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Supporting Information Text
1. Calculation of joint distribution of goodnesses

This section proposes an analytical method to obtain the reputation structure under indirect reciprocity. We assume a situation
where rare mutants with norm M of ratio § invade other wild-types with norm W of ratio 1 —§. We denote the population ratio
of norm A € {W,M} as pa; pa =1— 6 when A =W, while pa = § when A = M. To characterize the reputation structure, we
define p;4 as a proportion of individuals of norm A who assign good reputations to individual i. We call p;a a goodness of
individual ¢ from norm A € {W, M}.

In the following, let us consider a stochastic transition of p;a in each round. In a single round, a recipient and a donor are
chosen and labeled as ir and ip, respectively. In this round, pij 4, i-e., the goodness of donor from norm Ao, changes into
the next goodness pQD 4o, for all Ao € {W,M}. Below, we formulate the stochastic change separately for cases that the donor
chooses to cooperate or defect.

C-map case: First, we consider a case that the donor cooperates with the recipient, occurring with a probability of

h(pipap) = Pigap (1 —e1) + (1 — pigap, er. (1]

Here, e1 is the probability of action error, with which the donor chooses an opposite action to the intended one. In this case,
NpAOp;DAO, i.e., the number of observers with norm Ao who give good reputations to the donor in the next round, follows a
probability distribution of

NpaoPipae ~ N1+ Na, 2]
Ny ~ B(NpAopiRA()»agg)v [3}
N NB(NpAo(l_piRAo)vaig)' [4}

Here, B(n,a) denotes a binomial distribution with success probability a and trial number n. In addition, af_f(})/ denotes the
probability that an observer with norm Ao who evaluates the recipient as X € {G,B} newly gives a good reputation to the
donor whose action is Y € {C,D}. ag’g agg, ag’g, and agg are obtained by converting corresponding G and B pivots into

1 — ez and ez in Table 1 of the main manuscript. Instead of Eq. (3), we use a shorthand notation;
NpAop;DAo ~ B(NpaopigAo azc‘\;g) + B(Npao (1 — pigao)s ai(oj )- [5]

Because Npa,, is sufficiently large, the mean and variance of pQD Ao are given by

E[p;DAo] = PirAo (agg - aﬁg) + a%g (:: fgo (piR,Ao))» [6}
—_———
::Afgo
Var[p/- ] _ piRAOa(A;S(l - a(jg) + (1 - leAO)aEg(l - a’%g) _ 62(1 - 62) (: p71 52) [7}
iDAO NpAO NpAO ‘PAg .

Here, ez is the probability of assessment error, with which an observer assigns an opposite reputation to the intended one. In
Eq. (6), fgo represents a map from the recipient’s goodness in the present round to the donor’s goodness in the next round.
Because this map is applied only when the donor cooperates, we call it “C-map”.

D-map case: On the other hand, we consider a case that the donor defects with the recipient, occurring with a probability
of

1 = h(pigap) = (1 — pigap ) (1 — e1) + pigaper. (8]
In this case, NpaoDiy a,, follows a probability distribution of
NpAop;DAO ~ B(NpAopiRAoa a(A;g) + B(NpAo (1 - piRAo)v aig ) [9}

From this equation, the mean and variance of pgD A are given by

GD BD BD D
E[pfiDAo] = piRAO (G’Ao - aAo) + aAo (:: on (piRAO))7 [10}
————r
::AfADO
Var[p/- ] = piR,Aoagg(l - aig) + (1 - pon)aﬁg(l - alf’;g) _ 62(1 — 62) (= p71 32) 1]
who Npao Npag " fdo= &

Because the map le‘?o is applied when the donor defects, we call it D-map in the same way as C-map.
The above C-map fgk and D-map f?k are illustrated in Fig. S1 for all S, € S.
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Fig. S1. Materials for the reputation structure for all the second-order norms W = S,. Green solid (resp. dashed) lines indicate C-map f\,cV (resp. D-map fvl?,) of the norm.
Gray lines indicate the identity map, which shows the fixed points of the C-map and D-map as the crossing points with these maps. The orange distribution shows the probability
density function of goodnesses pww when W = Sj.. All the panels are output under N = 2000, § = 0, and (e1, e2) = (0, 0.1). Numbers over each peak indicate j.
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2. Time evolution of reputation structure

Because the population of wild-types and mutants are sufficiently large, we can continualize the distribution of individual
goodness p;4 with separating into the cases that the norm of individual ¢ is W or M. In the following, pa 4’ denotes a
continualized goodness of an individual with norm A in the eyes of individuals with norm A’. Let us consider a time change of
the distribution of p44/. As shown above, however, we should keep in mind that paw and pam are simultaneously changed by
the C-map or D-map. Thus, we consider dynamics of ®4(paw,pam), a joint probability distribution of paw and pam. Note
that a norm of the chosen recipient is M only with a probability of §, which contributes the dynamics of ® 4 only in a scale of
O(9). By ignoring this scale of O(¢), the dynamics of ®4 is given by

d ot _ _
&q’A(pAWmAM) = —®a(paw,pam) +/ / {h(Pwa)g(paw; fiv (Dww), pw' 8°)g(Pams i (D), par 5°)
0 0

+ (1= h(pwa))g(paw; fw(Pww), pw' 8°)g(pant; St (D), o’ s°)}
X Ow (Pww, Pwnt) dPwwdpwa- [12]

Here, g(p; i1, 0%) denotes a Gaussian function with the mean p and variance o as

9P 1,0%) 1= ——— exp (_(19—/1)2)' [13]

202

Equation (12) explains an update of the donor’s goodness per time. The first (resp. second) term on the right side represents
decrements (increments) by updating goodnesses. In detail, ®w (pyww,Pwn) in the second term shows the density that the
recipient’s goodness is piyw (resp. piwa) in the eyes of wild-types (resp. mutants). h(piy 4) shows the probability that the
donor cooperates, and the donor’s goodnesses after the update in the eyes of observers with norm W and M are described by
g(paw; fiv(Pww), o s%) and g(pan; fxi (Piwa)s pag5°), Tespectively. A similar explanation holds when the donor chooses to
defect.

The equilibrium state of Eq. (12), i.e., ®}, satisfies

1 1
%y (paw pant) = / / (h e ) (paws £ Dhew ). pits?)g(panss £5 Dhont)s prits?)
0 0

+ (1 = h(piwa))g(Paws fiv (Pww)s pw 87)g(pant; At (D), oap 7))
X Qév(pélvw,pQNM)dp{Nde?iVM- [14}

To solve this equation, we assume that the equilibrium state can be described by a summation of two-dimensional Gaussian
functions without correlation as

O (paw, pAM) = Zqug(pAw; AW, Py T Aw; )G (DAM; HAMS s Par T A )- [15]
j

The assumption of Gaussian is justified by the above transition process of the donor’s goodness, where the goodness is virtually
determined only by the mean and variance in a sufficiently large population. No correlation is assumed because the variance is
given independently by observers with different norms.

We now derive equations in which the equilibrium state satisfies for each norm A € {W, M}. First, substituting Eq. (15)
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into Eq. (14) for A = W, we obtain

—1 2 -1 2
D awigpwws iwwi, pw' ofew; )9 (pwis rwts ot o)
J

1 1
= / / {h(Pww)g(pww; fv (Pww), P s°)g(pwats fst (Pwn)s og's°)
0 0

+ (1 = h(pwww))g(pww; fiv (Pww)s pw 879wt fat (D), par 8°) )

X > awig(Phews wws o' oew; )9 (Pt Bwads s ot o Jdpivwdpien,
J

1 1
= aw; / / {h(Pww)g(pww; v (Pww), pw' 57 g (pwnts 31 (Pone), g’ s°)
. 0 0

+ (1 — h(Pww))g(pww; fw (Pww)s ow 8°)g(pwats fol (Pwm)s oar 5°)}

/ -1 2 / -1 _2 / /
X g(Pww; HWW3, Py UWWj)Q(PWM? HWMj 5 Pm JWMj)dedeWMv

=S [ a5 )il Dl 5 shen) i)
P —o0 J —o0

D — D _
+ (1= h(pww;)g(pww; fw (Pww), pw s7)g(pwats far(pwa), par s7) }
/ -1 _2 / -1 _2 / /
X g(pww; HWW5, Py UWWj)Q(?WM? HWM;j 5 Pm JWMj)dedeWMa

= awilhluwws)g(pwws fi7 (mww;), i (8° + (A AR otvw;))g(wss i (mwag), i (5 + (A1) oaa;)}

+ (1= h(pww;)g(pwws fiv (pww;), pw (5° + (AFR) 0w, ) g (pwas; far(pwng ), oad (5° + (A ) o)} [16]
This equation gives a constraint for (qw;, bwwj, O‘\QNWJ-, WM G\Q;VM]-). Next, when A = M, in a similar manner, we obtain

-1 2 -1 2
Z QMjg(pNIWQMMWj:pW UMWj)Q(;DMM; UMM 5 Pn UMMj)
J

1 1
= / / {h(Pwa) g(oaws; fiv (Paiw), o s7)g(pvin; ft (Phina), o' 57
0 0

+ (1 — h(Pwn)) g (vw; v (Phaw)s pw 5 ) g(paan; (P )s gt 87) )

X Z qug(pi\/IW§ HMWj P\7v1 UI%/[Wj )Q(Pi\/IMQ MMM P1\_/[1 Ul%/[Mj )dpi\/[wdpin
J

1 1
= o / / {h(Pwa0) g (paaws S5 (Puw), pw' s7)g(pain; St (Pham ), pa' %)
j 0 0

+ (1 — h(Pwn)) g (vw; fiw (Phaw)s pw ) g(paan; far (Pan)s gt 87)

—1 2 -1 _2
X Z qug(pivnm UMW 5 Pw UMWj)g(pi\/[M; HMMjs Pm UMMj)dpiv[wdpiv[M
J

~ D aw; / / {A(wi)g(psws Fiw (Phaw), o' s”)g(prnts i (Punn)s pay' %)
j —o0 J —o0

+ (1 — h(pwny))g(ovws v (Puw)s oy s7)g(paanas far (Phan), pap 87) 3

X > aug(Phaws piws, P ovew; )9 (Phint; vty g’ i ) dphrw P
J

= g {hlpwny g (paaws; A (paws ), o (5° + (AFK) oiew;))g(pains; fai (nanas), pad' (57 + (AD o))}
i

+ (1= h(pw)g(paws; f (naw;), pw (57 + (Afw) orw;))g(paines fad (panng), oy (57 + (Afa)*onny))}. [17]
% This equation gives a constraint for (qu;, umw;, Orrw;» HMM;, Orin;)-
To solve Eq. (16), let us consider a set of solutions {(uwwy;, tww;)};. From the equilibrium condition of Eq. (16), the equal

set must be restored by applying C-map and D-map to all the elements of the set. In other words, the condition is given by

{(owwi, ) Y = LU (ewwii ), Aar () 1o U LAY (mwws ), fad (Bwi)) 3 [18]
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Similarly, to obtain the equilibrium condition for Eq. (17), we should consider a set of solutions {(pmwy;, nvnj)}; satisfying

{(ws, aani) i = LA (raaws ), A (i) 35 U L (R (aawss ), fa (aavi ) 3 [19]

Here, although the appearance of the variables is different, the problems are essentially between Eq. (18) and Eq. (19). Thus,
the problem to be solved is

(g a0 i = LUW (w3 (3.00) 15 U U (gow)s 32 (13.00)) Y5 [20]

Furthermore, because W, M € S, we can generalize the problem as

{55005 1550605 = L(FSor (13,501 )+ + Fue (15.526)) 15 UL (s (15,5015 FShe (13.516)) }- [21]

Now, for all S, € S and, let us consider a set {1 s, };jez\{0} satisfying

H41,8, = sgk (-1 sk) = fgk (N72,Sk) =y [22]
PG, = I8, (455.), [23]
1,5, = Fo,(t1,5,) =[5, (Bra,5,) =, [24]
i (it1y,s =[5, (H—i.5,)s [25]

(the proof for these equations will be given later). This set {1 s, };cz\{0} gives a solution to problem Eq. (21), and thus
solves Eq. (16) and Eq. (17). In Eq. (22)-Eq. (25), we consistently label each p; 5, such that sequentially applying C-map
(resp. D-map) j(> 0) times leads to label +j (resp. —j) (see the illustration in Fig. S1). In the following, we show that such
{1,5, }jez\{o} actually exists for all k.

1. When neither C-map nor D-map is constant: First, we consider a case of Afgk # 0 and Afgk # 0. Four norms of
k = 06,07,09, 10 correspond to this case. In this case, C-map and D-map have the same fixed point (at 1/2). Ounly the position
given by this fixed point is achieved at equilibrium. Indeed, if we substitute u; 5, = 1/2 for all j € Z\{0}, Eq. (22)-Eq. (25)
are simultaneously satisfied without any contradiction.

2. When both C-map and D-map are constant: Second, we consider a case of Afg)C =0 and Afspk = 0. Four norms
of k = 01,04, 13,16 correspond to this case. Because fgk is a constant map, Eq. (22) and Eq. (23) are satisfied by substituting
the mapped value of this map into p4j s, for all j =1,2,---. In the same way, because fSDk is a constant map, Eq. (24) and
Eq. (25) are satisfied by substituting the mapped value into p—j s, for all j =1,2,---. Thus, no contradiction occurs.

3. When only C-map is constant: Third, we consider a case of Af_%C =0 and Afgk_ # 0. Four norms k = 02,03, 14,15
correspond to this case. Because fgk is a constant map, Eq. (22) and Eq. (23) are satisfied by substituting the mapped value
of this map into p4j,s, for all j =1,2,---. Then, we define u_1,5, as the value to which D-map maps all the same value
H41,5, = H42,5, = -+, and Eq. (24) is satisfied. Finally, we sequentially define p_2 s, ,p—3,s,, -+ by applying D-map to
t—1,s, one by one. Thus, no contradiction occurs.

4. When only D-map is constant: Finally, we consider a case of Afsck # 0 and Af?k = 0. Four norms k = 05,08, 09, 12
correspond to this case. Because f?k is a constant map, Eq. (24), Eq. (25) are satisfied by substituting the mapped value
of this map into pu—j s, for all j =1,2,.--. Then, we define p41,5, as the value to which D-map maps all the same value
1,8, = 2.5, = ---, and Eq. (24) is satisfied. Finally, we sequentially define pi42 s, , ft+3,5,, - by applying C-map to
t+1,s, one by one. Thus, no contradiction occurs.

As summarized in Table S1, the set {1 s, };cz\{0} can be analytically described. Furthermore, we also define O'i s, as the
variance in Gaussian corresponding to the mean p; s, . Similarly to the mean values above, we solve the variances as
(U\2NWj7U\2NMj) = (Ul%/[ijo'l%/[Mj) = (U?,W»U?‘,M)- [26]
The recursion that the set {07 s, };cz\ (0} should satisfy is
olis, =5 + (Afsck)QUQ—LS,c =s + (Afgk)202—2,sk =, [27]
2 2 C\2 2
oL G+.8 =8 T (Afs.) 088 28]
O%I,Sk =5+ (AfSDk)2Ui1,sk =5+ (Aflsjk)202+2,sk =, [29]
2 2 D \2
o 1), =5 +(Af5,) 08, [30]

and the solution exists for all S (see Table. S1 for the solution of these equations). Table. S1 shows {(i;.s,.,07.s,)}jez\ {0}

6 of 15 Yuma Fujimoto, and Hisashi Ohtsuki
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o1 1 e 1 e LN@ w
s e 1+ (1 —2ep)itt ea(1—e2) 1— (1 —2e3)20+D)
02 2 2 N AN
s e 1—{—(1—2e)}itt ea(1—e2) 1— (1 —2e3)20+D)
03 2 2 N 4N
62(1—82) 62(1—62)
Soa 1—e2 e AT f20 - — =
N N
s 1+ (1 —2ep)it? e 1—(1—2e2)2U+D) ea(l—e2)
05 2 2 AN N
1 1 1 1
So7 2 2 i Y
s 1—(1—2ep)it? . 1—(1—2e2)2U+D) ea(1—e2)
08 - 2
2 AN N
s 1—{—(1—2e)}itt e 1—(1—2e2)2U+D) ea(1—e2)
09 2 2 AN N
s 14+ {—(1 —2e2)}it1 . 1—(1—2e2)2U+D) e2(1—e2)
2 2 2 AN N
62(1762) 62(1762)
Si3 e 1—eo == 2 f20 - —
N N
s . 1—(1—2ep)it? ea(1—e2) 1—(1—2e)20+D)
H 2 2 N AN
s . 1T+ {—(1—2e2)}it? ea(1—e2) 1—(1—2e)2G+D)
15 2 2 N 4N
62(1762) 62(1762)
S A Sl VA P Sl VA
16 €2 €2 N

N
Table S1. Analytical solution of Gaussian functions. We omit Sos, S10, and S1; because the results are identical to those of Sy7(SJ).

We also calculate a set of the masses of Gaussian functions, i.e., {qw;};ez\ {0} and {gm;} ez\{0}. By substituting the values
in Table S1 into Eq. (16), we obtain the following relational expressions

w1 = Y Ali—w)aw-, 31]
j=1

qw+j = by G- w)gwrg-1) (=2, ,00), [32]

w1 =Y (1= h(pss,w))aw+s, [33]
j=1

qw—; = (1 = h(p_G-1yw)aw-g-1) (G =2,--+,00). [34]

Similarly, by substituting the values in Table S1 into Eq. (17), we obtain

o= Y h(p-g)aw—j, [35]
j=1

s = h(pyG-yM)awsg-1y (G =2,---,00), [36]

g1 = (1= hlpsn))qws, 37]
j=1

g—j = (1= h(p—g-nm))aw-g-1) (=2, ,00). (38]

Eq. (31)-Eq. (38) includes the infinite summations. Because these infinite summations cannot be analytically calculated, one
should set a cutoff of the summations in the numerical calculation of Eq. (31)-Eq. (38).

Fig. 2-B in the main manuscript shows an example of ®3y (pww, pwwm). In this example, the elements in { (15w, f5,M)}jez\ {0}
are all different for different j, and thus the labeling in this study is at least necessary for the description of the reputation
structure. This figure also shows that the obtained analytical solutions well approximate simulations of the image matrix.

3. Calculation of expected payoff

In order to consider an evolutionary process, we derive expected payoffs of wild-types W and mutants M from joint probability
distribution of goodnesses, i.e., 3 and ®3;. In the limit that mutants are rare § — 0, the expected payoffs of the wild-types

Yuma Fujimoto, and Hisashi Ohtsuki 7 of 15
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uw and mutants un are given by

uw = (b — ¢)pww,

_ _ [39]
um = bpmw — cpwm,
Here, pa 4+ indicates the average goodnesses of pa 4/, i.e., described as
11
PWW = / / pww P (pww, pwm ) dpwwdpwa,
o Jo
1 1
pwM = / / pwm P (pww, pwnm ) dpwwdpwa, [40]
o Jo

1ol
PMW = / / pyw P (pvw, pvv ) dpvw dpam,
o Jo

This average goodness can be analytically calculated by Gaussian approximation of ®% (paw,pam). According to the conditions
for the ESS, mutants can invade the population of wild-types if uw > uwm.

Regions, where a mutant norm can invade a wild-type norm, are given by Fig. S2. From this figure, we can obtain the
invasibilities for each b/c, as shown in Fig. 3-A in the main manuscript.

mutant

: always | always | always | always | always

<1063 <1271 1 <11.58 1< 12.28 { <11.44

{< 1457 1< 1.261 | <1402 <1306 i< 1.424

1< 1250 < 1.250 i < 1.250 : < 1.250

wild-type

> 1.441 > 1.457 1> 1.920 | > 1.402

never : never : never ;| never

never never | never | > 2789 never

never : never ; never

i never

Fig. S2. Regions for possible invasions in the evolutionary processes. The row and column indicate the wild-type and mutant norms, respectively. The matrix shows the region
of b/c(> 1) where the mutant invades the wild-type. In some pairs of wild-type and mutant norms, the mutant always or never succeeds in invading the wild-types for all
b/c(> 1). The calculation is based on e; = 0 and ez = 0.1.

4. Calculation of equilibrium state in public reputation

In this section, we derive the equilibrium distribution of reputations under public assessment, based on the previous study (1).
The basic setting is the same whether the reputation is publicly shared or privately held. We assume a population of size N
which consists of mutants with norm M and wild-type individuals with norm W # M. A donor and a recipient are randomly
chosen every round. The donor chooses cooperation to the good recipient and defection to the bad recipient. Here, the donor
erroneously chooses the opposite action to the intended one with probability 0 < e; < 1/2. Then, all the individuals update
their reputations of the donor. The difference between the public and private reputation cases is seen in the observers’ ways
to update reputations. We assume that one mutant observer and one wild-type observer are chosen as representatives of
each norm, and each gives a good or bad reputation to the donor according to its norm. Here, each representative observer
commits an assignment error independently, in which case it erroneously assigns the opposite reputation to the intended one
with probability 0 < ez < 1/2. (such an assessment error was not assumed in (1)) Then, all the individuals with the same
norm copy the reputation of the donor assigned by their representative. Thus, the reputation of the same individual, even an
erroneously assigned one, is shared among all the individuals with the same norm. In other words, each individual at any given
time has two reputations, one is shared by all the mutant individuals, and the other is shared by all the wild-type individuals
in the population.

8 of 15 Yuma Fujimoto, and Hisashi Ohtsuki
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Here we specifically consider the situation where rare mutants with norm M = S16(ALLB) invades a wild-type population
with norm W # M. We use the same definition of p4 -, i.e., goodness of an individual with norm A in the eyes of norm A’
users. Because reputations are public, paa/ can be either 1 (the individual is assigned as good from all) or 0 (the individual is
assigned as bad from all). Below we will derive pa s, the probability that a norm A user has a good reputation in the eyes of
norm A’ users.

Since the mutant norm is ALLB, the probability that mutants assign a good reputation to the donor is always aS° = abC =
aﬁD = aﬁD = e2. Thus we obtain pwM = pum = €.

Next we aim to solve the equilibrium average goodnesses in the eyes of wild-types, pww and pmw. First, let us calculate
pww, which is relevant when the donor and the observer use norm W. Note that we can assume that the recipient uses norm
W, because mutants are rare. pww should satisfy

pww = pww{(l — e1)aw” + e1a$SP} + (1 — pww){erany + (1 —e1)anr }, [41]

The equality between the left- and right-hand sides shows that the proportion of good individuals balances before and after
updating the chosen donor’s reputation. In the right-hand side, pww and 1 — pww in the first and the second terms indicate
the probabilities that a randomly chosen recipient of norm W is good or bad from the viewpoint of norm W, respectively.
When the recipient is good, the donor chooses cooperation or defection with probabilities (1 — e1) and e;. Then, a\c,;vc and a\%D
indicate the probabilities that the cooperating or defecting donor receives a good reputation from observers of norm W. When
the recipient is bad, the donor chooses cooperation or defection with probabilities e; and (1 — e1). Then, a%vc and aBP indicate

the probabilities that the cooperating or defecting donor receives a good reputation from observers of norm W. The solution is

1- el)a\]?vD + ela\]?vc

Pww = 1—{(1—e1)(aGC — aBP) + e1(a§P — aBC)} )

Second, let us calculate pyw, which is relevant when the donor uses norm M and the observer uses norm W. Note that we
can once again assume that the recipient uses norm W because mutants are rare. pyw should satisfy

puw = pww {h(e2)aw” + (1 = h(e2))aw’} + (1 — pww){h(e2)awy + (1 — h(ez2))aw }. [43]

Here, pww and (1 — pww) in the first and second terms of the right-hand side indicate the probabilities that the recipient is
good or bad from the viewpoint of norm W, respectively. In both terms, h(e2)(= e2(1 —e1) + (1 — e2)e1) and 1 — h(ez) are the
probabilities that the donor with norm M executes cooperation or defection, which is independent of whether the recipient is
good or bad from the viewpoint of norm W. In the first term, a$C and aGP indicate the probabilities that the cooperating
and defecting donor receives a good reputation from the observers of norm W. In the second term, agvc and aBP indicate the
probabilities that the cooperating and defecting donor receives a good reputation from the observers of norm W.

We summarize the solutions, pww and pmw, in Table S2.
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119 Based on Table S2, we can see how the reputation structure differs between the public and private reputation cases. The
120 reputation structure for norms So3(SS) and So7(SJ) are illustrated in Fig. 3-D and E in the main manuscript, while that of
121 Sos(SH) is in Fig. S3.

SH —» SH SH —» ALLB
1-3e,/2

© 172 1/2
2 # 3e,/2
o

P 1 1 I I

g o 1 0 1

! i

T l-e—é —e

Y

=
[
®

~
2 ) - a-¢
o 2e; e
1 T 1 T 1 T
€& 1 3e,—66} & ! 3e,— 66}
2e, L 2e22 2e, L 2e§
goodness

Fig. S3. lllustration of how the wild-type SH gives reputations to the self and mutant ALLB norms. In each panel, the horizontal and vertical axes indicate the goodness and its
frequency, respectively. Positions and heights of bars are correct only up to order eg. By comparing the upper panels with the lower ones, we can see that the reputation from
SH differs significantly between the public and private reputation cases. In the private reputation case, SH still manages to distinguish the self norm with ALLB, but only with the
difference of the order of e2.

22 5. Numerical algorithm and error estimate

122 This section provides how to computationally calculate Eq. (31)-Eq. (34) and Eq. (35)-Eq. (38) with sufficient accuracy.
Instead of Eq. (31)-Eq. (34), we aim to compute

QW+1 = 17 [44]

Qw+j = h(pg-—1),w)Qw+i-1 (G =2,---,00), [45]

Qw-1:= Z(l = h(p5.w)) Qw5 [46]
j=1

Qw—j =1 =h(p_g-nyw)Q@w-g-1 (G=2,---,00), [47]

(see Fig. S4 for the illustration of this computation). Via these equations, we obtain gw; by rescaling Qw; as

Qw;
- Wi 48
2:211 Qwr -

which satisfies Eq. (31)-Eq. (34). We should also obtain average goodnesses

qwj

+
> Qwika

_ =
pwa = Foo > [49]

Z]‘:il Qw;

124 in order to obtain Fig. S2.
In a practical computer simulation, we approximate Eq. (44)-Eq. (47) by

Qw1 =1, [50]
Qw+j = h(peG—yw)Qwig-1 (=2, jmax), [51]
Qw+j =0 (] :]max+17 700)7 [‘52]

oo Jmax
Qw-1:=> (1= hlpssw)Qwrs = > (1= hlpsw))Qws, [53]

j=1 j=1
Qw—j = (1= h(u_-n,w)Q@w-G-1 (=2, jmax), [54]
Qw—;j =0 (j = fmax + 1,7+, 00), [55]
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with sufficient large jmax(= 10%) (see Fig. S4 for the illustration of this computation). We will show below that these
computationally obtained Qw; well approximate Qw;. Note that in the following calculations we use the fact that

€2 S i, A § 1-— €2 [56}
125 holds for all j = +1,---,+o00 and A.

case of W

p D D D _ D D

. R g IR I
Y =Rl "

~—— T —

+

. - — - C c
eeom T Lo clce il
| & . case of M < e_z(l — et

— 2 o

D : +1 <_<e_§(1_ez)m :

Fig. S4. An illustration of numerical algorithm and error estimation of the masses. The black and gray arrows show how theoretical calculations of Eq. (44)-Eq. (47) are
performed, whereas only black arrows are relevant in the computation of Eq. (50)-Eq. (55). Each box shows the size of Qv ;. The gray part in each box shows the size of
approximation error, Qw; — Qw ;. Apart from Qv ;, the area surrounded by dots show the calculation of Qnr4-1.

From the definition, we obtain

Qwii = Qw1 =0 (=1, jmax)- [57]
Then, we obtain
j—1
Qws = Qwat [ [ pawew < (1 —e2)’ 7, [58]
k=1
= Y (Qwes—Qwy) = Z Qwas < Y (—e) ' = 5(1—62)“’“- [59]
J=Jmax+1 J=Jmax+1 J=Jjmax+1
Then, we have
oo Jmax ) 1
Qw-1 =Y Qwr;(1 = pesw) = 3 Qw1 —pgw)+ > Qwy(1— pajw) < Qw1 + — o l—e ), [60]
i=1 i=1 j=jmax-+1
ZQAwfl
j—1 j—1 j—1 1
= Qw—; = Qw—1 [ [(1 = porew) = Qw1 [ (1 = psw) +(Qwot = Quo) [ (1 = ioiw) < Qw t,0-e )t
k=1 k=1 k=1
=Qw—j
[61]
jmax 1 .
= D (@Qw-j — Qw—y) < (1 —e2)™™, [62]
j=1 “
We also obtain
oo oo 1
Qw-1=Y_ Qwii(1 = ;W) € Qway < o [63]
j=1 j=1
i1 1
= Qs = Qi [J( = psw) < (1 -2y, [64]
k=1
oo R ¢S] oo 1 - 1 '
= Y @w-Qwy)= Y, Quwy< Y —(-e)= (e, [65]
J=Jmax-+1 J=Jmax+1 J=Jmax+1
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From the above error estimations, we can obtain upper and lower bounds of Eq. (48) and Eq. (49) as

Ao Vers + 1 1—e Jmax
R ——— o6
Ej::tl QWJ + %(1 — 62)]max Zj::tl QWJ
) N +imax A jmasx
Zi_hﬁx Qw;j,A > Qwimg,a + S(1— e
Timax = 3 ; Spwa = Timax A : [67]
Z]’:il Qw; + %(1 — eg)Imax Zj=i1 Qw;
Here, we used
Qw; < Qw; = Qw; + (Qw; — Qw;) [68]
A A A 1
< Qw; + mjax(ij - Qw;) < Qw; + — (1 — eg)m=x, [69]
=Qw-1-Qw-1< 5 (1—ep)Jmax
+imax +jmax
Qw; Z Qw;= Y Qw; + Z (Qw; — Qw;) [70]
j==%1 j==*1 j==*1 j==%1
+imax Jmax—+1 oo

Z Qw; + Z (Qw; — Qw—;) + Z (Qwi; — Qwi) + Z (Qw—j — Qw—;)

j==+1 J=Jmax+1 J=Jmax+1
%(1 ep)Imax Sé(l—ez)]‘max %(1 eg)imax
€2 €3
[71]
+jmax 3
< Z Qw; + (1 — ey )anax [72]
j==+1
+jmax +jmax
> Qwinga < Z Qwitia < > Qwitja+ Z (Qwi — Qw;) 73]
j==+1 j==+1 j==%1 j==*1
+jmax 3
< Z Qwjnj.a + %(1 — eg)’mex, (74]
j==+1
In the same way, let us consider Eq. (35)-Eq. (38) and compute
Quitt == Y hlp—jn)Qw—j, [75]
j=1
Qumtj = h(p-1ym)Qw+i-1) (1 =2,-++,00), [76]
Qu-1:= Y (1= A1) Qws, [77]
j=1
Qu-j =1 —h(p--1nHm)Qw--1) (=2,---,00). 78]
Via these equations, we obtain gw; by rescaling Qm; as
Gy = g M 79]
k=+1 QM’“
which satisfies Eq. (35)-Eq. (38). We also need to obtain average goodnesses
+oo
_ Z]‘:il QMij,A
PMA = ——Fo (80]
>t Quy
126 in order to obtain Fig. S2.
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In a practical computer simulation, we approximate Eq. (75)-Eq. (78) by

Jmax

h(p—sa)@w—j = Y hi—jm)Qw—,

j=1

QM1

<
Il
-

‘MS

Qu+i = by m)Qwi—1) (5 =2, , jmax),

QM+] =0 (]:]max+1y ,OO),
oo Jmax
QM—I = Z(l — h(ILL_)'_]',I\A))QW_A'_]' = Z(l — h(ﬂ+j,l¥1))QW+j7
j=1 Jj=1
Qni—j = (1= h(p—G-nm))Q@w--1 (G =2+, fmax),
QM—j =0 (]:]max+17"'7oo)a

127 with sufficient large jmax(= 104).

By exactly similar calculations, we obtain

Qusj —Quei =0 (=2, jmax),
oo R 1
E (@M — Qmyy) < —

ez

J=Jmax “+1

(1 _ 62)jxnax ,

jmax

1 )
Z(QM i—Qu-j) < —2(1 — eg)max,
] €3
j=1

> (@ —Que i) =

J=Jmax +1

(1 _ eQ)jmax .

mm‘ =

The difference from Qw; exists only in j = +1, as

Jmax Jmax

Quyr = ZQW jH—jM = ZQW K- J,M+Z (Qw—j — Qw—j)i—jm Z Qw—jh—jn

j=1 j=1 j=1 J=Jmax+1

=qM41 <L (1-eg)imax <%(1—e2)jmax
€2 €2
< A 2 dex
< Quiit+ (1—e2)

2

128 (see the area surrounded by dots in Fig. S4 for the illustration of this computation).

From the above error estimations, we can obtain upper and lower bounds of Eq. (79) and Eq. (80) as

Ory Quy + 5 (1 —ex)m
Fiman A 5 : <quvj < Fiman A s
22T Quij A+ (1 — eg)ime > Quy
S Quina _ S Quunga + Z(1—eg)me
Limax ) 5 . S Phma s Limax :
Zj:il Qwmj + g(l — eg)Jmax Zj=i1 Qi

[87]

[88]

[92]

[93]

[94]
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Here, we used
Qu; < Quj = Quij + (Quy — Quiy)
. R . 1 ’
< Qwmj + max(Qwm; — Qmy) < Quiy + =5 (1 — eg)mox,
J

€3
—
=QM4+1—Qum4+1< e%(lfez)jmax
2

Il:jmax Foo ijmax Jmax
E Qvj < E Qmj = E Qmj + (Qm+1 — Qumt1) + g (Qu—j — Qu—j)
j==1 j==1 j==1 j=1

5%(1_62)&%;«

§%<1—52)jnlax

o0 o0
+ Y @ —Que)+ Y (Quoy — Quiy)
J=Jjmax+1 J=Jmax+1
S$(1—52>J‘rnax §%<1752)j1nax
+jmax 5
< Z Qu; + 67(1 — eg)Imax,
j=+1 2
timax +oo +Jmax +oo
> Quinia <Y Quumia < Y Quuiia+ Y (Quy — Quy)
j==+1 j=%1 j=%1 j=%1
ijlnﬂx 5
<Y Quupgat (1 — ey
: €2
j==1
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