Supplementary Figures

Title: Elevated nuclear TDP-43 induces constitutive exon skipping

Authors: Rogger P. Carmen-Orozco^{1,2,*}, William Tsao^{1,2,*}, Yingzhi Ye^{3,*}, Irika Sinha^{1,2}, Koping Chang¹, Vickie Trinh^{1,2}, William Chung¹, Kyra Bowden¹, Juan C. Troncoso¹, Seth Blackshaw^{2,4,5}, Lindsey R. Hayes⁵, Shuying Sun³, Philip C. Wong^{1,2}, Jonathan P. Ling^{1,#}

Affiliations:

Departments of ¹Pathology, ²Neuroscience, ³Physiology, ⁴Ophthalmology and ⁵Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205

- * indicates equal contribution
- # indicates corresponding author

Supplementary Figure 1. Pathological findings in TDP-43^{WT} and TDP-43^{G298S} transgenic models. (A) Animals exhibited marked motor disabilities starting with hind-limb clench at 2 months of age, progressing through a crawling gait at 12 months and continue with hemiparesis at 18 months, finally leading to end stage paralysis at 24 months. (B) Reduction in motor capabilities was accompanied by a decrease in weight compared to controls. Immunohistochemical images showed that TDP-43 was confined to the nucleus of cortical and spinal cord cells. No cytoplasmic inclusions or TDP-43 clearance was observed. (C) Immunohistochemistry using an antibody against human-specific TDP-43 (top panel) and immunohistochemistry using an antibody against both human and mouse TDP-43 (bottom panel). (D) In order to assess the lumbar L3 ventral roots of both wild-type (WT) and G298S transgenic mice at 12 months, Toluene-stained Epon thick sections were utilized. The L3 roots from transgenic mice exhibited smaller ventral roots than the non-transgenic animals. Further examination of the electron microscopy thick sections of the ventral roots in G298S and WT transgenic mice revealed a reduced number of large myelinated axons, resulting in the increased visibility of smaller axons. Staining of synaptophysin (green) and α -bungarotoxin (red) on gastrocnemius muscles revealed a progressive denervation of neuromuscular junctions in both transgenic mice. While a significant number of junctions appeared well-innervated in the 2month-old transgenic mice, denervated junctions were notably observed in the 12-month-old transgenic mice. At the end-stage of symptoms, transgenic mice experienced muscle degeneration to the extent that it was difficult to detect end plates by α -bungarotoxin-staining. We analyzed quadriceps muscle at their end-stage because the motor neurons innervating quadriceps muscle are in the L1 to L3 region of the spinal cord in mice. As the transgenic mice aged, H&E staining showed a progressively increased disorganization and angulation. Additionally, esterase staining indicated denervated fibers (darker staining) with the fiber muscle architecture completely altered in transgenic animals.

Supplementary Figure 2. i3Neuron transduction with human TDP-43. (**A**) i3Neurons were transduced with lentivirus containing an N-terminal Flag-tagged wild-type TDP-43 at 1MOI, 2MOI, and 4MOI, respectively. Consistent increase of exogenous TDP-43 (left) is seen accompanied with endogenous TDP-43 autoregulation (right). (**B**) Quantification of the right immunoblot, shows ~1.6 fold increase of total TDP-43 (endogenous TDP43 + transduced Flag-TDP43^{WT}).

		ROLL	ROLL	ROLZ	with	awitz	21413
Gene	CON CON	, ON	أهمي أ	IN TOPA	10P	* 108	×-
ADAM23	83	63	64	7	2	23	
AMT	100	95	89	11	5	29	
BMPR1A	100	<u>96</u> 100	100	-1	44 19	26	
BRI3BP	100	100	100	42	20	60	
CANX	99	100	99	46	37	49	
CCDC126	100	79	100	26	36	44	
CLASP2	94	<u> </u>	96	28	27	31	
COQ5	100	99	99	27	30	19	
CSDE1	98	96	97	10	8	11	
	100	94	100	22	17	38	
DPY19L1P1	-1	100	100	20	-1	40	
DRGX	93	87	100	42	29	45	
ELP1	88	88	98	21	31	56	
ELP2 ENSG0000256591	96	96	97	40	40	41	
ERMAD	100	100	100	27	31	47	
FAM102A	100	100	95	-1	-1	-1	
FAM66C	73	53	76	0	22	-1	
FANCG FAT1	83	<u>5/</u> 91	88 79	14	14	20	
FBRS	100	98	98	34	25	39	
FBXO22	95	89	89	25	28	26	
FRAS1	100	100	100	29	38	30	
GARI HARS2	90	94	93	15	10	18	
HCFC2	100	88	100	31	17	18	
HECW1	59	73	75	24	8	9	
HIRA	100	99	100	45	41	45	
HYOU1	100	100	100	18	16	21	
INSYN1 INSYN1-AS1	-1	75	86	17	20	29	
INTS10	84	91	87	26	17	25	
ITGB1	100	100	100	7	5	14	
KCNMA1	74	59	66	-1	0	7	
LINC00680-GUSBP4	100	85 92	69	4	20	0	
MYBBP1A	91	86	95	14	14	10	
NEBL	-1	100	100	40	-1	33	
NHLRC3	-1	100	100	-1	-1	-1	
NIFK	- 85 - 90	83 97	94	29	44	52	
NIPAL3	59	86	91	2	0	6	
NQO2	100	100	100	9	10	44	
NRCAM	91	86	93	32	24	27	
NUP88	100	95	100	32	28	34	
PLXNB1	95	97	97	27	21	21	
PPA1	100	96	99	29	29	37	
PTS	91	86	92	16	11	17	
RCHY1	98	<u>89</u> 91	90	24	12	13	
RHOT2	100	97	91	50	30	38	
RNASET2	100	71	89	22	50	20	
RNF114	97	94	95	33	17	31	
	100	99	76	51	29	31	
SCN9A	100	100	99	33	32	55	
SEC61A2	100	100	99	41	39	37	
SESN3	100	100	97	53	25	47	
SLC1/A5 SLC35A5	100	86 100	80 100	32	40	27	
SPRK2	86	65	84	21	13	29	
STC2	100	100	-1	23	29	-1	
SUN1	100	96	95	0	4	0	
	100	94	99	34	26	28	
TMEM263	71	59	52	0	14	0	
TNR	100	95	95	24	32	31	
TP53BP2	75	80	80	24	9	35	
IRIM16 TSPAN11	100	100	100	-1	-1	-1	
TTBK2	-1	100	100	25	33	57	
VARS2	98	98	99	20	14	19	
WDR41	88	89	93	4	4	19	
WRAP73	100	100	100	38	29	38	
XPNPEP1	100	99	100	24	23	26	
ZMYND11	78	64	63	2	6	12	
ZNF767P	82	88	85	21	20	8	

Human

В

С

А

Supplementary Figure 3. Differences in exon skipping targets between mouse and

human. (A) We conducted a comparative analysis of RNA-seq datasets obtained from transgenic lines that overexpressed either TDP-43^{G298S} or TDP-43^{WT} and control littermates. Our analysis revealed that both transgenic lines showed similar profiles of exon repression when compared to the control group. (B) Moreover, the comparative analysis of RNA-seq data from i3N human neurons revealed that the set of repressed exons observed in mice differed from those observed in humans. (C) Notably, only one target, *Ddi2*, was found to have a repressed exon by TDP-43 overexpression in both mouse and human samples, as shown in the UCSC genome browser plots (Supplemental Data file).

Supplementary Figure 4. Exon skipping events are found in human brain samples. Aging is the main risk factor for developing neurodegenerative diseases. We show that skipping events appear normally in the CNS, but we wanted to explore whether skipping events correlate with aging. We queried the splice junction archive, Snaptron, and analyzed publicly available human RNA-seq datasets from GTEx. We show the percent of exon skipping in four genes at ages ranging from 20-29, 30-39, 40-49, 50-59, 60-69, and 70-79. Skipping events were found in most of the different brain areas analyzed, with a higher frequency in the cerebellum and cortex.