)jmax

[98]

≤
±jmax∑
j=±1

Q̂Mj + 5
e2

2
(1− e2)jmax , [99]

±jmax∑
j=±1

Q̂Mjµj,A ≤
±∞∑

j=±1

QMjµj,A ≤
±jmax∑
j=±1

Q̂Mjµj,A +
±∞∑

j=±1

(QMj − Q̂Mj) [100]

≤
±jmax∑
j=±1

Q̂Mjµj,A + 5
e2

2
(1− e2)jmax . [101]
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