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Supplementary Note 1. Performance of DeepH-E3 on monolayer graphene and MoS2

Detailed analysis of the performance of DeepH-E3 studying monolayer graphene and MoS2 can be found in Sup-
plementary Figure 1.
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Supplementary Figure 1. Performance of DeepH-E3 studying monolayer graphene and MoS2, compared to DeepH. (a,b) Mean
absolute errors (MAEs) of DFT Hamiltonian matrix elements for different orbitals obtained by DeepH and DeepH-E3 studies
of monolayer graphene. (c) Band structures of a perturbed graphene supercell computed by DeepH-E3 and DFT. (d-f) Results
for monolayer MoS2, similar to (a-c). The MAEs are averaged over all bonds and all structures in the test set. The band
structures are calculated from a randomly selected structure from the test set. Source data are provided with this paper.

Supplementary Note 2. Comparison of VASP and OpenMX on studying twisted bilayer graphene

To check the influence of basis set and pseudopotential on DFT results, we calculated the electronic structure of
a twisted bilayer graphene (twist angle θ = 6.01◦) by VASP and OpenMX as shown in Supplementary Figure 2.
Our test calculations indicate that the use of different basis sets and pseudo potentials (VASP vs. OpenMX) has
minor influence on the calculated electronic bands, especially those near the Fermi level, at least for this particular
material. As the size of material system increases, the calculation gets more and more difficult to converge and the
corresponding numerical error typically grows, which might enhance the band-structure discrepancies between the
two approaches. This, however, is difficult to check for the magic-angle twisted bilayer graphene, because we cannot
do the benchmark calculation directly by using the OpenMX code as limited by the huge computational cost.

Supplementary Note 3. Detailed results of bilayer bismuthene and Bi2Se3

To test the performance of DeepH-E3 on studying materials with strong SOC, we carry out experiments on bilayers
of 2D materials Bi2Se3 and bismuthene. The averaged MAE of the Hamiltonian matrix on non-twisted bilayer Bi2Se3
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Supplementary Figure 2. Band structures of twisted bilayer graphene with twist angle θ = 6.01◦ calculated by VASP and
OpenMX. Source data are provided with this paper.

and bismuthene test sets are as low as 0.42 meV and 0.26 meV, respectively. The network also has outstanding
accuracy on the twisted structures. For twisted Bi2Se3 with twist angle θ = 13.2◦, the averaged MAE is 0.35 meV.
For twisted bismuthene with θ = 7.34◦, the averaged MAE is 0.30 meV. The MAEs and predicted band structures
are shown in Supplementary Figure 3.

To find the optimal model hyperparameter setup for practical twisted material study, a model with reduced number
of parameters is also tested on the Bi2Se3 dataset. The results are summarized in Supplementary Table 1. We find
that the accuracy of the reduced model is also sufficient for practical use, and the reduced model only takes 30 hours
by one GPU for training.

Supplementary Table 1. Comparison of two models on studying nontwisted and twisted bilayer Bi2Se3. The model parameters
are all real numbers, and mean absolute errors (MAEs) are in units of meV. a

Model Training time Number of parameters MAE (nontwisted) MAE (θ = 13.2◦)

Full 3d 10h 1.5× 106 0.42 0.35
Reduced 1d 6h 5.9× 105 0.79 0.63

a Both full and reduced models are trained on a single NVIDIA GeForce RTX 3090 GPU. The reduced model can reach sub-meV
precision as well, which is remarkable because the model is required to fit 2.8× 109 complex matrix elements.

Supplementary Note 4. Network hyperparameters and their selection strategy

Summary of the network hyperparameter setup for each material system can be found in Supplementary Table 2.
In our experiments, we find that most of the hyperparameters have minor influence on the final model performance
as long as they are within a reasonable range. We select the optimal hyperparameters by the following strategies. On
the learning rate, we find that too large learning rate might cause instability in the training process: the loss function
might suddenly blow up to a very high value. Too small learning rate will make the training slow and increase the
probability of overfitting. Therefore, we first restrict the learning rate within a reasonable range to avoid these two
situations, and then select the learning rate that gives the best model. On the batch size, it is usually limited by the
computer memory. One single crystalline structure can have as many as ∼ 106 Hamiltonian matrix elements, so the
batch size is usually chosen to be 1. When studying relatively simple materials, the batch sizes will be increased in
order to speed up the training process. On hyperparameters that are related to the expressive power of the model,
such as the length of the internal vertex and edge features, the maximum angular momentum of spherical harmonics
and the number of message-passing layers, there is a tradeoff between the network performance and the training time.
Usually, more complex neural networks could realize smaller prediction error. We choose those parameters to make
sure that we could produce the best results within an affordable training time.
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Supplementary Figure 3. Performance of DeepH-E3 on twisted bilayer bismuthene and Bi2Se3 . (a,b) Mean absolute errors
(MAEs) of DFT Hamiltonian matrix elements for different orbitals obtained by DeepH-E3 studies of (a) non-twisted and (b)
twisted bilayer bismuthene test sets. (c) Band structure of twisted bilayer bismuthene computed by DeepH-E3 and DFT. (d-f)
Results for bilayer Bi2Se3, similar to (a-c). The MAEs are averaged over all bonds and all structures in the test set. The twist
angle θ = 7.34◦ for twisted bilayer bismuthene and θ = 13.2◦ for twisted bilayer Bi2Se3. Source data are provided with this
paper.

Supplementary Table 2. Summary of hyperparameter setup in the experiments discussed in this work. Here lmax is the
maximum degree of spherical harmonics used. Each layer contains one vertex update block and one edge update block. 32x1o
denotes 32 vectors carrying the l = 1 representation with odd parity, similar for others. The networks are optimized using
Adam algorithm with β1 = 0.9, β2 = 0.999. Models for bilayer Bi2Te3 with and without SOC used the same hyperparameters.

System
Number of structures Intermediate edge

and vertex features
lmax # layers Learning

rate
Batch

Training Validation Test

Monolayer graphene 270 90 90 64x0e+32x1o+16x2e+8x3o+8x4e+4x5o 5 3 0.003 1
Monolayer MoS2 300 100 100 64x0e+32x1o+16x2e+8x3o+8x4e+4x5o 5 3 0.005 1
Bilayer graphene 180 60 60 64x0e+32x1o+16x2e+8x3o+8x4e+4x5o 5 3 0.003 1

Bilayer bismuthene 231 113 113 64x0e+32x1o+16x2e+8x3o+8x4e+4x5o 5 3 0.005 1
Bilayer Bi2Se3 231 113 113 64x0e+32x1o+16x2e+8x3o+8x4e+4x5o 5 3 0.005 1

Bilayer Bi2Se3 (reduced) 231 113 113 32x0e+16x1o+8x2e+4x3o+4x4e 4 3 0.002 1
Bilayer Bi2Te3 204 38 12 64x0e+32x1o+16x2e+8x3o+8x4e 5 3 0.004 2

Ethanol 25000 500 4500 64x0e+32x1o+16x2e+8x3o+8x4e+4x5o 5 4 0.005 300

Supplementary Note 5. The use of E3LayerNorm

Batch normalization [1] and layer normalization [2] are widely adopted techniques in machine learning to make
the training process of neural networks efficient and stable. For DeepH-E3, batch normalization is not very helpful
because every single crystalline material structure for training has a large amount of Hamiltonian matrix elements
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and thus the batch size is usually chosen to be small. In this situation, it will be useful to develop a normalization
scheme using the layer statistics while fully respecting the equivariance of the feature vectors. In our experiments, we
find that the introduction of E3LayerNorm significantly stabilizes the training process (Supplementary Figure 4), thus
enables higher learning rates, which is not only beneficial for the optimization of the neural network parameters but
also improves the generalization ability of the model. In producing Supplementary Figure 4, we used the monolayer
MoS2 dataset for training, with 3 layers, starting learning rate 0.01, batch size 4, lmax = 4 and intermediate feature
vectors 64x0e+32x1o+16x2e+8x3o+8x4e.
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Supplementary Figure 4. Comparison of the training process with or without E3LayerNorm, using the monolayer MoS2 dataset.
The vertical axis measures the mean squared error of Hamiltonian matrix elements in unit of eV2. When the loss blows up
and does return to normal within 20 epochs, the model is automatically reverted to the state before with minimum loss, and
learning rate is decreased by a factor of 0.8. Source data are provided with this paper.
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