

Supplementary Figure 1. Diagram of transcription factors expressed in progenitors and postmitotic neurons in the developing spinal cord. Illustration shows selected transcription factors that are expressed in spinal cord neural tube progenitor domains (left side; pd1 - p3) or in postmitotic neurons (right side; dl1 - V3). Note that Chx10 is only expressed in the V2a subset of V2 interneurons. RP = roof plate, FP = floor plate. This figure is based on an existing body of knowledge about the transcriptional control of spinal cord specification¹⁻⁴.

Supplementary Figure 2. Axon outgrowth from GFP⁺ NPC grafts. (a) All images are GFP⁺ NPC grafts at 4 weeks post-transplantation into sites of cervical SCI. Scale bars = 100 μ m. (b) Individual data points for the data in **Figure 2i**.

Supplementary Figure 3. Some graft interneuron populations do not vary in abundance with developmental stage of donor NPCs. (a, d, g, j) Distribution of cell type-specific markers in intact P21 mouse spinal cord. (b, e, h, k) Images of NPC grafts at 4 weeks post-transplantation into sites of cervical SCI. Images within the same column in rows e, h, and e are different fluorescent channels of the same tissue section. (c, f, i, I) Quantification of the abundance of (c) Bhlhb5⁺, (f) Calb⁺/Parv⁻, (i) Parv⁺/Calb⁻, and (I) Calb⁺/Parv⁺ Renshaw interneurons in rat NPC grafts. *P<0.05, **P<0.01, ***P<0.001 by one-way ANOVA with Tukey's multiple comparisons test. E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8). All data are mean \pm SEM. Scale bars = 250 µm (a, d, g, j); 100 µm (b, e, h, k).

Supplementary Figure 4. Dorsal and ventral spinal cord interneuron populations vary with developmental stage of donor rat neural progenitor cells. (a, c, e, g) Images of cell type-specific markers in rat NPC grafts at 4 weeks following transplantation into the injured adult rat cervical spinal cord. Cartoons represent the spatial distribution of each neuronal cell type in the postnatal rat spinal cord. (b, d, f, h) Quantification of the abundance of (b) Tlx3⁺, (d) Lbx1⁺, (f) Foxp2⁺, and (h) Chx10⁺ interneurons in rat NPC grafts. *P<0.05, ***P<0.001, ****P<0.001 by one-way ANOVA with Tukey's multiple comparisons test. E13 (n=3 mice), E14 (n=3 mice), E15 (n=3 mice). All data are mean \pm SEM. Scale bars = 100 µm.

Supplementary Table 1. Primary and secondary antibodies used in this study.

Antibody	Catalog #	RRID	Dilution		
Primary antibodies					
Rabbit anti-5-HT ImmunoStar #20080		AB_572263	1:20,000		
Rabbit anti-Bhlhb5	Gift of Dr. Sarah Ross	Not listed	1:1,000		
Mouse anti-Brn3a	Millipore #MAB1585	AB_94166	1:200		
Chicken anti-Calbindin	EnCor #CPCA-Calb	AB_2572237	1:200		
Goat anti-CGRP	Abcam #ab36001	AB 725807	1:1,000		
Goat anti-ChAT	Genetex #GTX82725	AB 11162364	1:200		
Sheep anti-Chx10	Abcam #ab16141	AB_302278	1:200		
Rabbit anti-Foxp2	Abcam #ab16046	AB_2107107	1:200		
Chicken anti-GFP	Aves #GFP-1020	AB_10000240	1:1,500		
Goat anti-GFP	Rockland #600-101-215	AB_218182	1:1,500		
Rabbit anti-GFP	Thermo Fisher Scientific #A-	AB_221569	1:200		
	0:5 0	45.0500444	1.00.000		
Guinea pig anti-Lbx1	Gift of Drs. Carmen	AB_2532144	1:20,000		
	Birchmeier & Thomas Muller	15.000000	4.4.000		
Goat anti-mCherry	Sicgen #AB0040-200	AB_2333093	1:1,000		
Guinea pig anti-NeuN	Millipore #ABN90	AB_11205592	1:2,000		
Mouse anti-NeuN	Biolegend #834501	AB_2564991	1:200		
Rabbit anti-Nfib	Sigma #HPA 003956	AB_1854424	1:1,600		
Mouse anti-Nkx2.2	DSHB #74.5A5	AB_531794	1:50		
Mouse anti-Nkx6.1	DSHB #F55A12	AB_532379	1:50		
Rabbit anti-Olig2	Millipore #AB9610	AB_570666	1:200		
Rabbit anti-Parvalbumin	Swant #PV27	AB_2631173	1:200		
Rabbit anti-Pax6	Biolegend #901301	AB_2565003	1:50		
Mouse anti-Pax7	DSHB #Pax7	AB_528428	1:50		
Rabbit anti-Sox2	Abcam #ab97959	AB_2341193	1:200		
Goat anti-Sox9	R&D Systems #AF3075	AB_2194160	1:200		
Rabbit anti-Sox9	Abcam #ab185966	AB_2728660	1:2,000		
Rabbit anti-TIx3	Gift of Drs. Carmen	AB_2532145	1:10,000		
	Birchmeier & Thomas Müller				
Rabbit anti-Zfhx4	Sigma #HPA 023837	AB_1859013	1:100		
Secondary antibodies					
AlexaFluor 488 Affinipure	Jackson ImmunoResearch	AB_2340375	1:1,000		
donkey anti-chicken IgY	#703-545-155				
Cy3 Affinipure donkey	Jackson ImmunoResearch	AB_2340363	1:1,000		
anti-chicken IgY	#703-165-155				
AlexaFluor 647 Affinipure	Jackson ImmunoResearch	AB_2340379	1:1,000		
donkey anti-chicken IgY	#703-605-155				
AlexaFluor 488 Affinipure	Jackson ImmunoResearch	AB 2336933	1:1,000		
donkey anti-goat IgG	#705-545-147	_			
Cy3 Affinipure donkev	Jackson ImmunoResearch	AB 2307351	1:1,000		
anti-goat IgG	#705-165-147	_	, -		
AlexaFluor 647 Affinipure	Jackson ImmunoResearch	AB 2340437	1:1,000		
donkey anti-goat IgG	#705-605-147	_			

AlexaFluor 488 Affinipure	Jackson ImmunoResearch	AB_2340472	1:1,000
donkey anti-guinea pig	#706-545-148		
lgG			
AlexaFluor 647 Affinipure	Jackson ImmunoResearch	AB_2340476	1:1,000
donkey anti-guinea pig	#706-605-148		
lgG			
AlexaFluor 488 Affinipure	Jackson ImmunoResearch	AB_2340846	1:1,000
donkey anti-mouse IgG	#715-545-150		
Cy3 Affinipure donkey	Jackson ImmunoResearch	AB_2340813	1:1,000
anti-mouse IgG	#715-165-150		
Alexa Fluor Plus 555	Thermo Fisher Scientific	AB_2762848	1:200
donkey anti-mouse IgG	#A32773		
AlexaFluor 647 Affinipure	Jackson ImmunoResearch	AB_2340862	1:1,000
donkey anti-mouse IgG	#715-605-150		
AlexaFluor 488 Affinipure	Jackson ImmunoResearch	AB_2313584	1:1,000
donkey anti-rabbit IgG	#711-545-152		
Alexa Fluor Plus 488	Thermo Fisher Scientific	AB_2762833	1:200
donkey anti-rabbit IgG	#A32790		
Cy3 Affinipure donkey	Jackson ImmunoResearch	AB_2307443	1:1,000
anti-rabbit IgG	#711-165-152		
AlexaFluor 647 Affinipure	Jackson ImmunoResearch	AB_2492288	1:1,000
donkey anti-rabbit IgG	#711-605-152		
Cy3 Affinipure donkey	Jackson ImmunoResearch	AB_2340727	1:1,000
anti-sheep IgG	#713-165-003		
AlexaFluor Affinipure 647	Jackson ImmunoResearch	AB_2340750	1:1,000
donkey anti-sheep IgG	#713-605-003		

Supplementary Table 2. Detailed description of statistical analyses used in this study.

Fig.	Parameter	Group size (n)	Statistical test	Significance level
1c	Percent Sox2⁺ cells (24 h)	E11.5 (n=4 wells); E12.5 (n=5 wells); E13.5 (n=7 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 13) = 4.883; P = 0.0262 E11.5 vs. E13.5: P = 0.0227
1d	Percent Olig2 ⁺ cells (24 h)	E11.5 (n=4 wells); E12.5 (n=6 wells); E13.5 (n=7 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 14) = 4.012; P = 0.0419 No significant differences among groups
1e	Percent Pax6 ⁺ /Pax7 ⁻ cells (24 h)	E11.5 (n=4 wells); E12.5 (n=6 wells); E13.5 (n=6 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 13) = 122.2; P < 0.0001 E11.5 vs. E12.5: P < 0.0001 E11.5 vs. E13.5: P < 0.0001
1f	Percent Pax7 ⁺ cells (24 h)	E11.5 (n=4 wells); E12.5 (n=6 wells); E13.5 (n=6 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 13) = 0.1213; P = 0.8868 No significant differences among groups
1g	Percent Nkx2.2⁺ cells (24 h)	E11.5 (n=4 wells); E12.5 (n=6 wells); E13.5 (n=6 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 13) = 4.124; P = 0.0410 E11.5 vs. E13.5: P = 0.0364
1h	Percent Nkx6.1⁺ cells (24 h)	E11.5 (n=4 wells); E12.5 (n=6 wells); E13.5 (n=7 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 14) = 3.127; P = 0.0754 No significant differences among groups
1i	Percent NeuN⁺ cells (72 h)	E11.5 (n=4 wells); E12.5 (n=9 wells); E13.5 (n=6 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 16) = 0.1832; P = 0.8343 No significant differences among groups
1j	Percent Sox9⁺ cells (72 h)	E11.5 (n=4 wells); E12.5 (n=6 wells); E13.5 (n=5 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 12) = 3.184; P 0.0778 No significant differences among groups
1k	Percent Olig2 ⁺ cells (72 h)	E11.5 (n=4 wells); E12.5 (n=9 wells); E13.5 (n=6 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 16) = 0.9079; P = 0.4232 No significant differences among groups
11	Percent Sox2 ⁺ cells (72 h)	E11.5 (n=4 wells); E12.5 (n=6 wells); E13.5 (n=7 wells)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 14) = 0.2965; P = 0.7479 No significant differences among groups
1m	Percent Lbx1 ⁺ cells (72 h)	E11.5 (n=4 wells); E12.5	Ordinary one- way ANOVA with	F (2, 14) = 7.669; P = 0.0056

		(n=6 wells);	Tukey's multiple	E11.5 vs. E13.5: P = 0.0394
		E13.5 (n=7	comparisons test	E12.5 vs. E13.5: P = 0.0066
		wells)		E (0, 10) 0,011 E 0,0070
1n	Percent IIx3	E11.5 (n=4	Ordinary one-	F(2, 12) = 3.014; P = 0.0870
	cells (72 h)	Wells); $E12.5$	way ANOVA with	Ne significant differences emerge
		(n=6 wells);	Tukey's multiple	No significant differences among
		wells)	comparisons test	groups
10	Percent	E11.5 (n=4	Ordinary one-	F (2, 14) = 37.39; P < 0.0001
	Chx10 ⁺ cells	wells); E12.5	way ANOVA with	
	(72 h)	(n=6 wells);	Tukey's multiple	E11.5 vs. E12.5: P < 0.0001
		E13.5 (n=7	comparisons test	E11.5 vs. E13.5: P < 0.0001
1n	Porcont	$E_{11.5}$	Ordinary ono	E(2, 14) = 15, 44; P = 0,0003
ιp	Forcent Forcells	wells): E12.5	way ANOVA with	1 (2, 14) = 15.44, F = 0.0005
	(72 h)	(n=6 wells):	Tukey's multiple	E11.5 vs. E12.5: P = 0.0025
	(,	E13.5 (n=7	comparisons test	E11.5 vs. E13.5: P = 0.0002
		wells)	·	
2d	Graft neuron	E11.5 (n=11);	Ordinary one-	F (4, 58) = 9.818; P < 0.0001
	density	E12.5 (n=16);	way ANOVA with	
		E13.5 (n=16);	l ukey's multiple	E11.5 vs. E12.5: P = 0.0039
		dorsal ($n=12$);	comparisons test	E11.5 vs. dorsal: $P < 0.0001$
		ventral (n=o)		E11.5 vs. ventral: $P = 0.0000$
2f	Graft	F11.5 (n=11)	Ordinary one-	F(4, 58) = 5214 $P = 0.0012$
	astrocvte	E12.5 (n=16):	way ANOVA with	
	density	E13.5 (n=16);	Tukey's multiple	E11.5 vs. ventral: P = 0.0370
		dorsal (n=12);	comparisons test	E12.5 vs. dorsal: P = 0.0156
		ventral (n=8)		E12.5 vs. ventral: P = 0.0020
2h	Graft	E11.5 (n=11);	Ordinary one-	F (4, 57) = 2.974; P = 0.0267
	oligodendrocy	E12.5 (n=16);	way ANOVA with	$E_{12}E_{12}$ such that $B = 0.0222$
	te density	E 13.3 (11-13),	comparisons tost	E 12.5 vs. ventral. P = 0.0322
		ventral ($n=8$)		
2i	Graft axon	E11.5 (n=11);	Two-way	Distance x Treatment main
	outgrowth	E12.5 (n=16);	repeated	effect: F (60, 870) = 3.242, P <
		E13.5 (n=16);	measures	0.0001
		dorsal (n=12);	ANOVA with	Distance main effect: F (1.393,
		ventral (n=8)	l ukey's multiple	80.79 = 88.77 , P < 0.0001
			comparisons test	$=$ 8.205 $\square < 0.0001$
				= 8.305, P < 0.0001
				= 10.85, P < 0.0001
				-2000 µm:
				E11.5 VS. $E12.5$: $P = 0.0009E11.5$ VS. $E12.5$: $P = 0.0010$
				E11.5 vs. $E15.5$. $P = 0.0010E11.5$ vs. dorsal: $P = 0.0009$
				F = 0.0009 F11 5 vs. ventral: P = 0.0020
				-1750 μm:
				E11.5 vs. E12.5: P = 0.0217
				-1500 µm:
				E11.5 vs. E12.5: P = 0.0027
				E11.5 vs. E13.5: P = 0.0079

		E11.5 vs. dorsal: P = 0.0039 E11.5 vs. ventral: P = 0.0092
		-1250 μm: E11.5 vs. E12.5: P = 0.0075 E11.5 vs. dorsal: P = 0.0132 E11.5 vs. ventral: P = 0.0154
		-1000 μm: E11.5 vs. E12.5: P = 0.0082 E11.5 vs. E13.5: P = 0.0161 E11.5 vs. dorsal: P = 0.0149 E11.5 vs. ventral: P = 0.0112
		-750 μm: E11.5 vs. E12.5: P = 0.0070 E11.5 vs. dorsal: P = 0.0192 E11.5 vs. ventral: P = 0.0180
		-500 μm: E11.5 vs. E12.5: P = 0.0167
		-250 μm: E11.5 vs. E12.5: P = 0.0024 E12.5 vs. dorsal: P = 0.0213
		+250 μm: E11.5 vs. E12.5: P = 0.0121 E12.5 vs. dorsal: P = 0.0386 E12.5 vs. ventral: P = 0.0391
		+500 μm: E11.5 vs. E12.5: P = 0.0116 E11.5 vs. ventral: P = 0.0247
		+750 μm: E11.5 vs. E12.5: P = 0.0055 E11.5 vs. dorsal: P = 0.221 E11.5 vs. ventral: P = 0.0105
		+1000 μm: E11.5 vs. E12.5: P = 0.0048 E11.5 vs. E13.5: P = 0.0290 E11.5 vs. dorsal: P = 0.0117 E11.5 vs. ventral: P = 0.0059
		+1250 μm: E11.5 vs. E12.5: P = 0.0041 E11.5 vs. E13.5: P = 0.0291 E11.5 vs. dorsal: P = 0.0086 E11.5 vs. ventral: P = 0.0056
		+1500 μm: E11.5 vs. E12.5: P = 0.0282 E11.5 vs. ventral: P = 0.0317

				 +1750 μm: E11.5 vs. E12.5: P = 0.0091 E11.5 vs. E13.5: P = 0.0135 E11.5 vs. dorsal: P = 0.0152 E11.5 vs. ventral: P = 0.0082 +2000 μm: E11.5 vs. E12.5: P = 0.0046 E11.5 vs. E13.5: P = 0.0093 E11.5 vs. dorsal: P = 0.0093 E11.5 vs. ventral: P = 0.0074
3c	Graft TIx3⁺ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 18.27; P < 0.0001 E11.5 vs. E12.5: P = 0.0211 E11.5 vs. E13.5: P < 0.0001 E11.5 vs. dorsal: P = 0.0071 E12.5 vs. E13.5: P = 0.0048 E12.5 vs. ventral: P = 0.0004 E13.5 vs. ventral: P < 0.0001 Dorsal vs. ventral: P = 0.0001
3f	Graft Lbx1 ⁺ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 27.24; P < 0.0001 E11.5 vs. E12.5: P = 0.0027 E11.5 vs. E13.5: P < 0.0001 E11.5 vs. dorsal: P = 0.0152 E12.5 vs. E13.5: P < 0.0001 E12.5 vs. ventral: P = 0.0001 E13.5 vs. dorsal: P < 0.0001 E13.5 vs. ventral: P < 0.0001 Dorsal vs. ventral: P = 0.0008
3i	Percent graft calbindin⁺ cell cluster area	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 22.25; P < 0.0001 E11.5 vs. E12.5: P = 0.0063 E11.5 vs. E13.5: P < 0.0001 E11.5 vs. dorsal: P = 0.0021 E12.5 vs. E13.5: P = 0.0011 E12.5 vs. ventral: P = 0.0001 E13.5 vs. dorsal: P = 0.0191 E13.5 vs. ventral: P < 0.0001 Dorsal vs. ventral: P < 0.0001
31	Graft Brn3a⁺ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=15); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 57) = 5.686; P = 0.0006 E12.5 vs. ventral: P = 0.0011 Dorsal vs. ventral: P = 0.0010
30	Graft Foxp2⁺ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 8.134; P < 0.0001 E12.5 vs. E13.5: P = 0.0004 E12.5 vs. dorsal: P = 0.0001 Dorsal vs. ventral: P = 0.0311
3r	Graft Chx10⁺ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 4.083; P = 0.0055 E13.5 vs. ventral: P = 0.0434 Dorsal vs. ventral: P = 0.0033

4c	Chx10-	E11.5 (n=7);	Ordinary one-	F (2, 18) = 7.243; P = 0.0049
	cre::Ai14 graft	E12.5 (n=6);	way ANOVA with	
	V2a neuron	E13.5 (n=8)	Tukey's multiple	E11.5 vs. E12.5: P = 0.0155;
	density		comparisons test	E11.5 vs. E13.5: P = 0.0078
4e	Chx10-	E11.5 (n=7);	Ordinary one-	F (2, 17) = 15.01; P = 0.0002
	cre::Ai14 graft	E12.5 (n=5);	way ANOVA with	
	Nfib⁺ cell	E13.5 (n=8)	Tukey's multiple	E11.5 vs. E13.5: P = 0.0001
	density		comparisons test	E12.5 vs. E13.5: P = 0.0340
4f	Chx10-	E11.5 (n=7);	Ordinary one-	F (2, 17) = 0.005486; P = 0.9945
	cre::Ai14 graft	E12.5 (n=5);	way ANOVA with	
	td I omato'/	E13.5 (n=8)	I ukey's multiple	No significant differences among
			comparisons test	groups
46		[-115(n-7)]	Ordinary and	$\Gamma(2, 15) = 15(10) P = 0.0002$
40	CIXIO-	$E = 11.3 (\Pi - 1),$ E = 12.5 (n - 1):	Ordinary one-	F(2, 15) = 15.19, P = 0.0002
	Zfby4 ⁺ coll	E12.5(11-4), E12.5(n-7)	Tukov's multiplo	$E_{11} = 0.0230$
	density	E 13.5 (1-7)	comparisons test	E11.5 vs. E12.5. F = 0.0230 E11.5 vs. E13.5: P = 0.0002
Δi	Chy10-	F11.5 (n=7)	Ordinary one-	E(2, 15) = 6,234 $P = 0,0107$
	cre Ai14 graft	F12.5 (n=4)	way ANOVA with	
	tdTomato ⁺ /	E13.5 (n=7)	Tukev's multiple	E11.5 vs. E13.5: P = 0.0105
	Zfhx4⁺ cell		comparisons test	
	density			
5c	Regeneration	E11.5 (n=11);	Ordinary one-	F (4, 58) = 11.11; P < 0.0001
	of 5-HT⁺	E12.5 (n=16);	way ANOVA with	
	axons in	E13.5 (n=16);	Tukey's multiple	E11.5 vs. E12.5: P < 0.0001
	grafts	dorsal (n=12);	comparisons test	E11.5 vs. E13.5: P = 0.0002
		ventral (n=8)		E11.5 vs. dorsal: P < 0.0001
5d	Regeneration	E11.5 (n=11);	Ordinary one-	F (4, 58) = 4.277, P = 0.0042
	of CGRP ⁺	E12.5 (n=16);	way ANOVA with	
	axons in	E13.5 (n=16);	Tukey's multiple	E11.5 vs. E13.5: P = 0.0380
	grafts	dorsal (n=12);	comparisons test	E12.5 vs. E13.5: P = 0.0053
		ventral (n=8)		E13.5 vs. ventral: P = 0.0475
60	Contusion	Venicle $(n=10);$	Ordinary one-	F(3, 33) = 1.410, P = 0.2574
	displacement	E11.5 (n=10);	Tukov'a multiple	No significant differences among
	scores	E12.5 (II-10), E13.5 (n-7)	comparisons tost	aroups
60	Graft volume	Vehicle $(n=10)$	Ordinary one-	F(2, 24) = 1.255 P = 0.3032
00		F11.5 (n=10)	way ANOVA with	(2, 24) = 1.200, 1 = 0.0002
		F12.5 (n=10)	Tukey's multiple	No significant differences among
		E13.5 (n=7)	comparisons test	aroups
6d	Graft	Vehicle (n=10);	Ordinary one-	F (2, 24) = 0.3020, P = 0.7421
	neuronal	E11.5 (n=10);	way ANOVA with	
	density	E12.5 (n=10),	Tukey's multiple	No significant differences among
		E13.5 (n=7)	comparisons test	groups
6e	Basso Mouse	Vehicle (n=10);	Two-way	Time x Treatment main effect: F
	Scale open	E11.5 (n=10);	repeated	(21, 231) = 1.4884, P = 0.051
	field	E12.5 (n=10),	measures	
	locomotor	E13.5 (n=7)	ANOVA	
	scores			
6f	Hargreaves	Vehicle (n=10);	Repeated	All four groups:
	scores	E11.5 (n=8);	measures	Lime x Treatment main effect: F
		⊨12.5 (n=10),	ANOVA with	(21, 203) = 2.599, P = 0.0004
		⊨13.5 (n=5)	animals missing	
			scores on day 14	Time transplanted groups:
			deleted (for all 4	1 Inne x I reatment main effect: F
1	1		groups and for	(14, 120) - 2.302, P = 0.0000

			the 3 transplanted groups only)	
S3c	Graft Bhlhb5⁺ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 3.485; P = 0.0128 E11.5 vs. dorsal: P = 0.0365 E12.5 vs. dorsal: P = 0.0224
S3f	Graft Calb⁺/Parv⁻ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 6.374; P = 0.0003 E12.5 vs. dorsal: P = 0.0203 E13.5 vs. ventral: P = 0.0027 Dorsal vs. ventral: P = 0.0007
S3i	Graft Calb⁻ /Parv⁺ cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 2.045; P = 0.0999 No significant differences among groups
S3I	Graft Renshaw cell density	E11.5 (n=11); E12.5 (n=16); E13.5 (n=16); dorsal (n=12); ventral (n=8)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (4, 58) = 3.082; P = 0.0227 No significant differences among groups
S4b	Graft Tlx3⁺ cell density	E13 (n=3); É14 (n=3); E15 (n=3)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 6) = 32.52; P = 0.0006 E13 vs. E14: P = 0.0134 E13 vs. E15: P = 0.0005 E14 vs. E15: P = 0.0195
S4d	Graft Lbx1 ⁺ cell density	E13 (n=3); E14 (n=3); E15 (n=3)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 6) = 7.792; P = 0.0215 E13 vs. E15: P = 0.0225
S4f	Graft Foxp2⁺ cell density	E13 (n=3); E14 (n=3); E15 (n=3)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 6) = 1.679; P = 0.2635 No significant differences among groups
S4h	Graft Chx10⁺ cell density	E13 (n=3); E14 (n=3); E15 (n=3)	Ordinary one- way ANOVA with Tukey's multiple comparisons test	F (2, 6) = 91.63; P < 0.0001 E13 vs. E14: P < 0.0001 E13 vs. E15: P < 0.0001

Supplementary References

- Lu, D. C., Niu, T. & Alaynick, W. A. Molecular and cellular development of spinal cord locomotor circuitry. *Frontiers in molecular neuroscience* **8**, 25, doi:10.3389/fnmol.2015.00025 (2015).
- 2 Alaynick, W. A., Jessell, T. M. & Pfaff, S. L. SnapShot: spinal cord development. *Cell* **146**, 178-178 e171, doi:10.1016/j.cell.2011.06.038 (2011).
- 3 Lai, H. C., Seal, R. P. & Johnson, J. E. Making sense out of spinal cord somatosensory development. *Development* **143**, 3434-3448, doi:10.1242/dev.139592 (2016).
- 4 Helms, A. W. & Johnson, J. E. Specification of dorsal spinal cord interneurons. *Curr Opin Neurobiol* **13**, 42-49 (2003).