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Supporting Information Text

1. Theoretical analysis of a generic polymer model
In the following, we recapitulate and generalize the theoretical analysis that was discussed in
the main text. In section 1 A “Rouse mode decomposition leads to a non-diagonal system of
equations”, we first set up the description of a generalized linear polymer that is driven by athermal
excitations, and then perform a Rouse mode decomposition. Deriving a framework for the analysis
of a generic polymer model will pave the way for the discussion of polymers with specific mechanical
properties, see section 2 “Folding patterns predicted by different polymer models”. To that end,
we derive the steady-state polymer conformation in section 1 B “Derivation of the steady-state
polymer conformation”. Furthermore, in section 1 C “Coherent motion of the polymer backbone”,
we relate athermal excitations with a given correlation function to the pairwise correlation between
the velocities of different material points along the polymer backbone. In doing so, we draw a
possible connection between correlated motion and folding of polymers. Finally, in section 1 D
“Conformation of a polymer with a diagonal response matrix”, we discuss the conformation of
a polymer with translationally invariant mechanical properties. We generalize these results in
section 1 E “Perturbation approximation for non-diagonal response matrices” via a perturbation
analysis that takes into account weak mechanical inhomogeneities.

A. Rouse mode decomposition leads to a non-diagonal system of equations. In the present
section, we generalize the formalism presented in the main text to a broader class of continuum
polymer models. As discussed in the main text, we idealize the polymer as a space curve r(s, t), where
s ∈ [−L/2, L/2] is a continuous dimensionless material coordinate along the polymer backbone1. To
drive the polymer dynamics, we explicitly introduce an active random force field µ(s, t) with zero
mean and covariance

⟨µ(s, t) · µ(s′, t′)⟩ := Cµ(s, s′) δ(t − t′) , [S1]

on timescales longer than its decorrelation time. We assume that the solution in which the polymer
is embedded is perfectly viscous and has no memory. However, for now we invoke no additional
information about the specific mechanical properties of the polymer backbone.

The conservation of momentum implies a balance between all forces that apply at any material
point of the polymer,

∫
ds′ Q(s, s′) ◦ ∂tr(s′, t) =

∫
ds′ L(s, s′) ◦ r(s′, t) + µ(s, t) , [S2]

where L(s, s′) encodes the elastic properties of the polymer and Q(s, s′) describes viscous couplings.
One recovers the dynamics of a Rouse polymer, see section 2 A “Generalized active Rouse polymer”, for
homogeneous local friction where Q(s, s′) = ξ δ(s−s′), and homogeneous line tension where L(s, s′) =
κ δ(s − s′) ∂2

s′ . In general, however, L(s, s′) can also account for pairwise harmonic interactions
between different material points, bending rigidity, soft confinement, or material inhomogeneities.
Similarly, Q(s, s′) can describe inhomogeneities in drag friction, or even incorporate hydrodynamic
coupling between different material points via the Kirkwood-Riseman approximation (1, 2).

1The analysis of discrete chains is analogous but involves discrete spectral transforms, which make the calculations longer
and less transparent.
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We analyze Eq. (S2) with a Rouse mode decomposition (3),

r(s, t) → r̃q(t) :=
∫ L/2

−L/2
ds e−iqs r(s, t) , [S3a]

µ(s, t) → µ̃q(t) :=
∫ L/2

−L/2
ds e−iqs µ(s, t) , [S3b]

where L is the polymer length. For a compact notation, we concatenate all Rouse modes row-wise
into a matrix R(t) with rows Rq,...(t) := r̃q(t). Analogously, we define the random force mode matrix
M(t) with rows Mq,...(t) := µ̃q(t). Finally, we define the active force mode covariance matrix, the
friction kernel, and the elastic kernel, respectively2,3:

Cµ(s, s′) → Cµ
qk :=

∫∫
ds ds′ e−iqsCµ(s, s′)eiks′

, [S4a]

Q(s, s′) → Ξqk :=
∫∫

ds ds′ e−iqsQ(s, s′)eiks′
, [S4b]

L(s, s′) → Eqk :=
∫∫

ds ds′ e−iqsL(s, s′)eiks′
. [S4c]

Taken together, the dynamics of a polymer with length L are determined by

∂tR(t) = Ξ−1 · E · R(t) + L Ξ−1 · M(t) , where
〈
M (t) · M †(t′)

〉
= Cµ δ(t − t′) . [S5]

By identifying the response matrix as J := −Ξ−1 · E and the random velocity matrix as H(t) :=
L Ξ−1 · M(t), we bring Eq. (S5) into a simpler form that is analogous to the main text,

∂tR(t) = −J · R(t) + H(t) , [S6]

where the response matrix J must be positive definite for the system to remain stable. As discussed
in the main text and in section 2 A.3 “Activity modulations lead to bending”, the response matrix is
diagonal for a Rouse polymer, Jqk = ξ−1κ q2 δqk, and in general for any polymer with homogeneous
mechanical properties. In the limit of infinitely long polymers (L → ∞), one has Lδqk → 2π δ(q − k)
and the inner product becomes L−1 [J · R(t)]qk :=

∫ dp
2π

Jqp · Rpk(t). The covariance of the random
velocity matrix, 〈

H(t) · H†(t′)
〉

:= C δ(t − t′) , with C := L2 Ξ−1 · Cµ · Ξ−1,† , [S7]

illustrates, as discussed in section 1 C “Coherent motion of the polymer backbone”, how correlated
motion can arise from correlated active forces or viscous couplings.

A.1. Response matrix of a discrete Rouse polymer depends on chain topology. For completeness, we
now discuss the mechanical properties of a discrete chain with constant spring stiffness (tension)
and friction coefficient. In contrast to an infinitely long continuous polymer where the Rouse mode
decomposition amounts to a continuous Fourier transform, for a discrete chain we need to take into
account the topology of the polymer and the corresponding boundary conditions. Specifically, a
closed ring-shaped Rouse polymer of length N is decomposed by a discrete Fourier transform with

2These matrices become finer grained as smaller nontrivial wave modes enter with increasing polymer length L, and turn
into continuous fields for L → ∞.

3While these matrices are infinitely large for continuous polymers, they have a finite size for discrete polymers. The matrix
size then encodes the small wavelength cutoff (largest admissible wave mode).
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discrete wave coefficients n ∈ [0, N − 1], while an open Rouse polymer requires a discrete cosine
transform. Moreover, these two polymer topologies lead to different response matrices,

Jnm = κ

ξ
δnm ×


[
2 sin

(
πn
N

)]2
, for a closed ring, or[

2 sin
(

πn
2N

)]2
, for an open polymer.

[S8]

Overall, especially in the context of model extensions, it is much simpler to study an infinitely long
continuous polymer than to study a discrete chain.

B. Derivation of the steady-state polymer conformation. To analyze the conformation of the
polymer, we turn to the moments of the Rouse matrix. The first moment of the Rouse matrix
vanishes for zero-mean excitations, ⟨R(t)⟩ = 0, cf. Eq. (S6). For Gaussian excitations, the polymer
conformation is therefore entirely captured by the second moment of the Rouse matrix, ⟨R(t) ·R†(t′)⟩.
To find a constitutive equation for the second moment of the Rouse matrix, we multiply Eq. (S6)
with R†(t′) from the right and average over different trajectories:

∂t

〈
R(t) · R†(t′)

〉
= −J ·

〈
R(t) · R†(t′)

〉
+
〈
H(t) · R†(t′)

〉
. [S9]

To proceed, we need to determine the driving term ⟨H(t) · R†(t′)⟩ of this non-homogeneous matrix
differential equation (S9). To that end, we formally integrate the conjugate transpose of Eq. (S6)
forward in time,

R†(t′) =
∫ t′

−∞
dt′′

[
−R†(t′′) · J † + H†(t′′)

]
. [S10]

After multiplying Eq. (S10) with the Rouse matrix H(t) from the left, averaging over different
trajectories, and substituting the covariance of the random velocity matrix, Eq. (S7), one then has:

〈
H(t) · R†(t′)

〉
= −

∫ t′

−∞
dt′′

〈
H(t) · R†(t′′)

〉
· J † + C Θ(t′ − t) , [S11]

where we have defined the Heaviside step function Θ(x) := 1 ∀ x > 0, else zero. The matrix integral
equation (S11) is solved by 〈

H(t) · R†(t′)
〉

= Θ(t′ − t) C · e−J† (t′−t) , [S12]

which we substitute into the constitutive equation (S9) for the second moment of the Rouse matrix.
Note that Eq. (S12) vanishes for all times after a given reference time, t ≥ t′, which means that
excitations are independent of the past polymer conformation (causality). Therefore, it follows from
Eq. (S9) that the second Rouse moment is given by〈

R(t) · R†(t′)
〉

= e−J (t−t′) · X(t′) , for t ≥ t′ , [S13]

where X(t) is a Hermitian matrix. We also find an expression for the second Rouse moment for all
times that precede a given reference time, t ≤ t′, by taking the conjugate transpose of Eq. (S13)
and exchanging the time labels t ↔ t′:〈

R(t) · R†(t′)
〉

= X(t) · e−J† (t′−t) , for t ≤ t′ . [S14]
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To now determine the Hermitian matrix X(t), we insert the second moment of the Rouse matrix,
Eq. (S14), back into the constitutive equation (S9) for the second moment of the Rouse matrix, while
studying past times t ≤ t′. In doing so, we obtain the Lyapunov equation as consistency relation,

∂tX(t) + X(t) · J † + J · X(t) = C , [S15]

which is well known from control theory (4) and has the following steady-state solution, i.e. ∂tX(t) =
0, in the long time limit (5):

lim
t→∞

X(t) =
∫ ∞

0
dτ e−Jτ · C · e−J†τ . [S16]

Henceforth, we indicate the steady-state polymer conformation with the abbreviation X ≡
limt→∞ X(t). Finally transforming back into real space allows us to determine the mean squared sep-
aration and the contour alignment between pairs of material points. Our closed analytical expressions
illustrate how athermal excitations that break translational invariance induce an effective coupling
between different mechanical modes, which can give rise to patterns in the polymer conformation.

C. Coherent motion of the polymer backbone. In this section, we seek the velocity correlation
function Cv(s, s′) = ⟨v(s, t) · v(s′, t)⟩, where v(s, t) := ∂tr(s, t) is the realized velocity of a given
material point. To compute this velocity, we consider the finite difference approximation with a
finite measurement time window ∆t. In Fourier space, the velocity correlation is then given by

Cv :=
〈

R(t + ∆t) − R(t)
∆t

· R†(t + ∆t) − R†(t)
∆t

〉
. [S17]

By substituting the second moment of the Rouse matrix, Eq. (S13) and Eq. (S14), we obtain:

Cv = 1
∆t2

[
2X − e−J∆t · X − X · e−J†∆t

]
≈ 1

∆t

[
J · X + X · J †

]
. [S18]

At long times where the polymer conformation has reached a steady state, ∂tX(t) = 0, a comparison
with the Lyapunov equation (S15) yields:

Cv = C

∆t
, which in sequence space implies Cv(s, s′) = C(s, s′)

∆t
. [S19]

Thus, spatial correlations between the athermal excitations at different material points will lead to
correlated motion of the polymer backbone.

D. Conformation of a polymer with a diagonal response matrix. Polymers with homogeneous
material properties, such as line tension and friction, have a diagonal response matrix Jqk ≡ Jqq δqk.
For such a diagonal response matrix, the correlation between Rouse modes is given by [cf. Eq. (S16)]:

Xqk = Cqk

Jqq + Jkk

. [S20]

In general, however, the response matrix will be non-diagonal and we need to use a perturbation
approach to approximate the matrix exponentials in Eq. (S16).
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E. Perturbation approximation for non-diagonal response matrices. To evaluate Eq. (S16) for
non-diagonal response matrices, we make use of several approximations. First and foremost, we
require that the material properties of the polymer are dominated by topological connectivity
between adjacent material points and by homogeneous mechanical features of the polymer backbone.
These translationally invariant properties are encoded in the diagonal entries of the response matrix,

J̄qk :=

Jqk, q = k ,

0, q ̸= k ,
[S21]

which we refer to as dominant homogeneous contribution. In addition, we permit weak mechanical
inhomogeneities that lead to off-diagonal entries in the response matrix:

δJqk :=

0, q = k ,

Jqk, q ̸= k .
[S22]

By establishing this hierarchy of dominant diagonal entries and weak off-diagonal entries4 , δJqk ≪ J̄qk,
the response matrix

J = J̄ ·
[
I + J̄

−1 · δJ
]

, reveals
[
J̄

−1 · δJ
]

qk
≪ 1 , [S23]

as expansion parameter that we can use for approximations ; I is the identity matrix. To approximate
the matrix exponentials in Eq. (S16), we use a perturbation formula (6),

e−Jt ≈ e−J̄t ·
[
I − Λ(t)

]
, [S24]

where the first-order correction is given by

Λqk(t) = δJqk
e(Jqq−Jkk)t − 1

Jqq − Jkk

. [S25]

For simplicity, in the present work we do not consider higher order corrections. Next, we decompose
the matrix of correlations between different excitation modes into (i) statistically independent
excitations with homogeneous magnitude C0, and (ii) statistically correlated excitations:

C = C0
[
I + δĈ

]
, [S26]

where δĈ is a dimensionless matrix. Substituting Eq. (S26) and Eq. (S24) into Eq. (S16), gives to
lowest order:

X ≈ C0

∫ ∞

0
dt e−J̄t ·

[
I + δĈ − Λ(t) − Λ†(t)

]
· e−J̄t , [S27]

where the first two terms in the squared brackets reproduce Eq. (S20) in the limit Λ → 0. Finally,
substituting Eq. (S25) into Eq. (S27), and carrying out the integration, results in

Xqk = Cqk

Jqq + Jkk

− 1
2

C0

Jqq + Jkk

[
δJqk

Jkk

+
δJ∗

kq

Jqq

]
. [S28]

We use this linear expansion in section 2 A.1 “Friction modulations do not affect conformation”
to show that modulations in the friction coefficient of different material points do not affect the
polymer conformation. Furthermore, in section 2 A.2 “Tension modulations do not induce folding”,
we also show that modulations in line tension do not lead to polymer folding.

4Note that, in the Methods section of the main text and in section 2 B “Passive Rouse polymer with weak long-ranged
harmonic interactions”, we make identical arguments to derive a a matrix of weak long-ranged harmonic interactions that
can fold a passive polymer into specific conformations.
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F. Mean squared distance traveled by a specific polymer locus. An important dynamic observable,
in addition to the pairwise velocity correlation function that we have studied in section 1 C “Coherent
motion of the polymer backbone”, is the mean squared distance〈

[r(s, t) − r(s, t′)]2
〉

= ⟨r(s, t) · r(s, t)⟩ + ⟨r(s, t′) · r(s, t′)⟩ − 2 ⟨r(s, t) · r(s, t′)⟩ , [S29]

which a given polymer locus travels within some time window t − t′. We transform the correlation
between Rouse modes at different times, Eq. (S13), back into real space and use the same perturbation
approximation as outlined above, to find

〈
[r(s, t + ∆t) − r(s, t)]2

〉
= 2

∑
qk

ei(q−k)s
[(

1 − e−Jqq∆t
)

Xqk +
∑

n

e−Jqq∆tΛqn(∆t)Xnk

]
. [S30]

Next, we substitute the definition Eq. (S25) of the linear correction term Λqn(∆t) ∝ δJqn. Moreover,
we also substitute the steady-state correlation between Rouse modes, Eq. (S28), only keep terms up
to linear order in δĈqk or δJqk, and assume a Hermitian response matrix:

〈
[r(s, t + ∆t) − r(s, t)]2

〉
=
∑
qk

ei(q−k)s

(1 − e−Jqq∆t
) C0 δqk

Jqq

+
(
1 − e−Jqq∆t

) 2C0 δĈqk

Jqq + Jkk

− C0 δJqk

JqqJkk

[
1 − Jqqe

−Jkk∆t − Jkke−Jqq∆t

Jqq − Jkk

]+ O(δJ2) + O(δJ δĈ) . [S31]

In the following sections, we use this result to quantify the mean squared distance that a specific
polymer locus in an active or a passive polymer travels within some time window.
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2. Folding patterns predicted by different polymer models
In the following, we discuss the two specific polymer models that we introduced in the main
text. First, in section 2 A “Generalized active Rouse polymer”, we recapitulate the Rouse model
that we used in the main text and generalize it by permitting modulations in line tension and in
friction coefficient. Then, in section 2 B “Passive Rouse polymer with weak long-ranged harmonic
interactions”, we discuss a Rouse model where polymer folding is induced by weak long-ranged
harmonic interactions.

A. Generalized active Rouse polymer. Adjacent material points of the polymer interact through
Hookean springs, which can in principle vary in stiffness κ(s). These harmonic interactions give rise
to line tension and a Laplace pressure proportional to the local curvature. When the polymer moves
through the surrounding fluid, each curve segment experiences a drag friction ξ(s) that can also vary
along the polymer backbone. We neglect hydrodynamic coupling between different material points,
which can be introduced in future studies through the Kirkwood-Riseman approximation (1, 2).
Taking these deterministic mechanisms together, the Langevin dynamics of the polymer are given by

∂tr(s, t) =
[
ξ(s)

]−1
∂s

[
κ(s) ∂sr(s, t)

]
+ η(s, t) , [S32]

where η(s, t) is a Gaussian random displacement velocity field with zero mean. Analogously to the
main text, the athermal excitations η(s, t) are characterized by the following correlation function:

⟨η(s, t) · η(s′, t′)⟩ := C(s, s′) δ(t − t′) . [S33]
Within the formalism introduced in section 1 A “Rouse mode decomposition leads to a non-diagonal
system of equations”, the friction operator is given by Q(s, s′) = ξ(s) δ(s − s′) and the elastic
operator is given by L(s, s′) = δ(s − s′) ∂s′ [κ(s′)∂s′ ]. In the following, we analyze several limiting
cases of this model.

A.1. Friction modulations do not affect conformation. We first keep the spring stiffness (tension)
fixed, κ(s) = κ̄, and consider the effect of small friction modulations ξ(s) = ξ̄ [1 + ϵ(s)] around an
average value of ξ̄, with ϵ(s) ≪ 1. The spectrum of these friction modulations is determined by
the Fourier transform ϵ(s) → ϵq, as defined by Eq. (S3). Then, the response matrix is given by
Jqk ≈ ξ̄−1 κ̄ [q2 δqk − L−1 k2 ϵq−k] with ϵ0 = 0. Furthermore, for homogeneous activity A0 one has
C(s, s′) = [ξ(s)]−1 A0 δ(s − s′), which in Fourier space corresponds to Cqk ≈ ξ̄−1 A0 [Lδqk − ϵq−k].
Taken together, we finally evaluate Eq. (S28) to determine the steady-state polymer conformation:

Xqk = b2 Lδqk

q2 , [S34]

where we have defined the characteristic length b :=
√

A0/(2κ̄) in analogy to the main text. Taking
the limit of an infinitely long polymer, L → ∞ so that Lδqk → 2π δ(q−k), and transforming Eq. (S34)
back into real space, we find that the steady state conformation of the polymer is characterized by

⟨r(s, t) · r(s′, t)⟩ = −1
2 b2 ∥s − s′∥ , [S35]

which is identical to a Rouse polymer with homogeneous friction coefficient. This result shows that,
to linear order, friction modulations do not change the conformation of a Rouse polymer [Fig. S1A,E].
Note that the above expression, and similar expressions in the following, should be read as a decay
in correlation with increase in sequential distance. Because our model is translationally invariant
and has no potential that traps the polymer at a certain location in space, the positional correlation
is not well-defined for s = s′.

Andriy Goychuk, Deepti Kannan, Arup K. Chakraborty, Mehran Kardar 9 of 31



−25% +25%
relative sq. separation

0
5

10
15

20
sq

.s
ep

ar
at

io
n

[(𝜆
𝑏)

2 ]−2𝜋 0 2𝜋
2𝜋

−
2𝜋

0

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

−0.2 0 0.2
contour alignment [𝜆−1]

−2𝜋 0 2𝜋

2𝜋
−

2𝜋
0

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

A

−25% +25%
relative sq. separation

0
5

10
15

20
sq

.s
ep

ar
at

io
n

[(𝜆
𝑏)

2 ]−2𝜋 0 2𝜋

2𝜋
0

−
2𝜋

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

E

−0.2 0 0.2
contour alignment [𝜆−1]

−2𝜋 0 2𝜋
2𝜋

0
−

2𝜋

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

B

−25% +25%
relative sq. separation

0
5

10
15

20
sq

.s
ep

ar
at

io
n

[(𝜆
𝑏)

2 ]−2𝜋 0 2𝜋

2𝜋
−

2𝜋
0

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

F

−0.2 0 0.2
contour alignment [𝜆−1]

−2𝜋 0 2𝜋

2𝜋
0

−
2𝜋

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

C

−25% +25%
relative sq. separation

0
5

10
15

20
sq

.s
ep

ar
at

io
n

[(𝜆
𝑏)

2 ]−2𝜋 0 2𝜋

2𝜋
−

2𝜋
0

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

G

−0.2 0 0.2
contour alignment [𝜆−1]

−2𝜋 0 2𝜋

2𝜋
0

−
2𝜋

0.5
1.5 activity
tension

friction

𝑠′

𝑠
[𝜆 ]

D

H

friction modulations tension modulations activity modulations activity modulations (inextensible)

Fig. S1. Effect of different types of inhomogeneities (diagonal panels) on the conformation of a Rouse polymer.
A-D) Above the diagonals: Absolute mean squared separation between different material points. Below the diagonals:
Relative mean squared separation when compared to a homogeneous Rouse polymer. E-H) The alignment between
the contour vectors at different material points is an indicator of polymer shape. A,E) A Rouse polymer that is subject to
friction modulations has the same conformation as a homogeneous Rouse polymer. B,F) A Rouse polymer that is subject
to tension modulations shows variations in the mean squared separation between different material points, but has the
same shape as a homogeneous Rouse polymer. C,G) A Rouse polymer that is subject to activity modulations changes its
conformation and shape. Panels are identical to Fig. 2B,C in the main text. D,H) A Rouse polymer that is subject to activity
modulations and tension modulations to enforce inextensibility (on average), has the same shape as the corresponding
extensible Rouse polymer (compare with panel G). The relative squared separation shows that the boundaries of active
segments come closer together, while the boundaries of inactive segments move farther apart, as one would expect from
induced bending. Furthermore, the relative squared separation also shows that, as one would expect from an inextensible
polymer, local (s ∼ s′) stretching and contraction are suppressed.

A.2. Tension modulations do not induce folding. Next, we keep the friction coefficient of each material
point fixed, ξ(s) = ξ̄, and consider the effect of small spring stiffness (tension) modulations
κ(s) = κ̄ [1 + ϵ(s)] around an average value of κ̄, with ϵ(s) ≪ 1. The spectrum of these tension
modulations is determined by the Fourier transform ϵ(s) → ϵq, as defined by Eq. (S3). Then,
the response matrix is given by Jqk = ξ̄−1 κ̄ [q2 δqk + L−1 qk ϵq−k] with ϵ0 = 0. Furthermore, for
homogeneous activity one has C(s, s′) = ξ̄−1 A0 δ(s − s′), which in Fourier space corresponds to
Cqk = ξ̄−1 A0 Lδqk. Taken together, we finally evaluate Eq. (S28) to determine the steady-state
polymer conformation:

Xqk = b2
[

Lδqk

q2 − ϵq−k

qk

]
, [S36]

where the characteristic length is given by b :=
√

A0/(2κ̄), as before. In the limit of an infinitely
long polymer, L → ∞ so that Lδqk → 2π δ(q − k), the alignment between contour vectors τ (s, t) :=
b−1 ∂sr(s, t) at different material points is given by

⟨τ (s, t) · τ (s′, t)⟩ =
[
1 − ϵ(s)

]
δ(s − s′) . [S37]
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Note that Eq. (S37) reduces to ⟨τ (s, t) · τ (s′, t)⟩ = δ(s − s′) if one defines a position-dependent
characteristic length b(s) :=

√
A0/[2κ(s)]. This result shows that tension modulations alone do not

introduce long-ranged correlations and thus cannot fold the polymer [Fig. S1F]. Instead, tension
modulations only lead to local stretching and contraction of the polymer backbone.

Transforming Eq. (S36) back into real space quantifies the effect of local stretching and contraction
on the correlation between the positions of different material points:

⟨r(s, t) · r(s′, t)⟩ = −1
2 b2

[
∥s − s′∥ +

∫
dx ϵ(x) Gκ(s − x, s′ − x)

]
, [S38]

with the following Green’s function kernel:

Gκ(s1, s2) = 1
2 sgn(s1) sgn(s2) . [S39]

Here, sgn(x) refers to the sign function. The local stretching and contraction of the polymer
backbone, cf. Eq. (S37), results in modulations on the mean squared separation between different
material points [Fig. S1B].

A.3. Activity modulations lead to bending. So far, we have seen that neither tension modulations
nor friction modulations can fold a Rouse polymer. Now, we keep the friction coefficient of each
material point fixed, ξ(s) = ξ̄, and also consider homogeneous line tension, κ(s) = κ̄. Then, the
response matrix is given by Jqk = ξ̄−1 κ̄ q2 δqk, and is thus diagonal. Instead of introducing mechanical
inhomogeneities, we turn towards modulations in the magnitude of statistically independent athermal
excitations, C(s, s′) = ξ̄−1 A0 [1 + ϵ(s)] δ(s − s′), in the following referred to as “activity modulations”.
The spectrum of these activity modulations is determined by the Fourier transform ϵ(s) → ϵq as
defined by Eq. (S3), so that one has Cqk = ξ̄−1 A0 [Lδqk + ϵq−k] where ϵ0 = 0. Taken together, we
finally evaluate Eq. (S20) to determine the steady-state polymer conformation:

Xqk = b2
[

Lδqk

q2 + 2 ϵq−k

q2 + k2

]
, [S40]

where the characteristic length is given by b :=
√

A0/(2κ̄), as before.
Taking the limit of an infinitely long polymer, L → ∞ so that Lδqk → 2π δ(q−k), and transforming

Eq. (S40) back into real space quantifies the effect of activity modulations on the conformation of a
Rouse polymer:

⟨r(s, t) · r(s′, t)⟩ = −1
2 b2

[
∥s − s′∥ +

∫
dx ϵ(x) GA(s − x, s′ − x) ,

]
[S41]

with the following Green’s function kernel:

GA(s1, s2) = 1
π

[
2γe + log

(
s2

1 + s2
2

)]
. [S42]

Here, γe refers to the Euler–Mascheroni constant. We use these results to plot the mean squared
separation between different material points for a Rouse polymer driven by activity modulations
with a sinusoidal profile [Fig. S1C] and with a step profile [Fig. S2A].

One can now use ∂s∂s′GA(s, s′) to calculate the alignment between contour vectors τ (s, t) :=
b−1 ∂sr(s, t) at different material points. However, in the present context we can learn more from
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Fig. S2. Sharp modulations in activity lead to box-like features in the mean squared separation map. A) Above the
diagonal: Absolute mean squared separation between different material points of an extensible Rouse polymer driven by
statistically independent excitations with inhomogeneous magnitude. Note that the mean squared separation can change
non-monotonically with distance in sequence space, s − s′. Below the diagonal: Relative mean squared separation when
compared to a homogeneous Rouse polymer. B) Above the diagonal: Absolute mean squared separation between different
material points of an inextensible Rouse polymer driven by statistically independent excitations with inhomogeneous
magnitude. Below the diagonal: Relative mean squared separation when compared to a homogeneous polymer. The
relative mean squared separation shows features of bending (boundaries of more active polymer segments come closer
together) and straightening (boundaries of less active polymer segments move farther apart). C) The extensible and the
inextensible Rouse polymer have the same steady-state shape, as characterized by the alignment between the contour
vectors at different material points. Polymer segments with an increased activity exhibit bending (anti-alignment of the
contour vectors) while polymer segments with a decreased activity show straightening (alignment of the contour vectors).

a semi-spectral representation that we obtain by transforming qkXqk back into real space [cf.
Eq. (S40)]:

⟨τ (s, t) · τ (s′, t)⟩ = [1 + ϵ(s)] δ(s − s′) −
∫ dq

2π

[
ϵq

∥q∥
2 e− ∥q∥

2 ∥s−s′∥
]

eiq s+s′
2 . [S43]

The first term in Eq. (S43) shows that modulations in activity change the local contour length of the
polymer backbone, thereby leading to stretching and contraction. A similar effect also arises from
modulations in tension, cf. Eq. (S37), and is therefore not a characteristic feature of polymer bending.
Instead, one can understand the local activity-induced stretching and contraction by considering
independent Rouse polymer segments that are sufficiently short, so that the activity profile within
each segment is almost homogeneous. In contrast to a Rouse polymer with homogeneous activity,
however, we find that different polymer segments are not independent, as the second term in Eq. (S43)
shows. Specifically, modulations in activity induce an effective coupling between distinct segments
of the Rouse polymer, thus changing its conformation through bending [Figs. S1G and S2C].

A.4. Enforcing inextensibility in active polymers. In the previous sections, we have seen that modula-
tions in activity and in spring stiffness (line tension) along the backbone of a Rouse polymer both
induce local changes in the contour length of each polymer segment. To disentangle changes in shape
from changes in contour length, we will now enforce inextensibility of the polymer backbone. To that
end, we use the line tension as a Lagrange multiplier field κ(s) that enforces a local conservation
law for the length of each segment (7).

In an active Rouse polymer that is subject to statistically independent athermal excitations with
modulations in magnitude, C(s, s′) = ξ̄−1 A0 [1 + ϵ(s)] δ(s − s′), the polymer backbone undergoes
stretching and contraction as quantified by the first term in Eq. (S43). For these strain modulations
to be balanced out by local line tension, cf. Eq. (S37), this line tension must be proportional
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to the local level of activity, κ(s) = κ̄ [1 + ϵ(s)]. Then, the alignment between contour vectors
τ (s, t) := b−1 ∂sr(s, t) at different material points is given by

⟨τ (s, t) · τ (s′, t)⟩ = δ(s − s′) −
∫ dq

2π

[
ϵq

∥q∥
2 e− ∥q∥

2 ∥s−s′∥
]

eiq s+s′
2 , [S44]

where the first term on the right-hand side indicates the local conservation of length. Taken together,
we finally evaluate Eq. (S28) to determine the steady-state conformation of the polymer:

Xqk = b2
[

Lδqk

q2 + ϵq−k

(
2

q2 + k2 − 1
qk

)]
, [S45]

where the characteristic length is given by b :=
√

A0/(2κ̄), as before. Using Eq. (S45) and taking
the limit of an infinitely long polymer, L → ∞ so that Lδqk → 2π δ(q − k), we thus determine the
steady-state conformation of an inextensible active Rouse polymer. As expected, local stretching and
contraction of the polymer backbone are suppressed by enforcing inextensibility [Figs. S1D and S2B].
However, we find that an inextensible Rouse polymer still bends in response to activity modulations
[Figs. S1D,H and S2B,C], as indicated by the second term of Eq. (S44).

A.5. Correlated excitations induce folding. Now that we have seen how activity modulations lead to
the bending of a Rouse polymer, we study a generalized scenario where the athermal excitations
are correlated along the polymer backbone. Thus, we consider a non-diagonal correlation function
C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)]. The spectrum of these correlated excitations is determined by
the Fourier transform Ĉ(s, s′) → Ĉqk as defined by Eq. (S4), so that one has Cqk = ξ̄−1 A0 [Lδqk +Ĉqk].
As before in section 2 A.3 “Activity modulations lead to bending”, we keep the friction coefficient of
each material point fixed, ξ(s) = ξ̄, and consider homogeneous line tension, κ(s) = κ̄. The response
matrix of the polymer is therefore diagonal, Jqk = ξ̄−1 κ̄ q2 δqk, so that Eq. (S28) and Eq. (S20) yield
the same result. Taken together, we finally evaluate Eq. (S20) to determine the steady-state polymer
conformation:

Xqk = b2
[

Lδqk

q2 + 2 Ĉqk

q2 + k2

]
, [S46]

where the characteristic length is given by b :=
√

A0/(2κ̄), as before.
Taking the limit of an infinitely long polymer, L → ∞ so that Lδqk → 2π δ(q−k), and transforming

Eq. (S46) back into real space quantifies the effect of correlated excitations (through active processes)
on the conformation of a Rouse polymer:

⟨r(s, t) · r(s′, t)⟩ = −1
2 b2

[
∥s − s′∥ +

∫∫
dx dx′ Ĉ(x, x′) GA(s − x, s′ − x′)

]
, [S47]

where the Green’s function kernel is given by Eq. (S42):

GA(s1, s2) = 1
π

[
2γe + log

(
s2

1 + s2
2

)]
. [S42]

As we have discussed in the main text and will further explain in section 2 B “Passive Rouse polymer
with weak long-ranged harmonic interactions”, such correlated active processes can fold the Rouse
polymer into any desired conformation.
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A.6. Characteristic features of polymer folding driven by correlated excitations. In this section, we use
our analytical theory to further investigate the shape changes introduced by correlated activity.
For a scenario that is analogous to the main text, we consider a block-shaped correlation function.
Such a block-shaped correlation function can be decomposed into individual square boxes5 with
widths λi and center coordinates (si, s′

i). The vertical edges of each box correspond to the boundary
coordinates si± := si ± λi/2 of a polymer segment [si−, si+] whereas the horizontal edges indicate a
(possibly different) polymer segment [s′

i−, s′
i+]. The athermal excitations in both polymer segments

have pairwise correlation coefficient ρi, which either indicates average motion in the same direction
(ρi > 0) or in opposite directions (ρi < 0). To ensure that the correlation function is positive definite,
boxes on the diagonal (si = s′

i) have a positive correlation coefficient, whereas each off-diagonal box
(si ̸= s′

i) has a symmetric counterpart and introduces two additional boxes on the diagonal.
We measure the shape that the polymer adopts in response to these excitations by the mean

scalar product between contour vectors τ (s, t) := b−1 ∂sr(s, t) at different material points6 [Fig. S3A].
When comparing opposing polymer segment borders, (si±, s′

i∓), our theory predicts that correlated
excitations (ρi > 0) will lead to anti-alignment of the respective contour vectors. In contrast, these
contour vectors will align for anticorrelated excitations (ρi < 0), which is only possible in off-diagonal
boxes that relate different polymer segments (si ̸= s′

i). When comparing matching polymer segment
borders, (si±, s′

i±), our theory predicts that correlated excitations (ρi > 0) will lead to alignment
(and stretching when we consider a box on the diagonal) of the respective contour vectors. In
contrast, these contour vectors will anti-align for anticorrelated excitations (ρi < 0), which is only
possible in off-diagonal boxes that relate different polymer segments (si ≠ s′

i). To cast these results
into a geometric picture, in the following we propose polymer shapes that satisfy above criteria. To
that end, we use a two-dimensional projection that falls within the scope of our theory.

In an individual polymer segment, correlated excitations drive all material points in the same
direction [Fig. S3B, wide arrows and boxes on the diagonal]. This effect will yank the neighboring
polymer segments closer together (and stretch their polymer backbone), analogous to an increase in
statistically independent activity, and thereby fold the active polymer segment [Fig. S3B]. Meanwhile,
the shape of the active segment itself remains largely unaffected [contour alignment in Fig. S3A].
Pairs of active polymer segments that typically move in the same direction (ρi > 0) will align their
folds, while polymer segments moving in opposite directions (ρi < 0) will exhibit opposing folds
[Fig. S3B]. One can create more folds and control their relative alignment by having additional
active polymer segments, thereby increasing the complexity of the folded polymer. Note that these
alignment effects are independent of the separation between the active polymer segments, so that
correlated active processes can induce longer-ranged structure in the polymer shape than activity
modulations alone. This increase in complexity can be further rationalized by counting the number of
independent entries in the correlation matrix of the athermal excitations, for an active polymer made
of N monomers. While statistically independent excitations have a diagonal correlation matrix with
only N independent entries, correlated excitations are characterized by a non-diagonal correlation
matrix with N(N + 1)/2 independent entries. These additional parameters can then address all of
the N(N − 1)/2 independent entries of the mean squared separation map (whose diagonal entries
vanish) and even the N entries of the average squared monomer distance to the origin.

B. Passive Rouse polymer with weak long-ranged harmonic interactions.

5Rectangles can be treated analogously and do not qualitatively change the results.
6This contour alignment function can be determined from the pairwise position correlation function, Eq. (S47), or from the
mean squared separation.
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Fig. S3. Correlated activity can guide polymer folding into specific shapes. We use our analytical theory to study
the effect of correlated athermal excitations on polymer shape, by decomposing any block-structured correlation function
into its constituent blocks of width λi. Each box corresponds to pairs of polymer segments that experience correlated
excitations, and whose boundaries in sequence space are indicated by orange dashed lines. A) Material points at opposing
boundaries have anti-aligned contour vectors (red colors in the colormap) while matching boundaries have aligned contour
vectors (blue colors in the colormap); this trend is inverted for anti-corrrelations (ρi < 0, thus reversing the colormap). B) By
using our results from panel A), we propose polymer conformations that have the correct (anti-)alignment of contour vectors
at the boundaries of the correlated regions (dashed ellipse). Below each sketched example, we depict the corresponding
correlation function of the excitations C(s, s′). Black shaded arrows indicate the typical direction of the contour vectors.
Correlated excitations of individual polymer segments (box on the diagonal) induce folding, as all material points within
the respective segment typically move in the same direction (green arrow) and yank the neighboring segments closer
together. Pairs of polymer segments that experiences (anti-)correlated excitations (boxes that are located off-diagonal)
will not only fold locally, but also (anti-)align these folds relative to each other. C) Identical to Fig. 3D in the main text.
Correlated athermal excitations of polymer segments centered around si and s′

i lead to an effective attraction through
weak, long-ranged harmonic interactions. Conversely, anti-correlated excitations of these segments lead to an effective
repulsion. Thus, we expect that individual segments experiencing correlated excitations should adopt a compact shape.

B.1. Setup and analytical solution of passive polymer model. In this section, we construct an effective
model where the polymer folds not due to correlated excitations generated by active processes,
but because of weak long-ranged harmonic interactions between different material points. In this
linearized model, the dynamics of the polymer are determined by

∂tr(s, t) = κ̄

ξ̄

{
∂2

s r(s, t) +
∫

ds′ K̂(s, s′) [r(s′, t) − r(s, t)]
}

+ η(s, t) , [S48]

where K̂(s, s′) is a dimensionless field that encodes harmonic interactions between different material
points, and η(s, t) is a Gaussian random displacement velocity field with zero mean. We consider
statistically independent excitations with homogeneous magnitude,

⟨η(s, t) · η(s′, t′)⟩ = C(s, s′) δ(t − t′) , with C(s, s′) = ξ̄−1 A0 δ(s − s′) , [S49]

which corresponds to Cqk = ξ̄−1 A0 Lδqk. Therefore, the polymer will not fold in the absence
of harmonic interactions, that is when K̂(s, s′) = 0 ∀ s, s′. Within the formalism introduced in
section 1 A “Rouse mode decomposition leads to a non-diagonal system of equations”, the response
matrix of the polymer is given by a non-diagonal matrix

Jqk = ξ̄−1 κ̄
[
q2 δqk − L−1

(
K̂qk − K̂q−k,0

)]
, [S50]

where we have used the following convention for Fourier transforms [cf. Eq. (S4)]:

K̂qk :=
∫∫

ds ds′ e−iqsK̂(s, s′)eiks′
. [S51]
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In the response matrix, Eq. (S50), we identify the diagonal entries J̄qk = ξ̄−1 κ̄ q2 δqk and the
off-diagonal entries δJqk = −ξ̄−1 κ̄ L−1 [K̂qk − K̂q−k,0]. Next, we investigate how these harmonic
interactions affect the polymer conformation.

In the following, we consider reciprocal harmonic interactions, K̂(s, s′) = K̂(s′, s), which means
that the response matrix is Hermitian. In this scenario, one can evaluate the formal solution for
the conformation of the polymer in Fourier space, Eq. (S16), without relying on a perturbation
approach:

X = 1
2 ξ̄−1 A0 L J−1 = 1

2 ξ̄−1 A0 L
(
J̄ + δJ

)−1
≈ 1

2 ξ̄−1 A0 L
(
J̄

−1 − J̄
−1 · δJ · J̄

−1)
, [S52]

where in the last step we have assumed that the long-ranged harmonic coupling is weak. In other
words, we assume that the mechanical properties of the polymer are dominated by line tension, which
is the same assumption as the one underlying our perturbation approach in section 1 E “Perturbation
approximation for non-diagonal response matrices”. Finally, we evaluate Eq. (S52):

Xqk = b2
[

Lδqk

q2 + K̂qk − K̂q−k,0

q2 k2

]
, [S53]

where the characteristic length is given by b :=
√

A0/(2κ̄), as before. Note that the homogeneous
Fourier modes of the harmonic interaction map, q = 0 and k = 0, do not contribute to the polymer
conformation. On a more fundamental level, the homogeneous Fourier modes of the harmonic
interaction map cancel out in the polymer’s equation of motion, Eq. (S48). Therefore, in the following
we assume K̂q0 = 0 ∀ q, which means that there is no homogeneous global coupling through harmonic
interactions. As expected, Eq. (S53) shows that harmonic interactions can fold the polymer into
complex shapes. In the following, we refer to this as the “passive model”.

B.2. Comparison to active polymer with correlated excitations. We now compare the steady-state
conformation of the Rouse polymer in our passive model, Eq. (S53), to the steady-state conformation
of a Rouse polymer without long-ranged harmonic interactions, but instead subject to correlated
athermal excitations (“active model”), cf. Eq. (S46). In section 2 A.5 “Correlated excitations induce
folding”, we discussed that the active model has a diagonal response matrix given by J̄qk, which is
identical to the diagonal entries of the response matrix in the passive model, Eq. (S50). In contrast
to the passive model, however, the active model is subject to athermal excitations characterized
by a non-diagonal correlation function C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)]. The spectrum of these
correlated excitations is determined by the Fourier transform Ĉ(s, s′) → Ĉqk as defined by Eq. (S4),
so that one has Cqk = ξ̄−1 A0 [Lδqk + Ĉqk]. These two fundamentally different models will result in
the same steady-state polymer conformation, if the following criterion is satisfied:

K̂qk = Ĉqk
2 q2 k2

q2 + k2 . [S54]

Taking the limit of an infinitely long polymer, L → ∞ so that Lδqk → 2π δ(q − k), and transforming
Eq. (S54) back into real space shows that correlated athermal excitations induce effective long-ranged
harmonic interactions between different material points,

K̂(s, s′) = −
[
∂2

s + ∂2
s′

]
Ĉ(s, s′) +

∫∫
dx dx′ Ĉ(x, x′) GK(s − x, s′ − x′) , [S55]
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with the following Green’s function kernel:

GK(s1, s2) = − 6
π

s4
1 + s4

2 − 6s2
1s

2
2

(s2
1 + s2

2)4 . [S56]

In Eq. (S55), the first term indicates that pairs of material points whose athermal excitations are
maximally correlated will attract each other, whereas maximally anticorrelated excitations lead to
repulsion. The second term in Eq. (S55) indicates that pairs of material points whose athermal
excitations are correlated (anticorrelated) in general will attract (repel) each other [Fig. S3C], as
discussed in the main text. Note that the Green’s kernel has the most convenient representation in
polar coordinates GK(α cos ϕ, α sin ϕ) = −6 cos(4ϕ)/(πα4). This shows that the convolution term in
Eq. (S55) will vanish if the correlation function of the athermal excitations, Ĉ(s, s′), is rotationally
symmetric around some point (s, s′) in the sequence correlation space. In that case, only the first
term in Eq. (S55) will remain.

B.3. Comparison to active polymer with activity modulations. We now study the effective interactions
that arise in an active Rouse polymer that is subject to statistically independent athermal excitations
with modulations in magnitude, C(s, s′) = ξ̄−1 A0 [1 + ϵ(s)] δ(s − s′). The spectrum of these activity
modulations is determined by the Fourier transform ϵ(s) → ϵq as defined by Eq. (S3), so that one has
Cqk = ξ̄−1 A0 [Lδqk + ϵq−k] where ϵ0 = 0. Comparing with the previous section, one has Ĉqk ≡ ϵq−k

in the equivalence criterion, Eq. (S54). Taking the limit of an infinitely long polymer, L → ∞ so
that Lδqk → 2π δ(q − k), and transforming Eq. (S54) back into real space yields:

K̂(s, s′) = 3
4 ϵ′′

(
s + s′

2

)
δ(s − s′) − ϵ

(
s + s′

2

)
δ′′(s − s′) +

∫ dq

2π

[
ϵq

∥q∥3

4 e− ∥q∥
2 ∥s−s′∥

]
eiq s+s′

2 , [S57]

where ϵ′′(s) := ∂2
s ϵ(s) and δ′′(s) := ∂2

s δ(s) are second derivatives. To understand the effect of the
harmonic interaction map, Eq. (S57), we substitute it into the corresponding term of the equation
of motion, Eq. (S48):∫

ds′ K̂(s, s′) [r(s′) − r(s)] = −∂s

[
ϵ(s) ∂sr(s)

]
+
∫

ds′ K̂NL(s, s′) [r(s′) − r(s)] , [S58]

where we have defined the map of non-local interactions

K̂NL(s, s′) =
∫ dq

2π

[
ϵq

∥q∥3

4 e− ∥q∥
2 ∥s−s′∥

]
eiq s+s′

2 . [S59]

In addition to these non-local interactions, the first term on the right-hand side of Eq. (S58) shows
that modulations in activity also induce an effective decrease (increase) of line tension in more (less)
active regions [Fig. S4B, central panel]. These changes in effective line tension are responsible for the
expansion or contraction of the polymer backbone, respectively, which we observed. Consistent with
these findings, making the polymer inextensible as outlined in section 2 A.4 “Enforcing inextensibility
in active polymers” will cancel out the modulations in effective line tension, and only leave non-local
interactions.

In contrast, the non-local interactions, Eq. (S59), explain activity-induced polymer bending and
straightening. Non-neighboring material points in regions with increased activity show an effective
pairwise attraction [Fig. S4B], which leads to bending [Fig. S4A]. Conversely, polymer straightening
[Fig. S4A] is associated with an effective pairwise repulsion between non-neighboring material points
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Fig. S4. Activity modulations induce polymer folding. A) Alignment between contour vectors at different material
points. A local increase in activity with a characteristic length scale λ leads to polymer bending (anti-correlations), while
a local decrease in activity leads to polymer straightening (positive correlations). B) An active polymer driven by activity
modulations folds into the same steady-state conformation as a passive polymer with homogeneous activity A0 and
long-ranged pairwise harmonic interactions, cf. Eq. (S55). This mapping explains that a local increase in activity leads to
expansion of the polymer backbone through an effective decrease in line tension (diagonal panel). Conversely, a local
decrease in activity leads to condensation of the polymer backbone through an effective increase in line tension (diagonal
panel). Polymer bending is induced by an effective attraction between material points that are not nearest neighbors but lie
within the same polymer segment (annotation in top right inset), while polymer straightening is mediated by an effective
repulsion (annotation in bottom left inset). C) Activity modulations fold the polymer into a “flower” shape, where active
regions loop around straighter inactive segments.

in regions with decreased activity [Fig. S4B]. Thus, local activity modulations can be mapped to
harmonic interactions between distal material points. To conclude, we have here demonstrated that
the steady state shape of an active polymer can be directly mapped to a passive surrogate model
[Fig. S4C].
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3. Subdiffusive dynamics of active polymers

A. Mean squared displacement of a locus in an active polymer. To extract characteristic dynamic
features of active polymers, we will now determine the mean squared distance ⟨[r(s, t+∆t)−r(s, t)]2⟩
that a specific locus travels within the time window ∆t. To that end, we specialize the derivation
outlined in section 1 F “Mean squared distance traveled by a specific polymer locus”. As before in
section 1 D “Conformation of a polymer with a diagonal response matrix”, we consider a polymer
that has a diagonal response matrix, so that Eq. (S31) evaluates to

〈
[r(s, t + ∆t) − r(s, t)]2

〉
=
∑
qk

ei(q−k)s

(1 − e−Jqq∆t
) C0 δqk

Jqq

+
(
1 − e−Jqq∆t

) 2C0 δĈqk

Jqq + Jkk

 . [S60]

More specifically, the response matrix of the Rouse polymer is given by Jqk = ξ̄−1 κ̄ q2 δqk, with
homogeneous friction coefficient ξ̄ and line tension κ̄. For the athermal excitations that drive the
polymer’s motion, we again consider the correlation function C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)],
so that one has Cqk = ξ̄−1 A0 [Lδqk + Ĉqk]. A comparison with Eq. (S26) suggests C0 = ξ̄−1 A0 L
and δĈqk = L−1Ĉqk, which we substitute into Eq. (S60). Taking the limit of an infinitely long
polymer, L → ∞ so that Lδqk → 2π δ(q − k), and representing the elapsed time ∆t = ξ̄κ̄−1 τ by a
dimensionless variable τ , we arrive at

〈
[r(s, t + ξ̄κ̄−1 τ) − r(s, t)]2

〉
= 2b2

[√
τ

π
+ 2

∫ dq

2π

∫ dk

2π
ei(q−k)s Ĉqk

1 − e−q2τ

q2 + k2

]
, [S61]

where the characteristic length is given by b :=
√

A0/(2κ̄), as before. Using this result, we can
predict the transport properties of individual loci on active polymers that are driven by activity
modulations, or correlated excitations.

Equation (S61) can be simplified if the active polymer is driven only by statistically independent
excitations, characterized by Ĉ(s, s′) ≡ ϵ(s) δ(s−s′), with inhomogeneous activity A(s) = A0 [1+ϵ(s)],
so that Ĉqk ≡ ϵq−k. Then, one has

〈
[r(s, t + ξ̄κ̄−1 τ) − r(s, t)]2

〉
= 2b2

√
τ

π

[
1 + 2

√
π
∫ dk

2π
ϵk eiks

∫ dq

2π

1 − e−q2

q2 + (q −
√

τ k)2

]
. [S62]

This representation reveals that for τ ≪ 1 the mean squared traveled distance grows as〈
[r(s, t + ξ̄κ̄−1 τ) − r(s, t)]2

〉
= 2b2

√
τ

π
[1 + ϵ(s)] . [S63]

Thus, a local increase in activity enhances the subdiffusive motion of the affected loci, whereas a
local decrease in activity reduces this subdiffusive motion [Fig. S5A]. On sufficiently long timescales,
τ → ∞, the subdiffusive motion of every locus is determined by the mean level of activity [Fig. S5A].
For sinusoidal activity modulations, i.e. Ĉ(s, s′) ≡ ϵ cos(s/λ) δ(s − s′) so that Ĉqk ≡ (ϵ/2) [2πδ(q −
k − λ−1) + 2πδ(q − k + λ−1)], Eq. (S61) is given by

〈
[r(s, t + ξ̄κ̄−1 τ) − r(s, t)]2

〉
= 2λ b2

√τ/λ2

π
+ ϵ cos(s/λ) gϵ

a(τ/λ2)
 , [S64a]

with
gϵ

a(τ) =
∫ dq

π

1 − e−q2τ

q2 + (q + 1)2 , [S64b]
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Fig. S5. Mean squared displacement of a specific locus in an active polymer in a given time ∆t. Dashed lines show
dynamics for a homogeneous reference polymer. A) The active polymer is driven by statistically independent excitations
with correlation function C(s, s′) ≡ ξ̄−1 A(s) δ(s − s′) and sinusoidal activity modulations A(s) = A0 [1 + ϵ cos(s/λ)].
On short time scales, the local level of activity determines the subdiffusive motion of every locus, with a characteristic
∆t1/2-scaling. On long time scales, the subdiffusive motion of every locus is determined by the average level of activity
of the polymer. Note that, if one were to only measure the mean squared displacement in the transition window (gray),
then one would observe different subdiffusion exponents for the active and the inactive regions. This effect depends
on the amplitude of the activity modulations, ϵ, and vanishes for ϵ → 0. B) The active polymer is driven by coherent
excitations. Specifically, every material point within a contiguous segment of length λ experiences excitations with correlation
C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)] and Ĉ(s, s′) = ρ ∀ s, s′ ∈ [s0 − λ/2, s0 + λ/2] else zero. The motion of the material
point at the center of this segment, s = s0, shows a characteristic ∆t1/2-scaling both on short and on long time scales. At
intermediate times, there is an inhomogeneous contribution with a characteristic ∆t1-scaling.

which we solve by numerical integration.
Next, we consider an active polymer that is driven by correlated excitations. Specifically, we

consider a scenario where every material point within a contiguous segment of length λ experiences
excitations with correlation C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)] and Ĉ(s, s′) = ρ ∀ s, s′ ∈ [s0 −
λ/2, s0 + λ/2] else zero. Then, Eq. (S61) is given by

〈
[r(s0, t + ξ̄κ̄−1 τ) − r(s0, t)]2

〉
= 2λ b2

√τ/λ2

π
+ ρ λ gρ

a(τ/λ2)
 , [S65a]

with

gρ
a(τ) = 2

∫ dq

π

∫ dk

π

sin(q/2)
q

sin(k/2)
k

1 − e−q2τ

q2 + k2 , [S65b]

which we solve by numerical integration. In contrast to activity modulations where the mean squared
traveled distance scales characteristically ∝ τ 1/2, correlated excitations induce an inhomogeneous
contribution with a different scaling ∝ τ 1 [Fig. S5B]. This can be intuitively understood by considering
the limiting case where every material point of a contiguous polymer segment experiences the same
random force (i.e., the excitations are perfectly correlated). Then, the entire polymer segment will
show coherent diffusion equivalent to a single large particle, which leads to the τ 1-scaling.

B. Mean squared displacement of a locus in a passive polymer. To extract characteristic dynamic
features of passive polymers, we will now determine the mean squared distance ⟨[r(s, t+∆t)−r(s, t)]2⟩
that a specific locus travels within the time window ∆t. To that end, we specialize the derivation
outlined in section 1 F “Mean squared distance traveled by a specific polymer locus”. We consider a
Rouse polymer that is driven by homogeneous excitations, see Eq. (S49), so that Cqk = ξ̄−1 A0 Lδqk
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and Eq. (S31) evaluates to

〈
[r(s, t + ∆t) − r(s, t)]2

〉
=
∑
qk

ei(q−k)s

(1 − e−Jqq∆t
) C0 δqk

Jqq

− C0 δJqk

JqqJkk

[
1 − Jqqe

−Jkk∆t − Jkke−Jqq∆t

Jqq − Jkk

] . [S66]

As discussed in section 2 B.2 “Comparison to active polymer with correlated excitations”, we
compare the dynamics of this passive polymer to an active polymer whose athermal excitations
are characterized by the correlation function C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)], so that Cqk =
ξ̄−1 A0 [Lδqk + Ĉqk]. A comparison with Eq. (S26) suggests C0 = ξ̄−1 A0 L and δĈqk = L−1Ĉqk, which
we will later substitute. To show the same distribution of conformations in steady state, the passive
polymer requires off-diagonal entries in its response matrix, which we assume to be Hermitian and
which we derive from Eq. (S28):

δJqk

JqqJkk

= −2 δĈqk

Jqq + Jkk

. [S67]

For a Rouse polymer, the diagonal elements of the response matrix are given by Jqq = ξ̄−1 κ̄ q2, with
homogeneous friction coefficient ξ̄ and line tension κ̄. We substitute the diagonal elements of the
response matrix, as well as its off-diagonal elements Eq. (S67), into Eq. (S66). Taking the limit of
an infinitely long polymer, L → ∞ so that Lδqk → 2π δ(q − k), and representing the elapsed time
∆t = ξ̄κ̄−1 τ by a dimensionless parameter τ , we arrive at

〈
[r(s, t + ξ̄κ̄−1 τ) − r(s, t)]2

〉
= 2b2

[√
τ

π

+ 2
∫ dq

2π

∫ dk

2π
ei(q−k)s Ĉqk

q2(1 − e−k2τ ) − k2(1 − e−q2τ )
q4 − k4

]
, [S68]

where the characteristic length is given by b :=
√

A0/(2κ̄), as before. Using this result, we can
predict the transport properties of individual loci on passive polymers.

To compare with the results presented in section 3 A “Mean squared displacement of a locus
in an active polymer”, we again consider two scenarios. For sinusoidal activity modulations, i.e.
Ĉ(s, s′) ≡ ϵ cos(s/λ) δ(s − s′) so that Ĉqk ≡ (ϵ/2) [2πδ(q − k − λ−1) + 2πδ(q − k + λ−1)], Eq. (S68)
is given by

〈
[r(s, t + ξ̄κ̄−1 τ) − r(s, t)]2

〉
= 2λ b2

√τ/λ2

π
+ ϵ cos(s/λ) gϵ

p(τ/λ2)
 , [S69a]

with

gϵ
p(τ) =

∫ dq

π

q2 (1 − e−(q+1)2τ ) − (q + 1)2 (1 − e−q2τ )
q4 − (q + 1)4 , [S69b]

which we solve by numerical integration. Note that Eq. (S69) only differs from Eq. (S64) by the
inhomogeneous contributions gϵ

a/p(τ). Next, we consider an active polymer that is driven by correlated
excitations. Specifically, we consider a scenario where every material point within a contiguous
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Fig. S6. Inhomogeneous contributions to mean squared displacement (MSD) that characterize how the dynamics
of inhomogeneous active/passive polymers deviate from the dynamics of a homogeneous reference polymer. A)
Inhomogeneous contribution to the MSD of a locus in an active polymer driven by activity modulations [cf. Eq. (S64b)],
or a passive polymer [cf. Eq. (S69b)] that reproduces the same distribution of conformations. For the active polymer, we
consider statistically independent excitations with correlation function C(s, s′) ≡ ξ̄−1 A(s) δ(s − s′) and sinusoidal activity
modulations A(s) = A0 [1 + ϵ cos(s/λ)]. B) Inhomogeneous contribution to the MSD for an active polymer driven by
correlated excitations [cf. Eq. (S65b)], or a passive polymer [cf. Eq. (S70b)] that reproduces the same distribution of
conformations. For the active polymer, every material point within a contiguous segment of length λ experiences excitations
with correlation C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)] and Ĉ(s, s′) = ρ ∀ s, s′ ∈ [s0 − λ/2, s0 + λ/2] else zero. We track
the motion of the material point at the center of this segment, s = s0.

segment of length λ experiences excitations with correlation C(s, s′) = ξ̄−1 A0 [δ(s − s′) + Ĉ(s, s′)]
and Ĉ(s, s′) = ρ ∀ s, s′ ∈ [s0 − λ/2, s0 + λ/2] else zero. Then, Eq. (S68) is given by

〈
[r(s0, t + ξ̄κ̄−1 τ) − r(s0, t)]2

〉
= 2λ b2

√τ/λ2

π
+ ρ λ gρ

p(τ/λ2)
 , [S70a]

with
gρ

p(τ) = 2
∫ dq

π

∫ dk

π

sin(q/2)
q

sin(k/2)
k

q2 (1 − e−k2τ ) − k2 (1 − e−q2τ )
q4 − k4 , [S70b]

which we solve by numerical integration. Note that, again, Eq. (S70) only differs from Eq. (S65)
by the inhomogeneous contributions gρ

a/p(τ). We find, in general, that active polymers show faster
motion than their passive counterparts [Fig. S6].

C. Monomer mean squared displacement in discrete, active chains. Having studied the subdif-
fusive dynamics of active polymers using our continuum theory, we now explore the dynamics of
discrete, 1000-mer chains subject to nonlinear constraints. To that end, we use the activity profiles
shown in Fig. 2D in the main text, where each monomer is assigned an activity AA or AB based
on the A/B identities in the Hi-C data from Ref. (8) (Methods). In Fig. S7, we use the activity
ratio AA/AB = 5.974, which produces simulated contact maps that match the compartment score
observed in the experimental contact maps of Ref. (8) (see main text). To understand how self
avoidance and a spherical confinement affect the dynamics of an active polymer, we first study a
discrete Rouse chain using Eq. (S31) with a discrete response matrix; cf. section 1 A.1 “Response
matrix of a discrete Rouse polymer depends on chain topology”.

In a phantom Rouse chain composed of 1000 monomers (Fig. S7A), the mean squared displacement
(MSD) averaged over all Kuhn segments with the same activity, MSD(∆t) = Γtα, shows three regimes.
At short time scales, monomers diffuse freely (α = 1) with DA = AA/(6ξ) and DB = AB/(6ξ). At
intermediate times, monomers feel the effects of the harmonic springs connecting them to the rest
of the chain, producing subdiffusive dynamics where α = 0.5. Similar to an infinite, continuous
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Fig. S7. Mean squared displacement averaged over active and inactive regions for discrete, 1000-mer chains with
activity ratio AA/AB = 5.974. A) For a discrete Rouse chain, the monomer MSD (∝ ∆tα) of a homogeneous reference
polymer (black) displays three regimes: free diffusion of monomers at short times, subdiffusion at intermediate times, and
center of mass diffusion at long times. The MSD averaged over active regions is systematically higher and displays a
slightly different value of α than that of inactive regions. B) During the initial diffusive regime and at the beginning of the
subdiffusive regime, the ratio of active and inactive MSDs matches the activity ratio. At long times, the MSD transitions to
center-of-mass diffusion, and the MSD ratio approaches 1. C) Ensemble-averaged monomer MSD, in units of monomer
diameter squared (d2), computed from 200 independent simulations of a 1000-mer self avoiding chain in a spherical
confinement with volume fraction 0.117 (same parameters as in Fig. 2D of the main text). The active MSD shows α < 0.5,
whereas the inactive MSD shows α > 0.5. Both curves eventually plateau at the squared radius of confinement. D) The
ratio of MSDs in active and inactive regions is smaller than the activity ratio during the subdiffusive regime, and eventually
approaches 1.0.

chain, the value of α continuously changes in the subdiffusive regime because both curves eventually
coincide. For a discrete chain, this long-time behavior corresponds to the free diffusion of the center
of mass of the chain. The MSD of inactive monomers approaches the homogeneous MSD from below,
so that α > 0.5. Conversely, the MSD of active monomers approaches the homogeneous MSD from
above, so that α < 0.5. Thus, depending on the time scale of observation and the activity ratio,
different values of α can be observed in active and in inactive regions.

The addition of self avoidance, a non-zero spring rest length, and a spherical confinement modifies
these dynamics in subtle ways. As seen in Fig. S7C, the active and inactive MSDs are initially
subdiffusive and eventually plateau at the squared radius of the confinement. In contrast to the
phantom chain, the ratio of MSDs in active and in inactive regions is at least two-fold smaller than
the activity ratio during the entirety of the subdiffusive regime [Fig. S7D]. However, the exact value
of the MSD ratio and of α in active and inactive regions depends on the volume fraction, the activity
ratio, and other microscopic parameters. Thus, even large activity differences could produce small
MSD ratios.
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4. A/B compartmentalization in active or sticky self-avoiding polymers
In Fig. 2D of the main text, we show that a self-avoiding active copolymer can reproduce A/B
compartments when the A monomers are driven by larger active forces than the B monomers. In
the following, we compare this active model to a passive block copolymer model where compart-
mentalization is instead induced by a short-ranged attraction between same-type monomers (9–12),
which we refer to as “sticky interactions”. In particular, we consider the case where B monomers
attract one another with energy EBB whereas pairs of A monomers show no attraction. As shown in
Ref. (9), this one-parameter model can reproduce the spatial positioning of heterochromatin relative
to euchromatin observed in microscopy data, as well as the compartment strength in Hi-C data for
rod photoreceptor cells with inverted nuclei (9). Adding an attraction between B monomers and
the nuclear lamina without changing the B-B attraction energy recovers the spatial positioning of
heterochromatin near the nuclear lamina observed in wildtype nuclei (9). The authors thus argue
that compartmentalization is driven by heterochromatic interactions.

As in the sticky interaction model, compartmentalization in the active model is driven by an
effective B-B interaction, as evidenced by the strong B compartments in Fig. 2D of the main
text. We therefore asked whether the activity difference model predicts polymer conformations
that can be qualitatively distinguished from those of the sticky interaction model. By simulating
block copolymers with varying B-B attraction energies, we found that EBB = 0.4kBT leads to the
same compartment score (0.71) as the Hi-C data of Ref. (8) and the activity difference model with
AA/AB = 5.974 [Fig. 2D, main text]. Using these parameters, in the following we compare the
conformations predicted by both models.

A. A/B compartment boundaries are more blurred in active model compared to sticky model.
As shown in Fig. S8A, for a volume fraction ϕ = 0.117 of monomers in confinement, both models
produce similar contact frequency patterns where B compartments are stronger than A compartments.
Increasing the monomer density to values (ϕ = 0.35) typical of the nucleus (13) and reducing the
activity ratio (AA/AB = 5) to recover the same compartment score as in the Hi-C data of Ref. (8)
leads to more balanced A/B compartments [Fig. S8B, above the diagonal]. However, in the
simulated contact map, boundaries between compartments are more blurred than in the data, and
B compartments feature an X-shaped pattern of anti-diagonal and diagonal contacts.

To further investigate this pattern, we calculated the ensemble-averaged contour alignment of bond
vectors ⟨(ri+1 −ri) · (rj+1 −rj)⟩ in the conformations generated by the active and the sticky polymer
simulations. While there is no structure in the contour alignment for the sticky BB model [Fig. S8C,
below the diagonal], there is a long-ranged pattern of weak correlations for the active model whereby
inactive segments at the edges of B compartments are either aligned or anti-aligned [Fig. S8C, above
the diagonal]. Thus, in our self-avoiding polymer simulations, the active polymer shows qualitatively
different contour alignments than a passive polymer with short-range interactions7. This prediction
could be tested via comparisons to chromatin tracing data (14, 15).

At low volume fractions, both the active polymer and sticky interaction models produce stronger
B compartments than A compartments, since compartmentalization is driven by an association
of inactive segments. As the volume fraction increases, clustering of B monomers also forces A
monomers to interact more frequently in the finite spherical volume8. As a result, increasing the

7Note that in the linearized Rouse model, long-ranged harmonic interactions are capable of reproducing the same ensemble-
averaged polymer conformation (including contour alignment) as the activity difference model.

8In the limit where the volume fraction of monomers in confinement approaches saturation, akin to liquid-liquid phase
separation, more frequent B-B interactions also always imply more frequent A-A interactions.
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Fig. S8. Conformations of simulated polymers driven by activity differences (active model) or sticky interactions
between B monomers (sticky BB model). A) Pairwise monomer contact frequency, where a contact is counted if the
inter-monomer separation falls below two monomer diameters. The volume fraction of monomers in the confinement is
chosen as ϕ = 0.117. Above the diagonal: Active (A, red) segments experience larger athermal excitations than inactive (B,
blue segments), such that the activity ratio is 5.974. Below the diagonal: Pairs of B monomers experience a short-ranged
attraction of EBB = 0.4kBT , which is chosen to match the COMP score in the Hi-C data of Ref. (8). B) At a higher volume
fraction (ϕ = 0.35), the contact frequency map from active polymer simulations (above the diagonal) with an activity ratio
of 5 shows more balanced A/B compartments, reminiscent of the Hi-C data of Ref. (8) (below the diagonal). C) Above
the diagonal: Active model shows weak, long-ranged correlations in the ensemble-averaged contour alignment of bond
vectors, ⟨(ri+1 − ri) · (rj+1 − rj)⟩. Below the diagonal: In comparison, the sticky interaction model shows no orientational
structure. D) In both models, A and B compartment strengths become more balanced with increasing volume fraction. In
the active model, the B compartment strength is always larger than the A compartment strength.

volume fraction leads to more balanced A/B compartment strengths in both models [Fig. S8D].
The main difference is that the active model always predicts stronger B compartments than A
compartments, likely because A monomers move faster in the active model than in the passive
model, inducing shape changes and X-shaped contacts in neighboring B regions. In contrast, in
the sticky BB model, the A compartment strength surpasses the B compartment strength at high
volume fractions, which is somewhat surprising given that A monomers only interact through volume
exclusion.

B. Active and sticky models display qualitatively different dynamics. The mean squared displace-
ments (MSDs) of active and inactive monomers in both models differ in qualitative ways. In the
active model, the ratio of the MSDs of active loci and inactive loci is less than the activity ratio
at early times and then transitions to 1 to indicate center of mass diffusion after 107 time steps,
the “Rouse time” of the polymer [Fig. S7C and D]. Notably, the MSDs of active and inactive loci
qualitatively match histone tracking data, which shows that heterochromatic histones near the
nuclear periphery diffuse slower than euchromatic regions near the center (16, 17). However, in the
sticky interaction model, the MSD ratio is initially 1 and only begins to increase near the Rouse
time [Fig. S9A]. Thus, the adhesion-induced higher density in B regions is insufficient to slow the
subdiffusion of heterochromatic regions relative to euchromatic regions. In both models, the inactive
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Fig. S9. A passive polymer with sticky interactions between B monomers shows qualitatively different dynamics
than a polymer driven by activity differences. A) The left panel shows the mean monomer mean squared displacement,
MSD(∆t) ∼ ∆t0.5 of active (A, red) and inactive (B, blue) regions. The right panel shows the ratio of active to inactive
MSDs over time. B-B attractive interactions are insufficient to generate differences in subdiffusion between active and
inactive regions. B) A and B compartment strengths relative to their steady state values over time in the active and sticky
models. A and B compartments equilibrate 100 times faster in the sticky model than in the active model. In the active
model, A compartments equilibrate slower than B compartments.

MSD plateaus at a smaller value than the active MSD, indicating a spatial positioning of B regions
closer to the center of the confinement.

In addition to comparing the monomer MSDs of both models, we asked if they display different
kinetics of folding. Chromosome conformation capture experiments on synchronized cell populations
have shown that folding patterns are modulated by the cell cycle (8, 18, 19). Upon exit from
mitosis, contact frequency maps display a strong mitotic band of contacts. As cells enter G1,
compartments start to form, spreading outwards from the diagonal and gaining strength over the
course of interphase (18). While a full simulation of mitotic exit (20) is beyond the scope of this
work, we studied the relaxation dynamics of both models when initialized in random configurations
on a cubic lattice. Strikingly, we observed that the A and B compartment strengths approach their
steady state values nearly 100 times faster in the sticky interaction model than in the active polymer
model. Moreover, in the active polymer model, B compartments reach steady state faster than A
compartments.

C. Active polymer model shows higher cell-to-cell variability than sticky interaction model. To
further compare the active polymer and the sticky interaction models, we next asked whether they
predict differences in cell-to-cell variability. In the context of our simulations, we therefore compute
a time-averaged contact frequency map from 2000 snapshots taken after the Rouse time (107 time
steps) in a single simulation trajectory. We fix the time between snapshots to be ∆t = 5000 time
steps for both models. In an equilibrium system, we expect that the ensemble-averaged contact
frequency maps should match the time-averaged contact frequency maps from single simulation
trajectories (ergodicity). This expectation holds true in sticky polymer simulations, as shown in
the top panels of Fig. S10. Each simulated polymer samples the ensemble distribution of polymer
conformations and all trajectories show the same pattern of B compartments. However, select A
compartments from the ensemble map are absent in individual cells, possibly because the polymer
becomes trapped in a local minimum of the free energy landscape.

In contrast, the active polymer model displays broken ergodicity. Time-averaged contact frequency
maps from individual simulations drastically differ from one another and from the ensemble-averaged
map, and show unique anti-diagonal flares of contacts. In particular, compartments in each cell
do not respect the boundaries predicted by the A/B pattern. We expect that the difference in
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Fig. S10. Time-averaged contact frequency maps from individual simulation trajectories show larger variability in
the active model than in the sticky interaction model. In an equilibrium model with a short-ranged attraction between B
monomers, B compartments in individual cells match the ensemble-averaged contact frequency map (top row). A polymer
driven by activity differences shows broken ergodicity and much larger cell-to-cell variability (bottom row).

variability between the two models can be attributed to the slower relaxation kinetics of the activity
difference model [Fig. S9B]. That is, for a fixed observation time window ∆t, the active polymer can
not sample its conformation space as efficiently as a passive polymer whose space of conformations is
constrained by sticky interactions. It would be interesting to compare these conformations to single
cell Hi-C (21) or chromatin tracing data (14, 15). In summary, the sticky copolymers equilibrate
on faster timescales than active polymers, but show MSDs that do not match histone tracking
data [Fig. S9]. Moreover, the two models predict differences in cell-to-cell variability and contour
alignment. However, combining active and passive effects in more complicated hybrid models may
more accurately capture experimental dynamics and conformations (22).
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5. Data-driven inference of the polymer mechanics and the excitations

A. Inference of the response matrix. For a polymer with known mechanical properties, which are
encoded by the response matrix J , our theory establishes a bijective mapping [cf. Eq. (S16)] between
athermal excitations with correlation function C(s, s′) and the resulting steady-state conformation.
We assume that the polymer has homogeneous mechanical properties and therefore a diagonal
response matrix. Therefore, the mean squared separation between different material points is given
by [cf. Eq. (S20)]

∆R2(s, s′) :=
〈
[r(s, t) − r(s′, t)]2

〉
= 1

L2

∑
qk

Cqk

Jqq + Jkk

[
ei(q−k)s + ei(q−k)s′ − 2eiqs−iks′]

. [S71]

If we know the response matrix J , then we can now invert the problem and seek the unique
correlation function C(s, s′) between the athermal excitations, which fold the polymer into a desired
conformation. But what if the mechanical properties of the polymer are not known a priori? This
lack of information introduces additional modeling degrees of freedom that one needs to constrain
based on the provided data and our theory. To that end, we first transform into a coordinate system
that is more convenient for the following calculations, s̄ := (s + s′)/2 and ∆s := s − s′. Next, we
aim to integrate out inhomogeneities in the mean squared separation map,

∆R2(∆s) := 1
L − ∆s

∫ L−∆s
2

− L−∆s
2

ds̄ ∆R2(s̄ + ∆s/2, s̄ − ∆s/2) , with ∆s ∈ [0, L] . [S72]

By making the approximation of a very long polymer (L ≫ ∆s), or by considering a polymer whose
mean squared separation map is (nearly) translationally invariant, one then has

∆R2(∆s) ≈ 1
L2

∑
q

Cqq

Jqq

[
1 − eiq∆s

]
. [S73]

To extract the components of the diagonal response matrix, we use a Fourier transform:
∫ L

0
ds e−iks ∆R2(s) =

[
1
L

∑
q

Cqq

Jqq

]
δk0 − 1

L

Ckk

Jkk

. [S74]

Now, we consider a scenario where translational invariance is broken by athermal excitations with
a non-diagonal correlation function C(s, s′) = ξ−1 A0 [δ(s − s′) + Ĉ(s, s′)]. The spectrum of these
correlated excitations is determined by the Fourier transform Ĉ(s, s′) → Ĉqk as defined by Eq. (S4), so
that one has Cqk = ξ−1 A0 [Lδqk + Ĉqk]. Finally, we make another drastic approximation by assuming
that the athermal excitations have no translationally invariant component9, so that Ĉqq = 0 ∀ q. In
summary, the response matrix is given by10

ξ Jqq

A0
= −

[∫ L

0
ds e−iqs ∆R2(s)

]−1

∀ q ̸= 0 , [S75]

B. Heuristic response matrix approximates mechanical properties of simulated polymer. To
set up a common model for the chain mechanics, we use a polymer with uniform activity where

9This assumption excludes all correlation functions that have a contribution Ĉ(s − s′).
10For discrete polymers, this relation involves discrete spectral transforms.
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Eq. (S75) is exact. We determine the model parameters by fitting the translationally invariant mean
squared separation ∆R2(s, s′) = ∆R2(s − s′) to our artificial data. To that end, we use the following
heuristic response matrix11 [cf. Eq. (S8)]:

ξ Jqq

A0
= 1

2b2

[
α +

∣∣∣∣2 sin
(

qa

2

)∣∣∣∣2 + κ3

∣∣∣∣2 sin
(

qa

2

)∣∣∣∣3
]

, [S76]

with three fit parameters (b2, α, κ3). The cubic term in Eq. (S76) has only the purpose of improving the
fit12. We confirm visually that the thus obtained response matrix indeed gives a good approximation
of our data [Fig. S11A]. Furthermore, we compare the response matrix obtained through our fitting
procedure, Eq. (S76), against the approximated response matrix of simulated polymers that are
driven by inhomogeneous activity Eq. (S75). As expected, we find that the inferred mechanical
properties of a polymer do not significantly depend on its level of activity [Fig. S11A], which justifies
our choice of the homogeneous polymer as reference.

C. Inference of an activity profile that folds the polymer towards a desired conformation. Finally,
we discuss the details of the optimization procedure used in the main text, which proposes an
activity profile that could fold an active polymer as close as possible towards a desired or observed
steady-state conformation. We consider a discrete polymer that is driven by statistically independent
excitations with covariance ⟨ηi(t) · ηj(t′)⟩ = ξ−1 Ai δij δ(t − t′) and activity Ai at a given monomer i.
The response matrix J of the polymer is given by Eq. (S76), as discussed in the previous section.
In our linear model, we predict the following (discrete) mean squared separation map for a given
profile of activity:

∆R2
pred =

∑
i

Si Ai , where Si :=
δ∆R2

pred

δAi

, [S77]

which shows a linear but non-local response Si to localized changes in activity. We now set
up our optimization problem and seek the activity profile Ai > 0 ∀ i that minimizes the mean
squared deviation between the predicted mean squared separation map ∆R2

pred and a desired target
conformation ∆R2

targ:

Ffit({Ai}) :=
〈
∆R2

pred − ∆R2
targ, ∆R2

pred − ∆R2
targ

〉
F

, [S78]

where ⟨. . . ⟩F refers to the Frobenius inner product between two matrices13. By combining Eq. (S77)
and Eq. (S78), we can write the loss function Ffit({Ai}) as a quadratic equation,

Ffit({Ai}) =
∑
ij

Ai Bij Aj − 2
∑

i

Vi Ai + F0 , where [S79a]

Bij =
〈
Si, Sj

〉
F

, [S79b]

Vi =
〈
Si, ∆R2

targ

〉
F

, [S79c]

F0 =
〈
∆R2

targ, ∆R2
targ

〉
F

. [S79d]

To minimize the loss function, Eq. (S79), given the constraint that the activity at each monomer is
positive, Ai > 0 ∀ i, we use the Julia (23) library Optim.jl (24).

11We have here defined the lattice constant a = L/N of the polymer, and related wave modes q = nπ/L to discrete wave
coefficients n.

12That we need this term could be an artifact of having neglected effective translationally invariant correlations between the
athermal excitations (i.e., a characteristic correlation length).

13For two matrices Y and Z, the Frobenius inner product is given by the scalar ⟨Y , Z⟩F :=
∑

ij YijZij .
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Fig. S11. Reconstruction of activity profile based on data. A) First, we marginalize the mean squared separation map
∆R2(s, s′) by averaging over diagonals with constant s + s′. We then use these data to fit the mechanical properties of
the polymer, which are encoded in the response matrix. B) Comparison between the predicted mean squared separation
map and our simulation data. The overall block structure matches well, but there are some features of our simulations
that the linear model cannot capture. In the simulations, there are instances where two active polymer segments have a
smaller spatial separation than their separation with an inactive segment that between them in sequence space. While the
linear model can also show non-monotonicity in the mean squared separation as a function of genomic distance, it always
predicts that active segments should increase their spatial separation.
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