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1.1 AttentionSiteDTI

Our proposed framework is built based on our previously developed model,
called AttentionSiteDTI, which was initially developed for the classification task
of Drug-Target Interaction (DIT) prediction. AttentionSiteDTI is inspired by
models developed for sentence classification in the field of Natural Language
Processing (NLP), where the drug-target complex is treated as a natural lan-
guage sentence with structural and relational meaning between its biochemical
entities, a.k.a. protein pockets and drug molecule. In this regard, each protein
pocket or drug is analogous to a word, and each drug-target pair is analogous
to a sentence. AttentionSiteDTI utilized an end-to-end Graph Convolutional
Neural Network (GCNN)-based model to simultaneously learn context-sensitive
graph embeddings of protein pockets and small molecules as well as a DTI pre-
diction model capturing contextual and relational information contained in the
sentence.

Unlike most of the graph-based models that use amino acid sequence rep-
resentations for proteins, our model uses the 3D representation of pocket-like
regions of the proteins as the input for target proteins. Considering the fact
that the intermolecular interactions between protein and many ligands occur
at different binding pockets (of the protein’s surface) rather than the whole
protein, in our model, we represent protein pockets as graphs where the key
protein residues correspond to the nodes that are connected based on residue
proximity. Furthermore, the features associated with each node are encoded as
a vector describing the local amino acid environment.

AttentionSiteDTI is highly generalizable due to the use of protein pockets
encoded as graphs to represent the target protein. This allows the model to
focus on learning generic topological features from protein pockets, which can
be generalized to new proteins that are not similar to the ones in the train-
ing data. AttentionSiteDTI is also highly explainable due to its self-attention
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Figure 1: Architecture of AttentionSiteDTI: Following the extraction of pro-
tein’s binding sites, the graphs of protein pockets and ligands are constructed
and fed into a graph convolutional neural network to learn corresponding graph
embeddings. The concatenated representations are then fed into a binary classi-
fier for predicting drug-target interactions. The self-attention mechanism in the
network uses concatenated embeddings to compute the attention output, which
enables interpretability by making the model learn the most probable binding
sites of the protein in interaction with the ligand in a given drug-target pair.

mechanism, which is used to capture any relationship between binding sites of
a given protein and the drug in a sequence (i.e., sentence) and thus provide a
better understanding of their binding relationships. To be self-contained, here
we provide a brief description of AttentionSiteDTI, and we refer the readers to
the original paper for more details (1).

AttentionSiteDTI is an end-to-end graph-based deep learning model which
was originally designed to address the problem of drug-target interaction pre-
diction. It consists of four modules: (1) data preparation to find the binding
sites of the proteins using the algorithm proposed in (2), (2) graph embedding
learning module to learn the embeddings from constructed graphs of protein
pockets and ligands as the inputs to the graph convolutional neural network,
(3) prediction module to predict drug-target interactions using learned drug-
target complex representations, and (4) interpretation module, quipped with a
self-attention mechanism, to detect the most probable binding sites of the pro-
tein when interacting with the ligand in a given drug-target pair. The output
of this module is indeed the main component that we use in this study to make
the DTA prediction models focus on the most important parts of the protein
when learning interactions between drug-target pairs.

1.2 Experiments Setup and Hyperparameters

The hyper-parameter settings for the eight models were found by grid search
and utilized and kept the same as reported in their original studies. For that,
five training sets were used in 5-fold cross-validation to train the model, and
the final CI scores were reported as the average of these five results. These
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hyper-parameters are summarized in 1 and 2.

Table 1: Summary of Parameter Setting for String Representation-Based Models

Hyperparameters DeepDTA WideDTA AttentionDTA

Number of filters 32,64,96 32,64 32,64,96
Filter length (compounds) [4,6,8] - [4, 6, 8]
Filter length (proteins) [4,8,12] - [4, 6, 12]
Epoch 100 100 350
Hidden neurons 1024,1024,512 1024,1024,512 -
Batch size 256 256 64(Davis)- 256(KIBA)
Dropout 0.1 0.3 -
Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.0001

Table 2: Summary of Parameter Setting for Graph Representation-Based Mod-
els
Hyperparameters GraphDTA-GAT GraphDTA-GIN DGraphDTA DeepGS

FC layers after GNN 1 1 2 1
FC layers after concatination 4 8 2 4
GIN layers 0 5 0 0
GAT layers 2 0 0 0
Epoch 100 100 2000 100
Batch size 512 512 512 1
Dropout 0.2 0.2 0.2 0.2
Optimizer Adam Adam Adam Adam
Learning rate 0.0005 0.0005 0.001 0.0001

Since the model should always be trained under distinct prediction scenarios
and regarding the fact that the few labeled data points from lab experiments are
inadequate for training the models from scratch, we train AttentionSitDTI and
DeepDTA on the BindingDB dataset, which includes a wide variety of drug-
like compounds and target proteins. This enables both models to learn generic
rules governing the ligand-protein interactions from the BindingDB dataset,
containing 2,303,972 binding data for 8,561 protein targets and 995,797 small
molecules, as of July 2021. Once the general complex interaction patterns are
extracted, the models then utilize this pre-learned knowledge and transfer it to
the specific task of binding affinity prediction between 13 drug-like compounds
and the Spike-ACE2 complex.

1.3 Tabular Results on Kiba and Davis Datasets

Tabular results for KIBA and Davis datasets are provided below in Tables 3 and
4. Also, we performed the one-tailed t-test at the significance level of α = 0.05
to test whether improved performance of the models wiht AttentionSiteDTI is
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statistically significantly compared to those of in the plain version of the models.

Table 3: Comparison with state-of-the-arts on Kiba dataset
Without AttentionSiteDTI With AttentionSiteDTI

Methods CI(std) MSE r2m (std) AUPR (std) CI(std) MSE r2m (std) AUPR (std)

String Representation-Based Approaches

DeepDTA 0.863 (0.001) 0.194 0.673 (0.009) 0.788 (0.004) 0.881 (0.003) 0.151 0.778 (0.004) 0.830 (0.002)

WideDTA 0.875 (0.001) 0.179 0.675 (0.009) 0.788 (0.002) 0.880 (0.004) 0.170 0.764 (0.001) 0.821 (0.003)

AttentionDTA 0.882 (0.006) 0.162 0.735 (0.005) 0.829 (0.002) 0.874 (0.009) 0.152 0.777 (0.005) 0.830 (0.002)

Graph Representation-Based Approaches

GraphDTA-GAT 0.849 (0.003) 0.189 0.726 (0.003) 0.806 (0.002) 0.886 (0.001) 0.157 0.775 (0.004) 0.826 (0.001)

GraphDTA-GIN 0.859 (0.001) 0.168 0.724 (0.007) 0.803 (0.004) 0.887 (0.002) 0.147 0.788 (0.006) 0.831 (0.001)

DGraphDTA 0.904 (0.002) 0.126 0.786 (0.006) 0.827 (0.003) 0.912 (0.001) 0.119 0.799 (0.007) 0.840 (0.002)

DeepGS 0.841 (0.005) 0.367 0.659 (0.002) 0.740 (0.006) 0.889 (0.003) 0.201 0.771 (0.005) 0.792 (0.002)

DeepH-DTA 0.927 (0.003) 0.111 0.799 (0.004) 0.861 (0.002) - - - -

Table 4: Comparison with state-of-the-arts on Davis dataset
Without AttentionSiteDTI With AttentionSiteDTI

Methods CI(std) MSE r2m (std) AUPC CI(std) MSE r2m (std) AUPC

String Representation-Based Approaches

DeepDTA 0.878 (0.008) 0.261 0.630 (0.002) 0.714 (0.004) 0.887 (0.003) 0.209 0.734 (0.002) 0.820 (0.002)

WideDTA 0.886 (0.008) 0.262 0.633 (0.007) 0.711 (0.003) 0.894 (0.004) 0.241 0.709 (0.004) 0.772 (0.005)

AttentionDTA 0.887 (0.007) 0.245 0.657 (0.007) 0.746 (0.003) 0.902 (0.009) 0.192 0.755 (0.004) 0.830 (0.002)

Graph Representation-Based Approaches

GraphDTA-GAT 0.892 (0.001) 0.232 0.662 (0.005) 0.728 (0.009) 0.898 (0.003) 0.206 0.733 (0.001) 0.812 (0.007)

GraphDTA-GIN 0.893 (0.002) 0.229 0.649 (0.001) 0.720 (0.004) 0.901 (0.001) 0.198 0.746 (0.004) 0.807 (0.005)

DGraphDTA 0.894 (0.003) 0.216 0.698 (0.002) 0.700 (0.004) 0.894 (0.002) 0.207 0.736 (0.001) 0.816 (0.001)

DeepGS 0.746 (0.009) 0.598 0.240 (0.012) 0.547(0.008) 0.834 (0.002) 0.307 0.678 (0.005) 0.745 (0.007)

DeepH-DTA 0.924 (0.001) 0.195 0.725 (0.009) 0.801 (0.010) - - - -

As the p-values, reported in Tables 5 and 6 show, except for the one case
of AttentionDTA in KIBA dataset, in all other cases the improved results are
statistically significant.
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Table 5: t-test P-Values on Davis dataset

Methods CI r2m AUPC

String Representation-Based Approaches

DeepDTA 0.023145 (Yes) <.00001 (Yes) <.00001 (Yes)

WideDTA .040258 (Yes) <.00001 (Yes) <.00001 (Yes)

AttentionDTA 0.009331 (Yes) <.00001 (Yes) <.00001 (Yes)

Graph Representation-Based Approaches

GraphDTA-GAT 0.001414 (Yes) <.00001 (Yes) <.00001 (Yes)

GraphDTA-GIN 0.000022 (Yes) <.00001 (Yes) <.00001 (Yes)

DGraphDTA 0.5 (No) <.00001 (Yes) <.00001 (Yes)

DeepGS <.00001 (Yes) <.00001 (Yes) <.00001 (Yes)

Table 6: t-test P-Values on KIBA dataset

Methods CI r2m AUPC

String Representation-Based Approaches

DeepDTA <.00001 (Yes) <.00001 (Yes) <.00001 (Yes)

WideDTA .013296 (Yes) <.00001 (Yes) <.00001 (Yes)

AttentionDTA 0.068466 (No) <.00001 (Yes) 0.226015 (No)

Graph Representation-Based Approaches

GraphDTA-GAT <.00001 (Yes) <.00001 (Yes) <.00001 (Yes)

GraphDTA-GIN <.00001 (Yes) <.00001 (Yes) <.00001 (Yes)

DGraphDTA 0.000022 (Yes) <.00001 (Yes) .000021 (Yes)

DeepGS <.00001 (Yes) <.00001 (Yes) <.00001 (Yes)

1.4 DREAMChallenge Data as Additional Validation Data

In addition to the KIBA and Davis datasets, we also tested our framework
on the recent IDG-DREAM challenge benchmark dataset (3) for drug-target
interaction prediction. We utilized this dataset for further validation of our
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results, since it contains activity data on understudied human kinomes, so-
called dark kinases. These quantitative bioactivities enable performance eval-
uation of prediction models on both on- and off-target kinase activities for
rather challenging compounds and target spaces of multi-targeting kinase in-
hibitors. As suggested by this challenge, a subset of DrugTargetCommons
(DTC) (https://drugtargetcommons.fimm.fi) (4) is used as the training dataset.
DTC is a publicly available web-platform tool that provides standardized re-
sources to retrieve crowd-sourced compound-target bioactivity data. The origi-
nal dataset was filtered to the activity type related to equilibrium dissociation
constant (Kd or pKd), where 49791 interactions were obtained. For the test
dataset, two rounds were suggested by the IDG Kinase-DRGC program. Round
1 data with 430 Kd interactions consist of 70 compounds and 199 kinases, and
round 2 data with 394 Kd interactions consist of 25 compounds and 207 kinases.
All of the major kinase families and groups were covered by the round 1 and
round 2 kinase targets, of which 111 of them overlapped. Together these 824
Kd values of the compound-kinase pairs were not available publicly and were
unpublished at the time of the challenge. Table 7 summarizes the description
of the training and test datasets suggested by the IDG Kinase-DRGC program.
(3)

Table 7: IDG-DREAM Drug-Kinase Challenge dataset

Compounds Proteins Interactions

DTC (Train set) 7564 827 49791

Round 1 and 2 (Test set) 95 295 824

We selected DeepDTA to predict compound-protein binding affinities on the
DREAM challenge dataset. Beside its wide adoption in the literature, our ra-
tionale for choosing DeepDTA for this set of experiments is that it is one of the
competing teams (Team: Boun - DeepDTA) in the IDG-DREAM Challenge.
Also, DeepDTA is the first DL approach developed to predict drug-target bind-
ing affinities, and it is among state-of-the-art methods that have shown relatively
good performance compared to many DL-based models with higher complexity
in architecture and computation time. As reported in Table 8, our proposed
framework improves DeepDTA’s prediction on round 1 and round 2 (combined)
datasets in all metrics.

Table 8: Comparison of DeepDTA with and without AttentionSiteDTI on
Dream challenge testing dataset

Without AttentionSiteDTI With AttentionSiteDTI
Experimental Setup CI MSE r2m AUROC CI MSE r2m AUROC

Round 1 and 2 0.469 6.278 -3.651 0.548 0.511 3.274 -1.426 0.556
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Furthermore, we performed another set of experiments on the DTC dataset
in order to evaluate the potential of our framework under a more challenging
and realistic setting. We show separate results under four different evaluation
settings, whether training and test sets share common drugs and targets, only
drugs or targets or neither. In this experimental setting, we take into considera-
tion the differences between the following four scenarios under which the model
can learn to predict the label of a query drug–target pair (xd, xt). Also, for
these experiments, we used a simple train-test split for model evaluation.

• S1. Bioactivity Imputation Scenario: Both drug xd and protein xt are
present in the training set.

• S2. New Drug Scenario: The protein xt in present in the training set, but
the drug xd is unseen in the training phase.

• S3. New Target Scenario: The drug xd is encountered in the training
phase, whereas the target protein xt is not.

• S4. New Drug-Target Pair Scenario: Neither the drug xd nor the target
protein xt is encountered in the training phase.

Table 9: Comparison of DeepDTA with and without AttentionSiteDTI on
Dream challenge training dataset

Without AttentionSiteDTI With AttentionSiteDTI
Experimental Setup CI MSE r2m AUROC CI MSE r2m AUROC

S1 0.788 0.879 0.477 0.719 0.874 0.431 0.743 0.850
S2 0.696 2.174 -0.355 0.692 0.687 1.559 0.028 0.679
S3 0.693 1.252 0.241 0.649 0.725 1.170 0.290 0.682
S4 0.663 1.596 0.053 0.662 0.684 1.671 0.009 0.678

As the results show, the integration of this model with our AttentionSiteDTI
leads to improved performance in 12 out of 16 cases, as reported Table 9.
These improvements are consistent with our findings on the other two datasets
(KIBA and Davis), indicating that our proposed framework is, indeed, effective
in boosting the performance of DTA prediction models.

1.5 Separated results for experimentally-measured and AF-
predicted structures of proteins on Davis dataset

We used AlphaFold to predict 3D structure for proteins not having experimen-
tally measured structures in PDB. We show the prediction results separately
for experimentally measured and AF-predicted structures of proteins on Davis
dataset (with83 out of 442 AF-predicted proteins) to see potential differences
in the target activity predictions. We provide the results as you can find below
in Table 10.
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Table 10: Comparison of target activity predictions on experimentally-measured
vs AlphaFold-Predicted proteins in Davis dataset

Experimentally measured AF-Predicted
Models CI MSE r2m AUROC CI MSE r2m AUROC

DeepDTA 0.889 0.212 0.735 0.816 0.885 0.202 0.731 0.842
WideDTA 0.891 0.247 0.703 0.774 0.901 0.231 0.712 0.772

AttentionDTA 0.914 0.181 0.753 0.821 0.9 0.195 0.759 0.834

2 In-Lab testing supplemental information con-
tent

2.1 Materials and Methods

ML has been recently used to enhance the sampling of MD simulation tra-
jectories to capture millisecond scale in-lab processes using nanosecond scale
simulations. It has also been used to remove noise in simulation data and make
it more accessible for interpretation (5; 6). Free energies calculated from MD
simulations have been used to train DL models to accelerate the prediction of
free energies based on the structural information of small molecules (7). Joshi
et al. (8) have used DL based prediction framework to screen molecules from
the Selleck database and perform molecular docking to further optimize the
search results for final use in MD simulations to find the molecules having the
most potential to bind with the main protease of SARS-CoV-2. In the present
study, a comparison has been made between MD simulations of certain selected
molecules with the RBD of SARS-CoV-2 from the pool of molecules checked us-
ing DL-based frameworks and in-lab experiments. The purpose is to check the
similarity of DL predictions with that of MD simulations and use a two-prong
approach to guide in-lab experiments. The details are presented as supplemen-
tary information.

For the third approach mentioned in the main article, we have initially per-
formed molecular docking using AutoDock Vina and AutoDock tools, and the
highest scored ligand-protein complex conformation structures are chosen for the
further all-atom Steered Molecular Dynamics (SMD) simulations. Here, only 5
of the previously mentioned 13 molecules have been simulated using SMD sim-
ulations to determine the peak unbinding force and center of mass separation
of the corresponding ligands with time (Supplementary material Figures 3 and
4). Our molecular docking results show that three ligands bind to one single
binding pocket of the protein, which is in line with previously mentioned theo-
ries of having specified ligand binding locations in spike protein (Supplementary
material section 1.5). Next, our SMD simulation results showed that N-Acetyl
neuraminic acid (sialic acid) requires the highest amount of steering force before
complete dissociation takes place (Supplementary material Figure 3 and Table
2). Based on this, the five molecules analyzed via SMD simulations are ranked in
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such a way that rank one is given to the molecule that shows the highest binding
strength and force requirement, while the lowest ranked molecule has the least
tendency to bind with the protein in a favorable environment. The comparison
of this ranking analyzed via different in silico approaches, MD simulations, and
in-lab experiments based on binding affinity is given in Supplementary informa-
tion Table 3. From Table 7, it is clearly seen that both our SMD simulation and
DeepDTA-AttentionSite model predict N-acetyl neuraminic acid as the highest
ranked molecule in terms of binding affinity with spike protein, and interest-
ingly, DeepDTA, our MD simulation, and the in-lab experiments all predict
N-glycolyl neuraminic acid as the second based inhibitor. Cytidine-5’ has been
ranked 5th both by DeepDTA and our SMD simulation as the molecule least
prone to bind, but the N-acetyllactosamine is ranked last in the in-lab experi-
ment. Therefore, even though there are similarities in results based on the DL
model and our SMD simulations, the in-lab experiment results seem to vary
for the molecules having the least binding affinity. So, the in-lab experiments
might be optimized based on the DL and MD results to accelerate the selection
of potential inhibitors.

2.1.1 Materials

The ACE-2 SARS-CoV2 inhibition assay used in the presented work was pur-
chased as a kit from BPS Bioscience (ACE-2: SARS-CoV-2 Spike Inhibitor
Screening Assay Kit, Catalog no: 79936; Spike-S1 neutralizing antibody, SARS-
COV-2, Clone 414-1, Catalog no: 100793). Test molecules (3α,6α-mannopentaose,
2-keto-3-deoxyoctonate ammonium salt, N-glycolylneuraminic acid, Benzanol
Brilliant scarlet 3B, methylene blue, cytidine-5-monophospho-N-acetylneuraminic
acid sodium salt, evans blue, darunavir, congo red, N-acetyl-neuraminic acid,
direct violet 1, N-acetyllactosamine, and chlorazol black) were purchased from
Fisher Scientific and Millipore Sigma and used without further purification.

2.1.2 ACE-2/SARS-CoV-2 spike Inhibitor screening ELISA assay

Testing of candidate compounds (noted above) was performed via a commercial
assay, with measurements of ACE-2:SARS-CoV2 spike protein complex inhibi-
tion activity performed per manufacturer specifications/procedure. The ELISA-
based assay was performed for each candidate molecule at concentrations from
0.01 nM to 40 nM. Based on results from the assay, IC50 values were deter-
mined by extrapolating compound concentration at which 50% of ACE-2/Spike
protein are left unbound over the test concentration range. These values were
then used to compare the efficacy of each molecule. Note that we used converted
PIC50 values to compare the experimentally measured binding affinities against
computational results, which are reported in the paper. Here, we report the
assay procedure, in brief.

Initially, spike protein concentration was optimized for luminescent emis-
sion (in arbitrary units) following incubation with secondary antibody. 20 nM
was determined to be the optimal concentration. ACE-2 was then suspended
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to 1 µg/mL in 10 mM phosphate buffered saline and added to a nickel-coated
96-wellplate. Incubation was maintained for 1 h at room temperature under
constant, low speed shaking. ACE-2 was then washed three times with im-
munobuffer, incubated in blocking buffer, and washed an additional three times
with immunobuffer. 10 µL of an inhibitor solution (1% dimethyl sulfoxide in
PBS) was then added to each well, and incubated for an additional hour at
room temperature under shaking, to inhibit further binding. SARS-CoV2 spike
protein was then added at approximately 20 nM (1 ng/µL) in 1% DMSO in
PBS were added to each well, excluding wells designated as blanks. 1% DMSO
in PBS was added to positive control and blank wells. From here, the plates
were incubated for an additional hour at room temperature under constant, low
speed shaking. Then, the plates were washed with immunobuffer and incubated
for an additional 10 minutes in blocking buffer. Mouse anti-HRP (horseradish
peroxidase) was added and the plates shaken for an hour. Lastly 100 µL of HRP
substrate was added to all wells. Chemiluminescence was finally measured using
a 96-wellplate reader.

2.1.3 Candidate compound selection

In validating our produced drug-target interaction model, we looked to identify
its ability to identify positive hits while predicting weak or no interaction for
low affinity compounds. Further, we looked to identify the

precision of the model through testing compounds which vary slightly, in
a defined character, from well-performing compounds. In identifying candi-
dates, compounds are often chosen which mimic the chemical structure of na-
tive bio-molecules. In pharmaceutical applications, the candidates often pro-
vide either agonist or antagonist binding. Therefore, compounds are chosen
which mimic, and exacerbate or otherwise optimize, natural binding behav-
ior towards biomolecule substrates. In the present work, the natural binding
pair of SARS-CoV2 S-protein (spike protein) and human angiotensin-converting
enzyme 2 (ACE2) were selected as a model binding system. It has been de-
termined and presented in literature that this binding is mediated by inter-
action between S-protein and the N-acetylneuraminic acid species presented,
among other species of a dense glycan shield, on the surface of specific cell
types in the host. In consideration of this, test molecules were chosen which
possessed small (measurable/identifiable) variations to the chemical structure
of N-acetylneuraminic acid (e.g., inclusion of functional groups with greater
polarity, increase in the length of the carbon backbone, increase in degree of
substitution to exaggerate steric interactions, etc.). Darunivir is structurally
distinct from N-acetylneuraminic acid, as well as the structurally similar family
of biomolecules known as sialic acids, though has been suggested as an antiviral
agent towards infection by SARS-CoV2. Similarly, several organic species, used
traditionally as dyes, have been suggested. We have chosen to include these
molecules in our validation set in order to analyze our models ability to extract
and prioritize physicochemical features towards the identification of new drugs
hits, candidate molecules towards inhibition of SARS-CoV2:ACE2 binding.
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Table 11: Results of Inhibition Assay experiments: For 3α,6α-Mannopentaose
no clear interaction was observed in our assay; For this compound we set the
PIC50 value to 4.9 nM, which corresponds to the high concentration of 12500
nM.
Rank Candidate Compound IC50(nM) pIC50 (nM) pIC50 (µM)

1 2-Keto-3-deoxyoctonate ammonium 0.95 9.02 6.02
2 N-glycolylneuraminic acid 1.7 8.77 5.77
3 Benzanol Brilliant Scarlet 3 B 2.25 8.65 5.65
4 Methylene Blue 2.5 8.60 5.60
5 Cytidine-5-monophospho-N-acetylneuraminic acid sodium salt 3.2 8.49 5.49
6 Evans Blue 4.5 8.35 5.35
7 Darunavir 5.5 8.26 5.26
8 Congo Red 14.8 7.83 4.83
9 N-Acetyl-neuraminic acid 19 7.72 4.72
10 Direct Violet 1 19.5 7.71 4.71
11 N-Acetyllactosamine 23.5 7.63 4.63
12 Chlorazol Black 38 7.42 4.42
13 3α,6α-Mannopentaose 12500 4.90 1.90

graphicx

3 Molecular dynamics simulations results in sup-
port of the machine learning predictions and
the in-lab validations

3.1 Synopsis

Docking simulations are performed to generate ligand-RBD (Receptor Binding
Domain) complexes for five of the selected molecules. Then MD simulations are
carried out to find out the maximum force obtained in forced dissociation of the
ligand from the RBD and this is benchmarked to the ACE2-SP complex. It is
observed that top performing DL predictions compare favorably with MD sim-
ulation results and predict the sialic acid to be a strong candidate for a potent
inhibitor. However, this is not corroborated by in-lab validations. Interestingly
the second rank for prediction from MD simulation matches with in-lab results
whereas the DL models differ widely. This indicates that a more synergistic
prediction framework involving DL and MD may help to explore potential in-
hibitors with greater fidelity to accelerate in-lab experimentation and ensuing
selection.

3.2 Introduction

Molecular docking and molecular dynamics (MD) simulations (9) can comple-
ment the machine learning based predictions and provide theoretical confirma-
tion for experimental binding curves as well as substantiate the predictions of
DeepPurpose and GCNN. A statistically sound estimation of the correct bind-
ing modes of ligands in protein-ligand complexes, as obtained from all atom
molecular simulations, is an important step in the drug discovery process and
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also helps in illuminating potential toxicity mechanisms (10). Typically, se-
lected ligands are docked to target proteins using molecular docking techniques
to generate stable complexes, following which the binding energy can be calcu-
lated using dynamics simulation methods like umbrella sampling (11). When
crystallographic structures are readily available, docking may not be required
as those structures can be used as input for the dynamics simulations.

3.3 Methods

Before screening new compounds as possible ligands for blocking the SP, it is
imperative to create a benchmark by calculating the free energy of binding be-
tween SP and ACE2. To achieve this the crystallographic structure of SP-ACE2
complex (PDB ID : 6M0J) is equilibrated and properly samples in a rectangular
box containing water molecules in an ionic concentration of 0.1 M NaCl, using
the GROMACS 2020 software and the AMBER99SB force field (12). The sta-
ble configuration is then used to prepare trajectories for the umbrella sampling
simulations, wherein the ACE2 is held restrained, and the SP is steered away
from the binding pocket, so that all bonds are broken, and molecular interac-
tions are entirely disrupted. The resultant center of mass (COM) separations
between SP and ACE2 is 5 nm. The trajectory is sliced into 49 windows of 0.1
nm spacing and each window is sampled for 10 ns. The resultant simulations
are analyzed using the WHAM algorithm (13) to create the potential of mean
force (PMF) profile for the unbinding of SP from ACE2, which gives a binding
energy of 16.03 ± 0.91 kcal/mol. The computed value is similar to that reported
by Lee in March 2021, using the OPLS force field (14). This is equivalent to a
KD 1.9 ± 0.2 pM, indicating a very strong binding of SP with that of ACE2.
Based on this benchmark, the purported sialic acid based blocking agents can be
docked ( in case the crystallographic structures are not available) and simulated
to calculate the binding energy with respect to SP.
To perform molecular docking and generate the complexes with RBD of SP,
RBD structure is obtained from RCSB PDB ID - 7JVB. All corresponding lig-
and structures are imported from PUBCHEM database. Molecular docking is
performed using AutoDock Vina and AutoDock Tools and highest score docked
conformation is chosen. All atom MD simulations similar to that described
above are performed for the ligand-RBD complexes, following which SMD sim-
ulations are conducted to calculate the peak unbinding force and COM separa-
tion curves. A description of the molecules chosen for the docking simulation
is provided in 2. Resulting configuration of selected docking simulations are
shown in 3.

3.4 Results

In the SMD simulations, the ligand is pulled with a harmonic spring attached to
its COM, and over time it breaks away from the binding pocket of the complex
with RBD. The resultant reaction force that is experienced by the harmonic
spring, is dependent on the strength of binding between the ligand and the
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Figure 2: The molecules which were selected as ligands for the docking simu-
lation with RBD are presented. The acronyms for the individual molecules are
provided as they are used in following figure legends.

Figure 3: Configurational view of docked complexes of RBD and selected
molecules are presented. The ligands are green and RBD is grey.
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Figure 4: Force curves from SMD simulations for the 5 selected molecules and
ACE2

RBD. It is trivial to observe that higher forces indicate stronger binding. The
force vs simulation time curves for the 5 selected ligands as well as ACE2 is
provided in 4. It is observed that N-acetyl neuraminic acid (Sialic Acid) shows
highest binding affinity while Cytidine-5’-monophospho (CYT) ligand shows
the lowest among them. Maximum force required to unbind Sialic Acid (1456
kJ.mol-1nm-1) is almost 3 times as high as that required to unbind CYT (518
kJ.mol-1nm-1). In comparison, the force required to unbind ACE2 is about
1425 kJ.mol-1nm-1, suggesting that Sialic Acid probably has similar binding
strength. COM separation curves provided in 4 also show that Sialic Acid and
ACE2 take almost same simulation time range of 170-190 ps before the ligands
start breaking away from the RBD. In comparison, CYT and 2K3 break away
within the first 100 ps of simulation time. This is reflected by the much lower
maximum force observed in SMD simulations for those molecules.

3.5 Discussion

The primary goal of the deep learning enabled prediction platform revolves
around finding out the specified and repeatable binding sites of the viral protein
which are most amenable to bind with different ligand molecules and quantify
the binding affinity of the corresponding cases. Likewise, from the molecular
docking studies it is observed that the best docked poses are around a specified
protein binding pocket of the RBD, for the 3 out of 5 simulated cases discussed
here. Previous studies (15) show how different sialic acids bind with the SARS-
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Table 12: Molecular docking scores in terms of binding affinity with spike protein
RBD structure
Compound Binding affinity with RBD (kcal/mol)

2-keto-3-deoxyoctonate ammonium salt (2K3) -5.5
N-Glycolylneuraminic acid (GNA) -5.5
Cytidine-5-monophospho-N-acetylneuraminic acid (CYT) -6.2
N-acetyl-neuraminic acid (Sialic acid) -5.8
N-Aceytllactosamine (N-ALS) -6.3

Figure 5: COM separation curves from SMD simulations for the 5 selected
molecules and ACE2.

CoV-2 viral protein and how the presence of the glycosylation sites impact their
binding on the protein surface. In addition, the N-terminal domain (NTD) of
the viral glycoprotein of SARS-CoV-2 shows higher binding propensity with
host sialic acid molecules as compared to two of its previously found variants:
SARS-CoV and MERS-CoV (16). From our results, the sialic acids, N-ALS and
GNA show highest docking scores when they bind with the RBD at a specified
binding pocket of the RBD structure, generated by residues ASP457, LYS458,
ASP467, SER469, GLU471, ILE472, TYR473 and GLN474 while the highest
scored docked poses for the other two molecules (CYT and 2K3) are different.
The best docked poses (shown in 12) for each ligand are further considered for
the MD simulations.

To prepare 15, the predictions made using the frameworks Morgan-CNN and
Morgan-AAC are used as these models have the highest CI value. It is observed
that both the models and the MD simulations rank N-acetyl-neuraminic acid i.e.
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Table 13: Simulated compounds and their respective maximum SMD unbinding
force and corresponding ranks.
Compound Peak SMD force (kJmol−1nm−1) Rank

2-keto-3-deoxyoctonate ammonium salt 632 4
N-Glycolylneuraminic acid 938 2
Cytidine-5-monophospho-N-acetylneuraminic acid 518 5
N-acetyl-neuraminic acid 1456 1
N-Aceytllactosamine 772 3
ACE2 Protein 1425 Benchmark

Table 14: Ranking of compounds based on binding affinity measured from dif-
ferent techniques. Ranks within ‘()’ refer to absolute ranking based on the 13
molecules analyzed. Ranks without () refer to relative ranking based on only
the 5 molecules for which MD simulations have been performed.
Compound DeepDTA-AttentionSite DeepDTA MD simulation In-Lab Validation

2-keto-3-deoxyoctonate ammonium salt 5(10) 4(12) 4 1(1)
N-Glycolylneuraminic acid 4(8) 2(8) 2 2(2)
Cytidine-5-monophospho-N-acetylneuraminic acid 3(7) 5(13) 5 3(5)
N-acetyl-neuraminic acid 1(2) 3(10) 1 4(9)
N-Aceytllactosamine 2(3) 1(5) 3 5(11)

sialic acid as the ligand with highest binding affinity towards RBD. However,
this is not supported by the in-lab validation experiments which were conducted
using biochemical reactions. The in-lab results rank 2-keto-3-deoxynononic am-
monium salt and N-Glycolylneuraminic acid as number 1 and 2 respectively
which is not supported by the DL predictions. Interestingly the MD simulation
supports the in-lab results by ranking N-Glycolylneuraminic acid as number
2. The same could be said about Cytidine-5-monophospho-N-acetylneuraminic
acid which is ranked 5th in both MD and in-lab validation. Hence, it may be said
that combining both DL and MD simulations, the design space of ligand-protein
simulations can be more reliably sampled which can optimize the selection of
in-lab experiments. It may be worthwhile to note here that sialic acid has been
shown to be having strong affinity to spike glycoprotein of SARS-CoV-2 in ex-
perimental lateral flow assay studies (17). Therefore, it would be important to
re-check the in-lab validation experiments.
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Table 15: List of antiviral drugs
Drug Names

Abacavir Famciclovir raltegravir
Abacavir sulfate Favipiravir (FPV) Raltegravir potassium (RAL)
acyclovir Fomivirsen sodium (FMV) Remdesivir
Acyclovir Fosamprenavir calcium (FPV) Ribavirin
Adefovir Dipivoxil Foscarnet sodium (PFA) Rilpivirine
Amprenavir (agenerase) ganciclovir Rilpivirine hydrochloride (RPV)
Asunaprevir (BMS-650032) Ganciclovir Rimantadine (RIM)
Atazanavir Ganciclovir sodium (GCV) ritonavir
Atazanavir sulfate (BMS-232632-05) Imiquimod (IMQ) Ritonavir
Baloxavir marboxil (BXM) indinavir S/GSK1349572
Boceprevir Indinavir sulfate (IDV) saquinavir
Brivudine (BVDU) Interferon alfa-2b (INT2B) Saquinavir mesylate
Cidofovir Laninamivir octanoate (LO) Simeprevir
Daclatasvir (BMS-790052) Letermovir (LET) Simeprevir sodium (SIM)
danoprevir Lopinavir Sofosbuvir (SOF)
Darunavir lopinavir Telaprevir (VX-950)
Darunavir ethanolate (DRV) MK-5172 Tenofovir
Delavirdine mesylate (DLV) nelfinavir tenofovir
Dolutegravir sodium (DTG) Nelfinavir Tenofovir alafenamide fumarate (TAF)
Doravirine (DOR) Nelfinavir Mesylate Tenofovir Disoproxil Fumarate
Efavirenz Nevirapine Tipranavir (TPV)
efavirenz Oseltamivir Trifluridine (TFT)
elvitegravir Oseltamivir acid valaciclovir
Elvitegravir (GS-9137) Oseltamivir phosphate Valaciclovir HCl
Enfuvirtide (T20) penciclovir Valganciclovir HCl
entecavir Penciclovir VX-222 (VCH-222, Lomibuvir)
Entecavir (ENT) Peramivir Zanamivir
Entecavir Hydrate Peramivir Trihydrate
Etravirine (TMC125) Podofilox (PDX)
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