## 1 Supplementary material for

| 3  | A coevolution experiment between Flavobacterium johnsoniae and Burkholderia                                            |
|----|------------------------------------------------------------------------------------------------------------------------|
| 4  | thailandensis reveals parallel mutations that reduce antibiotic susceptibility                                         |
| 5  |                                                                                                                        |
| 6  | John L. Chodkowski <sup>1</sup> and Ashley Shade <sup>1,2,3*</sup>                                                     |
| 7  | <sup>1</sup> Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA |
| 8  | <sup>2</sup> Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA  |
| 9  | <sup>3</sup> Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA        |
| 10 | * Corresponding author and material requests. Email: <u>shadeash@msu.edu</u> ; ORCiD: 0000-0002-7189-3067              |
| 11 |                                                                                                                        |
| 12 | Data and code availability: https://github.com/ShadeLab/Paper_Chodkowski_Coevolution_2022                              |

14 Supplementary Tables

### 16 Supplementary Table 1 Summary of *tolC* loci in *F. johnsoniae*

| Locus        | Protein ID            | Top blastp hit      | AA length |
|--------------|-----------------------|---------------------|-----------|
| FJOH_RS06580 | WP 012023347.1        | TolC family protein | 444       |
| FJOH_RS07030 | WP_012023433.1        | "                   | 451       |
| FJOH_RS08665 | <u>WP_012023747.1</u> | "                   | 461       |
| FJOH_RS14165 | <u>WP_012024794.1</u> | "                   | 415       |
| FJOH_RS15250 | <u>WP_012025000.1</u> | "                   | 436       |
| FJOH_RS15955 | <u>WP_008463753.1</u> | "                   | 415       |
| FJOH_RS16725 | <u>WP_012025212.1</u> | "                   | 469       |
| FJOH_RS16800 | <u>WP_012025225.1</u> | "                   | 484       |
| FJOH_RS17335 | <u>WP_044047818.1</u> | "                   | 426       |
| FJOH_RS20485 | <u>WP_012025935.1</u> | "                   | 472       |
| FJOH_RS22150 | <u>WP_044048008.1</u> | "                   | 461       |
| FJOH_RS22200 | <u>WP_012026267.1</u> | "                   | 412       |
| FJOH_RS22240 | <u>WP_012026275.1</u> | "                   | 472       |
| FJOH_RS23175 | <u>WP_012026451.1</u> | "                   | 417       |
| FJOH_RS25120 | <u>WP_012026826.1</u> | ۰۵                  | 479       |
| FJOH_RS25325 | <u>WP_012026867.1</u> | "                   | 439       |

- 19 Supplementary Table 2 Percent identity matrix for all TolC proteins annotated in *F. johnsoniae*. Mutations in
- 20 coevolved isolates were found in RS06580. Multiple sequence alignments were made using Clustal Omega

|         |       | 1     | 1     |       |       |       |       | 1     | 1     |       |       |       |       | 1     | 1     | ,   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| RS06580 | 100   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |     |
| RS15250 | 24.2  | 100   |       |       |       |       |       |       |       |       |       |       |       |       |       |     |
| RS20485 | 15.99 | 15.5  | 100   |       |       |       |       |       |       |       |       |       |       |       |       |     |
| RS15955 | 13.94 | 11.86 | 13.51 | 100   |       |       |       |       |       |       |       |       |       |       |       |     |
| RS16800 | 16.46 | 15.21 | 14.84 | 16.19 | 100   |       |       |       |       |       |       |       |       |       |       |     |
| RS25120 | 15.15 | 14.65 | 12.29 | 18.49 | 31.99 | 100   |       |       |       |       |       |       |       |       |       |     |
| RS16725 | 19.07 | 18.78 | 11.62 | 18.09 | 32.03 | 29.68 | 100   |       |       |       |       |       |       |       |       |     |
| RS22240 | 15.46 | 15.08 | 13.89 | 16.71 | 28.6  | 34.48 | 40.51 | 100   |       |       |       |       |       |       |       |     |
| RS17335 | 17.71 | 19.84 | 14.68 | 16.48 | 15.38 | 13.95 | 15.61 | 15.3  | 100   |       |       |       |       |       |       |     |
| RS22150 | 18.02 | 17.5  | 15.11 | 11.83 | 14.15 | 15.82 | 15.92 | 15.42 | 16.67 | 100   |       |       |       |       |       |     |
| RS23175 | 16.84 | 15.3  | 13.35 | 14.48 | 18.53 | 17.26 | 15.84 | 15.32 | 15.95 | 13.57 | 100   |       |       |       |       |     |
| RS14165 | 17.36 | 14.82 | 13.66 | 16.49 | 17.05 | 18.09 | 14.51 | 14.78 | 13.06 | 18.25 | 23.08 | 100   |       |       |       |     |
| RS22200 | 17.05 | 17.69 | 12.37 | 17.21 | 15.37 | 14.11 | 14.8  | 15.82 | 18.68 | 15.17 | 22.19 | 28.1  | 100   |       |       |     |
| RS07030 | 20.15 | 18.72 | 14.77 | 14.66 | 14.63 | 14.11 | 14.5  | 14    | 17.95 | 16.1  | 15.38 | 12.94 | 14.21 | 100   |       |     |
| RS25325 | 20.54 | 19.55 | 15.84 | 12.87 | 13.51 | 13.51 | 16.12 | 15.62 | 12.5  | 21.22 | 16.71 | 15.4  | 14.86 | 24.65 | 100   |     |
| RS08665 | 22    | 21.84 | 17.36 | 14.33 | 14.47 | 16.2  | 19.01 | 16.41 | 18.59 | 18.76 | 15.03 | 18.16 | 18.59 | 20.15 | 20.35 | 100 |

### 22 Supplementary Table 3 Primers used in this study

| Primer | Sequence $(5' > 3')$                       | Description                                                                          |
|--------|--------------------------------------------|--------------------------------------------------------------------------------------|
| 1001   | TTGCTTATTTGGGAG<br>GAACAACA                | Used to amplify tolC for nested PCR round 1                                          |
| 1002   | CATCTGCTTTTGCAG<br>CGATGA                  | Used to amplify tolC for nested PCR round 1                                          |
| 1003   | GCTAGTCTAGAGCA<br>TCAGTTGAGTTTTCA<br>CTGGA | Used for nested PCR round 2 to construct pJC101 and pJC102; XbaI site underlined     |
| 1004   | GCTAGGGATCCAAG<br>CTTGCAACCTGGCTT<br>TC    | Used for nested PCR round 2 to construct pJC101 and pJC102;<br>BamHI site underlined |
| 1005   | AAATGACGGTCCCA<br>TCTCAAA                  | Used to amplify tolC to confirm successful mutant construction                       |
| 1006   | CCCATGTAAAACTTC<br>AATGCGT                 | Used to amplify tolC to confirm successful mutant construction                       |
| 1010   | TGAGAACCAAAGGC<br>TGGGAA                   | Used to amplify ragB/susD for nested PCR round 1                                     |
| 1011   | GGTACATTGTTTTCG<br>GCGCA                   | Used to amplify ragB/susD for nested PCR round 1                                     |
| 1012   | GCTAGTCTAGATGG<br>GGATTAACCAGCGA<br>CAG    | Used for nested PCR round 2 to construct pJC103; XbaI site underlined                |
| 1013   | GCTAGGGATCCTTCA<br>CCTGCATCGGCAGTT<br>C    | Used for nested PCR round 2 to construct pJC103; BamHI site underlined               |
| 1014   | ATGCTCCCGCAAAA<br>CCAAGA                   | Used to amplify ragB/susD to confirm successful mutant construction                  |
| 1015   | ATCAGGACCAGTTG<br>TTGCCG                   | Used to amplify ragB/susD to confirm successful mutant construction                  |

### 25 Supplementary Table 4 PCR conditions for nested PCR round 1

| Reagent                                                    | Volume (µL) |
|------------------------------------------------------------|-------------|
| Template (6.25 ng/ $\mu$ L)                                | 10          |
| Forward/Reverse primers (10 µM)                            | 2.5         |
| 10 mM dNTPs (Sigma-Aldrich, St. Louis, MO)                 | 1           |
| Phusion DNA polymerase (New England BioLabs,               | 0.5         |
| Ipswich, MA)                                               |             |
| Phusion 5X buffer (HF buffer for <i>tolC</i> and GC buffer | 9.5         |
| for <i>ragB/susD</i> )                                     |             |
| Nuclease-free water                                        | 24          |

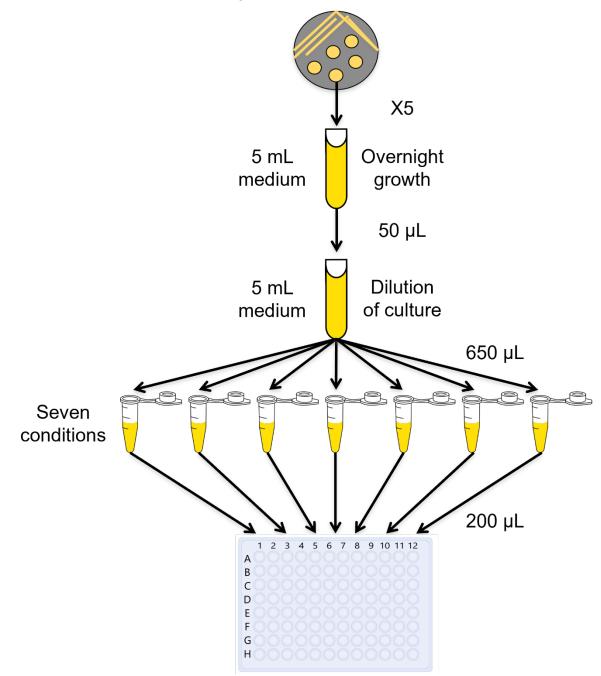
### 28 Supplementary Table 5 PCR conditions for nested PCR round 2

| Reagent                                                        | Volume (µL) |
|----------------------------------------------------------------|-------------|
| Template (1 ng/µL; PCR product from R1)                        | 0.5         |
| Forward/Reverse primers (10 µM)                                | 2.5         |
| 10 mM dNTPs                                                    | 1           |
| Phusion DNA polymerase                                         | 0.5         |
| Phusion 5X buffer (HF buffer for <i>tolC</i> and GC buffer for | 9.5         |
| ragB/susD)                                                     |             |
| Nuclease-free water                                            | 33.5        |

31 Supplementary Table 6 Reagents and reaction volumes for restriction enzyme digestion

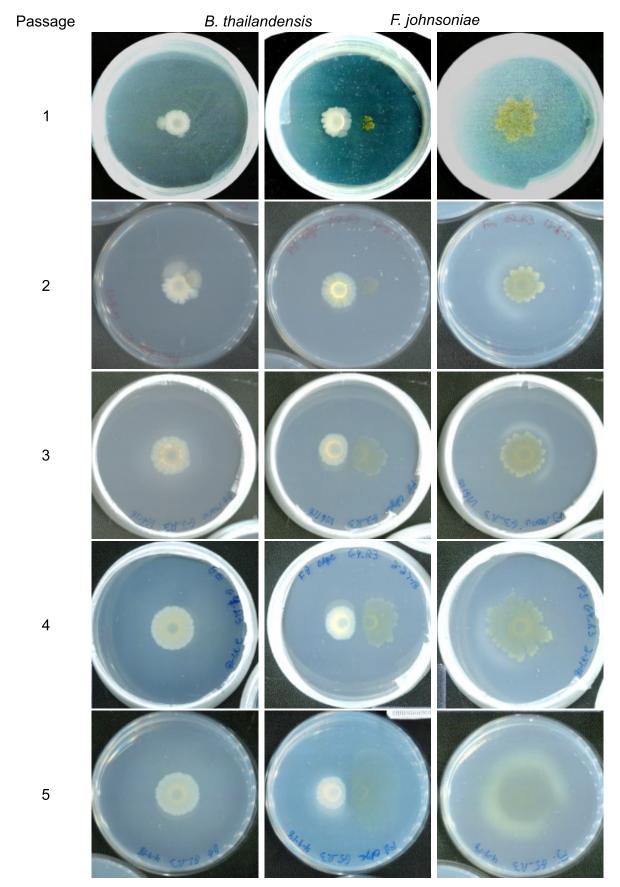
| Reagent                                                | Volume (µL)  |
|--------------------------------------------------------|--------------|
| Nested PCR R2 products or pYT354 (1 µg/µL)             | 1            |
| 10X cutsmart buffer (New England BioLabs, Ipswich, MA) | 5            |
| BamHI-HF (New England BioLabs, Ipswich, MA)            | 1 (20 units) |
| XbaI (New England BioLabs, Ipswich, MA)                | 1 (20 units) |
| Nuclease-free water                                    | 42           |

#### 34 Supplementary Table 7 Reagents and reaction volumes/mass for ligation reactions

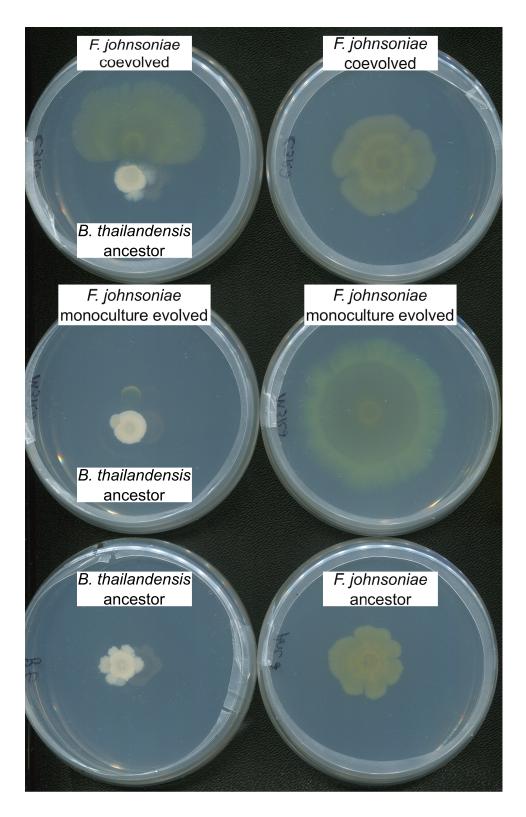

| Reagent                                                        | Volume/Mass         |
|----------------------------------------------------------------|---------------------|
| Insert (~3.2 for <i>tolC</i> , ~3.1 kbp for <i>ragB/susD</i> ) | Varied <sup>a</sup> |
| Vector (~7.7 kbp)                                              | 50 ng               |
| T4 DNA ligase (New England BioLabs, Ipswich, MA)               | 1 μL                |
| 10 X T4 DNA ligase buffer (New England BioLabs, Ipswich, MA)   | 2 μL                |
| Nuclease-free water                                            | Up to 20 μL         |

aTo achieve a 1:3 vector:insert molar ratio, 61.49 ng was used from *tolC*-containing PCR products and 59.37 ng

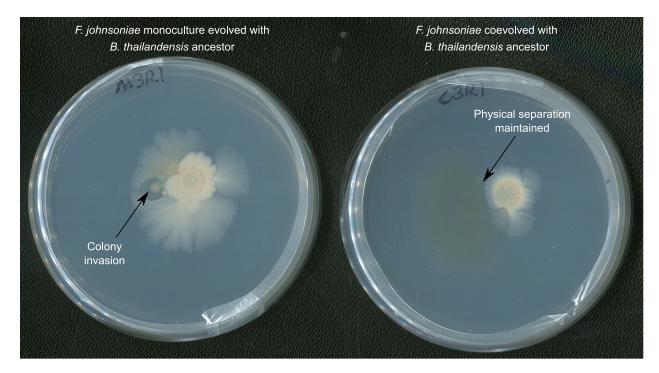
36 used from *ragB/susD*-containing PCR products.


38 Supplementary Figures

# F. johnsoniae UW101



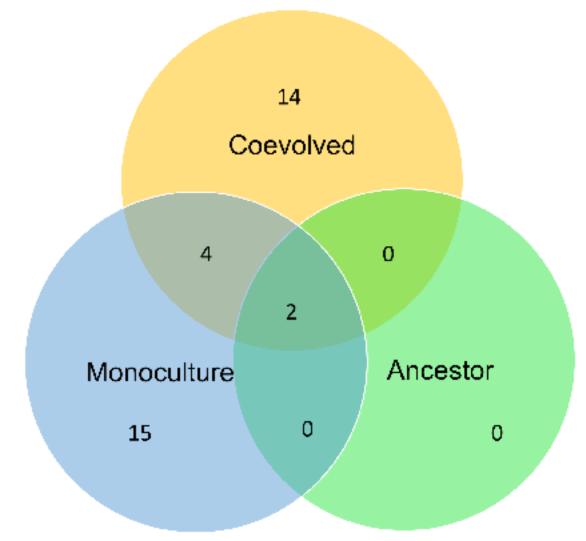

40


41 Supplementary Fig. 1 Schematic of preparation for efflux pump inhibitor experiment.



- 45
- 46 Supplementary Fig. 2 Colony morphologies and growth success over the (co)evolution experiment. Plate images
- 47 were taken at 1.5 months after each plate passage. Shown are colony morphologies and growth success of *B*.
- 48 *thailandensis* monoculture (column 1), co-plated *B. thailandensis-F. johnsoniae* (column 2), and *F. johnsoniae*
- 49 monoculture (column 3) for a representative independent replicate (rep 3). Each row is plate passage

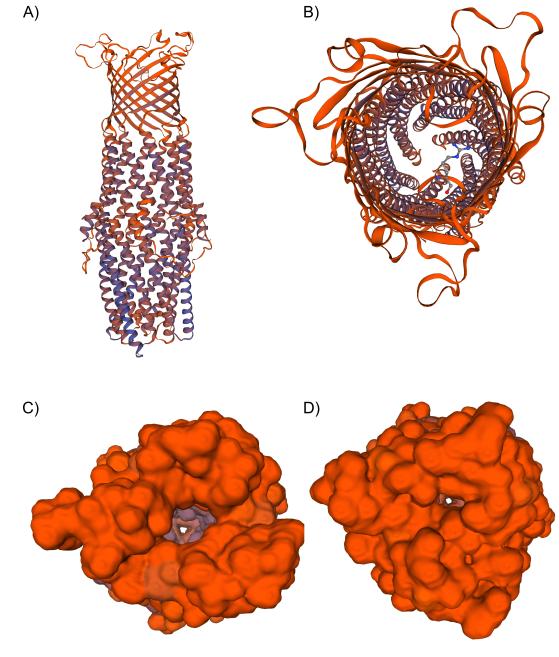



- 53 Supplementary Fig. 3 Coevolved F. johnsoniae has reduced susceptibility to a B. thailandensis-produced
- 54 antibiotic(s). Coevolved *F. johnsoniae* can grow better in the presence of *B. thailandensis* (column 1, top row)
- 55 compared to the monoculture evolved *F. johnsoniae* (column 1, middle row). Monocultures are shown as a growth
- 56 control (column 2, top and middle rows). Shown are evolved lines from one of the independent replicates (rep 3)
- 57 from the fifth plate passage. Ancestor *F. johnsoniae* and ancestor *B. thailandensis* are shown as additional
- 58 monoculture controls (bottom row). Images were taken after incubation for 1.5 months





61 Supplementary Fig. 4 Coevolved F. johnsoniae can resist colony invasion. On each plate, F. johnsoniae is on the

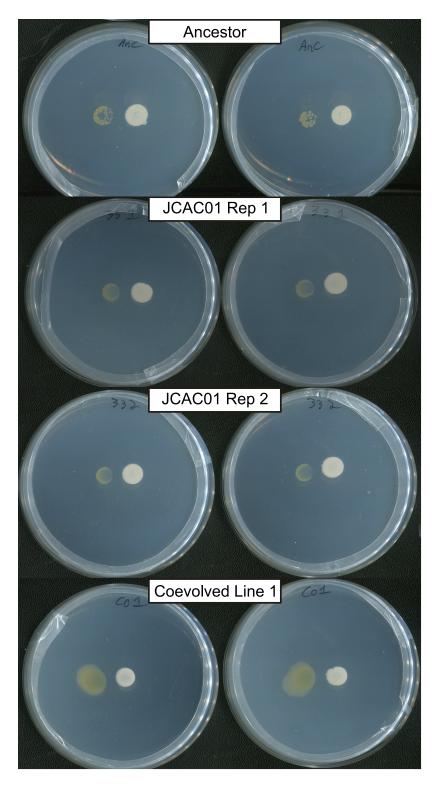

- 62 left and *B. thailandensis* (right) is on the right. The *B. thailandensis* ancestor was co-plated with *F. johnsoniae*
- 63 evolved monoculture (left plate) and *F. johnsoniae* coevolved (right plate) from the fifth plate passage. Plates were
- 64 incubated for 2.5 months to allow the chance for physical interactions to occur



67 Supplementary Fig. 5 Coevolved lines acquire unique mutations as a result of interspecies interactions. Shown is a

68 Venn diagram comparing distinctions and overlaps of gene loci where mutations were observed in the ancestor,

69 monoculture evolved lines, and coculture evolved lines




71

Supplementary Fig. 6 A nonsynonymous mutation in TolC narrows the opening of the efflux channel. A model of
TolC (A) with the G83R nonsynonymous mutation. TolC is rotated +90 about the x-axis in panels B-D such that
TolC is viewed from top looking down the channel. The G83R residue (B) is located on one of the extracellular
loops of TolC. The opening of the efflux channel in WT TolC (C) is predicted to narrow due to the G83R mutation
(D). TolC from *E. coli* was used as the template (SMTL ID: 6wxi.1) to construct the target *F. johnsoniae* WT TolC
(SWISS-MODEL: GMQE=0.6, Seq ID=19.06) and G83R TolC (SWISS-MODEL: GMQE= 0.59, Seq ID=19.06)
models.




- 80 Supplementary Fig. 7 A B. thailandensis btaK::T23 mutant with abrogated bactobolin production still inhibits F.
- 81 *johnsoniae*. B. thailandensis WT (top) and B. thailandensis btaK::T23 (bottom) was co-plated with F. johnsoniae
- 82 WT. Strains were also plated outside the interspecies interaction zone as controls



Supplementary Fig. 8 *F. johnsoniae* recombinants display a reduction in antibiotic susceptibility, but not to the
same degree observed in coevolved lines. The 33 bp deletion in FJOH\_RS06580 was placed into the *F. johnsoniae*ancestor and co-plated with *B. thailandensis*. Two confirmed successful recombinants (re∆33\_tolC, replicates 1&2)

- 89 are less inhibited by *B. thailandensis* compared to the *F. johnsoniae* ancestor but are more inhibited compared to the
- 90 coevolved line from which FJOH\_RS06580 was amplified to create the recombinants. All strains were co-plated
- 91 with the *B. thailandensis* ancestor. Plates were imaged after a month of incubation





**Supplementary Fig. 9** Growth success of *F. johnsoniae* strains when co-plated with *B. thailandensis. F. johnsoniae* strains (yellow) were plated in the vicinity of the *B. thailandensis* ancestor (beige, middle colony) to observe growth inhibition. In each panel, the *F. johnsoniae* ancestor (Anc; panels A-F), the *F. johnsoniae* coevolved replicates from the 5<sup>th</sup> plate passage (C1, panels A-F; C2-C5, panels A-E), the *F. johnsoniae* evolved monocultures from the 5<sup>th</sup> plate passage (M1-M5, panels A-E), and the *F. johnsoniae* recombinant strain, re $\Delta 33\_tolC$  ( $\Delta 33$ , panel F), were plated in a triangular formation around *B. thailandensis*. Duplicate colonies were spotted at the exterior of the plates as a growth control. Plates were imaged after a week of incubation