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Supplementary Note 1: IV scan of a silicon-on-insulator (SOI) microheater 

 

Supplementary Figure 1 IV scan of a heavily P++ doped SOI microheater. (a) An 

experimental setup for characterizing a microheater. (b) Net current versus biased voltage 

between 0 and 1 V. 

 

Supplementary Figure 1a shows a top-view micrograph of our experimental setup for 

electrical testing of a heavily P++ doped silicon-on-insulator (SOI) waveguide microheater. A 

ground-signal (GS) radiofrequency (RF) probe was used to contact the aluminum (Al) pads. 

The grating couplers were separated far away from the microheater for fiber array positioning. 

Supplementary Figure 1b shows IV scan across a doping region with a total resistance of 236.9 

Ohm. It exhibits a linear response that reveals the good Ohmic contact between Al pads and 

doped silicon. 
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Supplementary Note 2: Optical microscopic images of devices in each fabrication step 

 

Supplementary Figure 2 Optical microscopic images of devices in each fabrication step. 

(a) Patterning of SOI waveguides using electron beam lithography (EBL) and reactive ion 

etching (RIE) etching, and patterning of ion-implantation masks. (b) Ion-implantation, 

photoresist stripping, rapid thermal annealing (RTA) for dopant activation. (c) Patterning of 

thermal evaporation windows. (d) Al pads evaporation and lifting off. (e) Patterning of 

Ge2Sb2Te5 (GST) sputtering windows on the doped waveguides. (f) Sputtering GST layer and 

its SiO2 capping, and last lifting off. 

 

Supplementary Figure 2 shows optical microscopic images of our devices in each 

fabrication step. It includes patterning of SOI waveguides using electron beam lithography 

(EBL) (JEOL JBX-5500 50kV) and reactive ion etching (RIE) (Oxford Instrument PlasmaPro), 

and patterning of ion-implantation windows (Supplementary Figure 2a). Next, we performed 

ion-implantation, photoresist stripping, rapid thermal annealing (RTA) (Jipelec Jetfirst) for 

dopant activation (Supplementary Figure 2b). The third step of EBL was used for patterning 

thermal evaporation windows (Supplementary Figure 2c). Al pads were evaporated and lifted 

off to form Ohmic contact between Al pads and doped silicon (Supplementary Figure 2d). We 

performed the fourth step of EBL for patterning GST sputtering windows on the doped 

waveguides (Supplementary Figure 2e). Lastly, GST and its protection layer SiO2 thin films 

were sputtered and lifted off (Supplementary Figure 2f). 
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Supplementary Note 3: Detailed structural parameters of device design 

 

 

Supplementary Figure 3 GDS design of a SOI waveguide microheater with labeled 

structural parameters. 

 

GDS design of a SOI waveguide microheater is shown in Supplementary Figure 3 with 

labelled and defined structural parameters: Ldope3 = 15 μm, Wdope3 = 2.7 μm, Wdope2 = 1 μm, 

Wdope1 = 2.5 μm, Wwg = 0.55 μm, Wclad = 3 μm, Ldope2 = Ldope1 + 3.2 μm and Ldope1 is varied 

between 1 and 15 μm.   
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Supplementary Note 4: Setup for electrical programming and in situ optical probing 

 

 

Supplementary Figure 4 Experimental setup for electrical programming and in situ 

optical probing of GST cells. RF, radio frequency. DC, direct current. FPC, fiber polarization 

controller. CW, continuous wave. OC, optical coupler. PD, photodetector. DAq, data 

acquisition.  

 

Supplementary Figure 4 shows an experimental setup for investigating temporal response 

of a GST cell for binary operation, multilevel operation, and scalar multiplication c = a × b. A 

source meter (Keithley 2614B) was used for current-voltage scanning. Short electrical pulses 

were generated from an electric pulse generator (Tektronix AFG3102C) for pulse amplitude 

modulation (PAM) (0−10V) and pulse width modulation (PWM). RF and DC electrical signals 

were combined by a bias tee (Mini-Circuits ZFBT-4R2GW+) and were sent into devices by 

contacting a GS probe with two Al pads of a microheater. CW probe light at a wavelength of 

1570.4 nm and a power of 3.55 mW (7711A, Keysight Technologies) was sent to a variable 

optical attenuator (Thorlabs V1550A) for data encoding in demonstrating scalar multiplication 

operation. Transmission of the fundamental transverse-electric (TE) mode was optimized by a 

fiber polarization controller (FPC) (Thorlabs, FPC032). Device output was split into two paths 

for light detection by using a low-speed and low-noise photodetector (Newport 2011-FC) and 

a high-speed photodetector (Newport 1811-FC), which respectively detect temporal 

binary/multilevel response and switching dynamics of a GST cell.  
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Supplementary Note 5: Measured optical loss due to ion implantation 

 

Supplementary Figure 5 Measured output power versus doping length of waveguide 

microheaters. 

 

For an array of fabricated waveguide devices, we only varied doping length while the rest 

geometric parameters were designed identically. And we measured output power of these 

devices. Supplementary Figure 5 shows measured output power versus doping length ranging 

from 1 to 15 μm. These data were linearly fitted with a fitted loss of 0.59 dB/μm due to free 

carrier absorption in heavily doped silicon. 
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Supplementary Note 6: Numerical simulation of electro-thermal profiles 

 

Supplementary Figure 6 Numerical investigation of doping length dependent thermal 

profiles. (a) Schematic of a SOI waveguide microheater with labeled P++ doping region (P++–

Si) and undoped intrinsic silicon (i–Si). (b)–(d) Simulated thermal profiles of microheaters at 

end of amorphization (pulse width = 50 ns and pulse amplitude = 7 V) and crystallization 

electrical pulses (pulse width = 200 ns and pulse amplitude = 3 V) with doping lengths of 3 μm 

(b), 5 μm (c), 10 μm (d). Length of a GST patch along the waveguide is fixed at 2.5 μm. The 

lowest temperature in each doped waveguide rib is shown in the top right rectangular box. 

Amo.: amorphization and Cry.: crystallization.   

 

We developed a 3D finite element (FE) model with coupled electro-thermal interactions in 

our devices using COMSOL Multiphysics. Schematic of the model is consistent with structure 

of the actual device. Supplementary Table 1 lists the material properties used in our simulations. 

Thermal boundary resistance was applied to all the internal boundaries. Electrically insulating 

boundary conditions were applied on all external boundaries except those across the electrodes, 

where a current flow was applied. In the simulation, we sent 50-ns 7V amorphization pulse and 

200-ns 3V crystallization pulse. At the end of pulse heating, thermal profiles of devices were 

recorded and shown in Supplementary Figure 6. The lowest temperature in each doped 

waveguide rib is also labeled. Heating area expands with increasing doping length along the 

waveguide, which can be used for switching a larger area of GST. Especially, glass transition 

temperature and melting temperature of the GST are Tx = 433 K and Tm = 817 K, respectively.1 
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The maximal temperatures of GST cells in Supplementary Figure 6b–6d all surpass Tm (surpass 

Tx and below Tm) to achieve amorphization (recrystallization). 

 

Supplementary Table 1 Material properties.  

Material 
Heat capacity 

(J/(kg·K)) 

Thermal 

conductivity 

(W/(m·K)) 

Electric conductivity 

(S/m) 

Density 

(kg/m3) 

Al 900 238 3.77×107 2700 

cGST [1] 212 0.19(
𝑇

300
)2.27 [2] 6300 

P++ 

Silicon 

[3] 

720 149 [4-8] 2330 

SiO2  

[1] 
709 1.38 10−14 2203 

Note: Material properties of Al was taken from the default database of COMSOL Multiphysics 

while other materials’ properties were from literature as denoted. 

 

Supplementary Note 7: Repetitive switching of our GST cells 

 

 

Supplementary Figure 7 Repetitive switching of a GST cell based on the SOI waveguide 

microheater. (a) Repetitive optical switching between amorphous and fully crystalline states 

over 100 cycles. (b) Repetitive IV scanning. 
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Supplementary Figure 7a shows operation of our device with repetitive binary electrical 

switching over 100 cycles with a large switching contrast of 150%. Write and Erase states of 

the GST cell were programmed by a single 50-ns and 7V electrical pulse and a single 200-ns 

and 3V electrical pulse, respectively. Before and after repetitive switching, we performed IV 

scan and found there is no variation in the total resistance of our microheater, which guarantees 

a robust operation for pulse heating. 

Please note that there are drifts in transmission as shown in Supplementary Figure 7a. Drift 

in transmission during the cycling test was observed in GST-cladded waveguide microheaters 

based on different designs, e.g., the P-type doped9 and PIN diode microheaters.10 Mechanisms 

of drift were attributed to material degradation and thermal reflowing of the GST thin film after 

multiple switching cycles.10 

To bypass the drift issue, recalibration is used to maintain the programming consistency 

and normal operation of our devices. Recalibration was done by calculating 

[(T−Tbase)/(Tmax−Tbase)], where Tmax and Tbase (T0) were updated in our real-time measurement 

during PCM switching.  

For a more general solution to avoid phase segregation, a phase-change heterostructure 

(PCH) could possibly be applied for photonic computing. Ding et al. reported alternately grown 

thin films with 5 nm Sb2Te3 and 3 nm TiTe2.
11 The crystalline TiTe2 nanolayers remained 

robust while the Sb2Te3 nanolayers were switched between the crystalline and amorphous 

phase. The strong confinement effects of TiTe2 walls suppressed resistance drift and phase 

separation tendency in electronic devices, which resulted in a much higher programming 

consistency and a much improved cycling endurance. Recently, it has predicted a sizable 

change in optical properties upon phase transition in PCH by ab initio simulations.12 Hence, 

PCH could be a promising candidate to replace GST to alleviate the transmission drift of optical 

devices. In addition, a monatomic PCM (pure antimony) has also been reported for photonic 

programming.13 The lifetime of amorphous antimony is improved by scaling down the film 

thickness to 5 nm and below. Future work utilizing new PCMs for photonic computing is thus 

anticipated. 
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Supplementary Note 8: Performance comparison of non-resonant straight waveguide 

memory cells  

 

Supplementary Table 2 Performance comparison of the non-volatile electrically 

reprogrammable non-resonant straight waveguide memory cells based on GST. 

 

Microheater 

devices 

Crystallization Amorphization 

Modulation 

depth (dB) 

Number 

of levels 
Refs 

Energy 

(nJ) 

Energy 

consumption/

modulation 

depth (nJ/dB) 

Energy 

(nJ) 

Energy 

consumption/

modulation 

depth (nJ/dB) 

P++ doped 

Si heater 
9 1.7 10 1.8 5.44  5 9 

PIN diode 

Si coupler 

heater 

6830 683 380 38 10 2 10 

PIN diode 

Si heater 
715 406.3 13 7.4 1.76 2 14 

Graphene 

heater 
860.7 286.9 5.55 1.8 3 7 15 

Plasmonic 

nanogap 

heater 

4 8.9 0.65 1.4 0.45 6 16 

P++ doped 

Si heater 
6.88 1.7 8.84 2.1 4.13 18 

This 

work 

 

Supplementary Table 2 compares performances of our experimentally demonstrated GST 

cells with the previously reported non-resonant straight waveguide GST cells, and shows that 

our GST cells exhibit the highest encoding levels reported so far and the lowest energy 

consumption per unit modulation depth in the crystallization process. We also note that storage 

multilevel may be enhanced by incorporating a GST cell into a resonator,17 however, it has a 

reduced compute density due to resonance-induced narrower bandwidth for WDM-based 

parallel photonic computing. 
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Supplementary Note 9: Calibration on normalized transmission of a VOA and a GST 

cell 

 

 

Supplementary Figure 8 Normalized transmission of a VOA and a GST cell. (a) Calibrated 

and normalized input power (Pin/Pmax) of a VOA versus bias voltage. (b) Recoded 

transmittance (T−Tbase)/(Tmax−Tbase) of a GST cell versus WRITE pulse amplitude with a fixed 

pulse width of 50 ns.  

 

To calculate the exact result of x × w (x and w ∈ [0, 1]), input power of a VOA (Pin/Pmax) 

versus bias voltage (0–5 V) was calibrated and rescaled to [0, 1] to map the multiplicand x, and 

transmission of a GST cell [(T−Tbase)/(Tmax−Tbase)] versus Write pulse amplitude (5.2–6.8 V) 

was recorded and rescaled to [0, 1] to map the multiplier w as shown in Supplementary Figure 

8, where Pmax is the maximal input power encoded by a VOA, Tbase and Tmax are respectively 

the minimal and maximal transmittances of a GST cell programmed electrically. 

 

Supplementary Note 10: Offset correction: post subtraction vs balanced photodetection 

Subtraction should be performed due to the non-zero transmission at the lowest level. Taking 

a simplest case of scalar multiplication for example, x is encoded in the input transmission by 

mapping x to 
𝑃in

𝑃max
∈ [0,1]; w is encoded in the transmission of the PCM cell by mapping w to 

𝑇−𝑇base

𝑇max−𝑇base
. Therefore, x × w can be expressed as: (Pin·T − Pin· Tbase)/(Pmax·Tmax – Pmax· Tbase), in 

which absolute transmission through the device including Pin·T, Pin·Tbase, Pmax·Tmax, Pmax· Tbase 

were recorded. The two terms related to Pmax only need to be measured once since Pmax is fixed. 

The other two terms related to Pin should be measured for every digital input value. The 

subtraction operation of (Pin·T − Pin· Tbase) was post-processed on a digital computer to correct 

offset. 

Alternatively, as a more efficient method, one can implement this offset correction by using 

the balanced photodetection method to reduce the load of post processing. Specifically, input 
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light with a power of 2·Pin can be first equally split using a 3-dB power splitter, and then are 

sent to cells on two different waveguides with transmittance of T and Tbase, respectively. Last, 

two outputs are detected simultaneously by a balanced photodetector to generate a photocurrent 

(i+ − i−), where i+ = R·(Pin·T), i− = R·(Pin·Tbase), and R is the responsivity of a photodiode. 

 

Signal processing time: 

Compared with the balanced photodetection as shown in Supplementary Figure 9a, the 

approach using one photodiode in Supplementary Figure 9b doubles signal processing time for 

each offset correction operation (estimated as: 18.87+250+8×(133.21+68.77) = 1.88 ns) in the 

current amplification, analog-to-digital conversion, and 8-bit digital data storage in a memory 

unit. It takes an additional 20 ns for performing a subtraction operation in a floating point unit 

(FPU).18 

 

 

Supplementary Figure 9 Photodetection and signal processing. (a) Schematic of the 

balanced photodetection. (b) Schematic of separated photodetection with a post subtraction in 

a floating point unit (FPU). PD: photodiode, TIA: transimpedance amplifier, ADC: analog-to-

digital converter, FPU: floating point unit. 

 

Energy consumption: 

Energy consumption can be expressed as E = (V+ · I+ + |V−|· I−) /Bdata for a balanced PD and 

E = (V+ · I+ + V+ · I−) /Bdata for one PD with two separated detection. For these two scenarios, 

energy consumptions are the same if V+ = − V−, where V± is the bias voltage, I± is the 

photocurrent, and Bdata is the data rate.19,20  

Besides, compared with the balanced photodetection, the approach using one photodiode 

requires more energy in powering of a transimpedance amplifier (TIA), an analog-to-digital 

converter (ADC), a memory unit, and a FPU. Additional energy consumption is estimated as 

(0.65+22+0.041+10.25) = 32.94 pJ for each offset correction operation. Some more details can 

be found in Supplementary Table 3. 
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Supplementary Table 3 Estimated energy consumption and operating time of components in 

the signal processing circuits. 

 

Components 
energy 

consumption 

Operating time (Clock 

frequency/sampling rate) 
Reference 

TIA 0.65 pJ/bit 18.87 ps (53 Gbit/s) 21 

8-bit ADC 

88(mW)/(4 

Gsamples/s) = 22 

pJ 

250 ps (4 Gsamples/s) 22 

Memory unit 

Write: 3700 aJ 

Read: 1500 aJ 

 

8×(3700+1500)×10
−6 = 0.041 (pJ) (8-

bit digital data) 

Write: 133.21 ps 

Read: 68.77 ps 

 

8×(133.21+68.77)=1615.8

4 ps (8-bit digital data) 

23 

FPU 10.25 pJ/operation 

5×4 = 20 ns (delivering 

each result after 4 clock 

cycles with a clock period 

of 5 ns) 

18 
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Supplementary Note 11: Nearly identical switching contrast probed for WDM light  

 

Supplementary Figure 10 Nearly identical switching contrast probed for wavelength 

multiplexed light passing through a GST cell. (a) Normalized transmission of four channels 

versus eight switching events. (b) Standard deviation of the normalized transmission of four 

channels. 

 

In principle, light multiplexed in one waveguide should be probed with the same switching 

contrast ∆T/Tbase upon electrical switching of a GST cell. To validate, we recorded and 

normalized transmission of four parallel channels versus eight switching events with random 

increments in transmission levels as shown in Supplementary Figure 10a, and calculated 

standard deviation SD(T1, T2, T3, T4) of four channels versus time as shown in Supplementary 

Figure 10b. Averaged standard deviation was calculated as 1.10%, which may be due to 

photodetection noise. 
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Supplementary Note 12: Photodetection noise, bandwidth and light source power drift  

 

 

Supplementary Figure 11 Photodetection noise. 

 

As shown in Supplementary Figure 11, standard deviation of our measured power 

fluctuation (noise) in the detected probe light is 10.2 (16.8) nW at a detected power of 1.19 

(2.91) μW. Thus, the noise is contributed by the shot noise and thermal noise (i2
shot + i2

thermal) 

for our photodetector. We also note that i2
noise = i2shot + i2thermal = 2qIphB + 4kTB/R, which is 

linearly proportional to the Iph if the temperature T is fixed at the room temperature. Thus, 

detected power contributed by the thermal noise is fitted as 5.63 nW. 

 

Supplementary Figure 12 Monitored normalized transmission of four channels within 1.5 

hours for calculating photodetection noise in transmission. 

 

0.0015

0.0020

0.0025

0.0030

P
o

w
e

r 
d

e
te

c
te

d
 b

y
 P

D
 (

m
W

)

Time (s)
0 5

N
o

rm
. 
tr

an
sm

is
si

o
n

o
f 

fo
u

r 
ch

an
n

el
s

0 1.5 0 1.5
Time (h) Time (h)

0.90

0.95

1.00

1.05

1.10
 1

 Fitting

0.90

0.95

1.00

1.05

1.10
 2

 Fitting

0.90

0.95

1.00

1.05

1.10
 3

 Fitting

0.90

0.95

1.00

1.05

1.10
 4

 Fitting



15 

 

Output light in the four wavelength channels of the photonic chip were recorded for 1.5 

hours. Noise from a photodetector is defined as: SD(T) (unit:%), where T is the detected and 

normalized transmission of each channel as shown in Supplementary Figure 12. Here, 

normalization was performed with respect to the average transmission. And noise of 

photodetectors from channel 1 to 4 were calculated to be 0.79%, 0.74%, 0.81%, and 1.07%, 

respectively, which are below or around 1%. 

  

 

Supplementary Figure 13 Investigation on the photodetector bandwidth. The low-pass 

filter of a photodetector (Newport 2011-FC) is set to 10 kHz. (a) Photodetector output of 

square-wave modulated light. (b) Zoom-in of (a) showing 4.8-µs fall time. (c) Zoom-in of (a) 

showing 5.1-µs rise time. (d) 11.6-kHz 3-dB bandwidth of the photodetector. 

 

Since the speed of a VOA is 1 kHz, we set the low-pass filter of a photodetector at 10 kHz. 

The output waveform (converted to voltage by transimpedance amplifier) is presented in 

Supplementary Figure 13. The fall time and rise time of the photodetector are 4.8 µs and 5.1 

µs, respectively. The 3 dB-bandwidth of the photodetector is measured as 11.6 kHz as shown 

in Supplementary Figure 13d, which is close to the set value of 10 kHz.  
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Supplementary Figure 14 Monitoring power drift of the four wavelength channels of our 

broadband light source for two days. The drifts are respectively 1.82%, 3.59%, 2.89%, and 

4.31% from the four channels. 

 

In order to investigate power drift of the light source, we monitored the transmission of 

four wavelength channels for 2 days. A wavelength demultiplexer was used to separate the four 

wavelength channels from a broadband light source, and power of each channel was recorded 

by a photodetector. Down sampling was performed through recording transmission by every 

20 seconds. The results are shown in Supplementary Figure 14. Without light coupling into 

and out of a photonic chip (coupling loss ~ 20 dB), the signal-to-noise ratio is much higher 

than those as shown in Supplementary Figure 12. Drift of each channel can be defined as: 

2·[Max(T)−Min(T)]/[Max(T)+Min(T)] (unit:%), where Max(T) and Min(T) are the maximal 

and minimal values of the normalized transmission (black dashed curves). Here, normalization 

was performed with respect to the average transmission. And drift of channel 1 to 4 were 

calculated to be 1.82%, 3.59%, 2.89%, and 4.31%, respectively. It may impose large 

computation errors when photodetection noise and drift are comparable with the switching 

contrasts. However, computation error can be largely suppressed with an enhanced contrast-

to-noise ratio (CNR). We also note that measured drift of our used broadband light source 

(1.82%–4.31%) is higher than our used CW probe laser (0.7%) for performing scalar 

multiplication as shown in Figure 2d.24   

 

Drift = 1.82% Drift = 3.59%

Drift = 2.89% Drift = 4.31%
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Supplementary Note 13: Boxcar averaging and error distributions of the three color tones 

 

Supplementary Figure 15 Image brightness scaling results (scaling factor = 0.5) using 

different switching contrasts (∆T1/Tbase) without and with boxcar averaging. (a) Without 

boxcar averaging. (b) With boxcar averaging. The processed images with labelled SDs using 

the lowest and highest switching contrasts as shown in (i) with statistical analysis on the 

accuracy plots (ii), error distributions (iii), normalized SD and CNR (iv) versus the contrast 

(∆T1/Tbase). 

 

 

Supplementary Figure 16 Investigation on the error distributions of the three color tones 

(RGB). At the low switching contrasts (4, 8)%, change of hue can be observed with higher 
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noise. At the high switching contrasts (64, 128)%, change of hue is not observed and lower 

noise is achieved.  

 

We performed boxcar averaging (averaging five sample points) to confirm the change of 

hue is not caused by photodetection noise. Instead, the change of hue is due to system error. 

Supplementary Figure 15 shows the brightness scaling results (scaling factor = 0.5) without 

and with boxcar averaging in Supplementary Figure 15a and Supplementary Figure 15b, 

respectively. The two results are almost identical as revealed by the labelled SDs, accuracy 

plots in (ii), error distributions in (iii), and normalized SD and CNR in (iv) versus the contrast 

(∆T1/Tbase). These results show that photodetection noise is not causing change of hue, because 

otherwise the boxcar averaging will reduce it. We also plotted the error distributions of three 

color tones (RGB). Their error distributions are shown in Supplementary Figure 16. When the 

switching contrasts are low at (4, 8)%, the low computing accuracy leads to shifted normal 

distributions. Their centers are shifted to 0.136, −0.007, and −0.063 for the RGB color tones, 

respectively. This explains why the image looks red. However, the change of hue is not 

observed when the switching contrasts are large at (64, 128)% as shown in Supplementary 

Figure 15i and Supplementary Figure 16. The improvement is attributed to the electrical 

switching using microheaters that provide higher switching contrasts to minimize the impact 

of laser power drift. 
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Supplementary Note 14: WDM enabled parallel multiplication for image processing 

 

Supplementary Figure 17 WDM enabled parallel multiplication for image processing. (a) 

An experimental setup for parallel multiplication. (b) Flattened pixel data of an RGB image 

for data encoding. (c) Post accumulation of stored multiplication results for convolutional 

operation with an example showing upper and left edges detection by a 3×3 kernel matrix. (The 

original image showing the Clarendon Building in the University of Oxford was photographed 

by authors). (d) Processed images by applying seven different image kernels with high and low 

∆Tstep/Tbase. 
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We exploited parallel multiplication for realizing advanced image filtering. Please note that 

we performed in-memory scalar multiplication using a GST cell and software post 

accumulation to complete convolutional operation. As shown in Supplementary Figure 17a and 

17b, we used the same experimental setup in Figure 3a and data flattening process. However, 

parallel scalar multiplication process of an entire RGB image was repeated for all kernel 

elements with multiplication results stored for software post accumulation to complete 

convolutional operation. Except kernels with identical elements (e.g., the blurring kernel), 

transmission of a GST cell was programmed as T(w(i)) = Tbase + [w(i) – min(w(i))] · (Tmax – 

Tbase) / [max(w(i))– min(w(i))], where min(w(i)) and max(w(i)) are the minimum and maximum 

values of kernel elements, respectively. And we denote ∆Tstep = (Tmax – Tbase) / [max(w(i))– 

min(w(i))], and ∆Tstep/Tbase is an incremental step of switching contrast in partial amorphization 

of a GST cell from its baseline. As an example, it has 5 different elements (w(i) = ±2, ±1, and 

0) in a kernel w for extracting the upper and left edges as shown in Supplementary Figure 17c. 

Transmission of a GST cell was programmed as T(w(i)) = Tbase + (w(i) + 2) · (Tmax – Tbase)/4, 

where min(w(i)) = −2 and max(w(i)) = 2, and ∆Tstep/Tbase = 32%. Thus, T(w(i)) of a GST cell 

was programmed as Tbase + 0.32·(w(i) + 2) · Tbase in five switching events. After each switching 

event, we performed scalar multiplication of an entire RGB image with the GST cell with a 

transmission of T(w(i)). After software accumulation, the upper and left edge features are 

clearly visible, which validates the effectiveness of our convolution. In a next step, a blurring 

kernel with six identical elements (w(i) = 1, i = 1 to 9) was implemented at two different 

transmission levels of a GST cell (T = Tbase + ∆Tstep and ∆Tstep/Tbase = 64% and 32%). Measured 

result with a higher ∆Tstep/Tbase (64%) matches well with the theoretical result due to a better 

CNR and a relative smaller computation error (SD = 0.008), however, the measured result 

shows change of hue in the sky background with ∆Tstep/Tbase = 32%. Computing error is mainly 

from photodetection noise and power drift due to instability of our broadband light source 

(Supplementary Figure 12 and Supplementary Figure 14). Similarly, it exhibits good matching 

between the measured results and theoretical computation for applying kernels of upper/left 

and Sobel upper/left edges detection with ∆Tstep/Tbase = 64% and 32%. Based on the Gaussian 

fitting of computing errors, their SDs are between 0.015 and 0.034. Although edge features of 

Sobel and Kirsch ±45º kernels are clearly extracted with ∆Tstep/Tbase = 16%, snow noise and 

stripe noise imposed on the background are visible. Obviously, large switch contrasts 

(∆Tstep/Tbase) achieved by electrical programming of GST cells using microheaters are crucial 

for advanced image processing and feature extraction for CNNs visualized from the above 

comparison as shown in Supplementary Figure 17d. And ∆Tstep/Tbase higher than 32% maybe 

required to obtain good quality of a processed image based on our experimental setup. Thus, 

the full switching contrast larger than 256% (8·32%) may be required for applying the Kirsch 

filter. It is possible to further improve the switching contrast by optimizing the microheater 

design. In one study, the full switching contrast was reported as 400% using a doped waveguide 

crossing structure.9 In contrast, previously demonstrated SOI waveguide memory cells using 

the all-optical programming suffer from low contrasts (with a full contrast of merely 15%).25 

It would be difficult for them to obtain good image processing results due to limited ∆Tstep/Tbase 

less than 16%.  
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Supplementary Figure 18 Computational precisions for image processing. (a) and (b) An 

example of applying blurring kernel with measured scalar multiplication results versus the 

exact results (a), histograms of normalized error fitted with Gaussian distributions (b). (c) 

Normalized SD and CNR versus switching contrasts of a GST cell for applying blurring, upper 

edge, left edge, Sobel Gx/Gy, and Kirsch ±45º kernels. 

 

Supplementary Figure 18a shows one example of measured results versus the exact results 

at switching contrasts ∆Tstep/Tbase of 4%, 8%, 16%, 32%, and 64% after applying image blurring. 

Supplementary Figure 18b shows histograms of computational error calculated by subtracting 

the measured results from the exact results. Histograms were further fitted by Gaussian 

distributions to extract SDs. Based on the same process, we calculated SD and CNR of applying 

various image kernels, and plotted results in Supplementary Figure 18c. We observed the same 

trend, i. e., SD decreases (CNR increases) with increase of the switching contrast. For examples, 

SDs are suppressed from (0.071, 0.107, 0.121, 0.063, 0.063) to (0.008, 0.016, 0.028, 0.021, 

0.015) for applying (blurring, upper edge, left edge, Sobel Gx, Sobel Gy) kernels by increasing 

∆Tstep/Tbase from 4% to 64%. SDs were extracted to be 0.028 and 0.028 for applying the Kirsch 

45º and −45º kernels, respectively. CNR was improved from 5.46 to 87.36 by increasing 

switching contrasts ∆Tstep/Tbase from 4% to 64%. In addition, the detailed computing accuracies 

and error distributions generated from applying upper edge, left edge, Sobel Gx, Sobel Gy, 

Kirsch 45º and Kirsch −45º image kernels are presented in Supplementary Figure 19. 
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Supplementary Figure 19 Computing accuracies and error distributions versus switching 

contrasts for (a) upper edge, (b) left edge, (c) Sobel Gx, (d) Sobel Gy, (e) Kirsch 45º and (f) 

Kirsch −45º image kernels. 

 

Supplementary Note 15: Computing accuracy of the convolutional layer, training of 

convolutional neural networks (CNNs) and comparison on prediction accuracies, 

estimation on computational load  

 

Supplementary Figure 20 Computing accuracy and error distribution of using the 

photonic dot-product engine for convolutional processing of MNIST fashion products 

and hand-written digits database. 
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The convolutional layer is implemented using our photonic processor to generate measured 

results and using a computer to generate the expected results as to study the accuracy of 

convolutional processing for MNIST fashion products and hand-written digits database and 

related error distribution. The results are shown in Supplementary Figure 20. The error 

distribution is fitted by a Gaussian distribution with the mean error of 0.011 and SD of 0.027. 

 

 

Supplementary Figure 21 Testing loss and accuracy of CNNs versus epoch. (a) and (b) 

Evolution of loss and accuracy for MNIST fashion product recognition. (c) and (d) Evolution 

of loss and accuracy for MNIST hand-written digit recognition.  

 

Training of CNN was performed using a digital computer due to lack of on-chip scalable 

neurons.26-29 The CNN simulation models were built in MATLAB using the Adam optimizer 

with default settings except for the number of epochs. Training epochs of 80 and 150 were 

defined for MNIST fashion product and handwritten digit, respectively, due to saturated loss 

with increased epochs according to Supplementary Figure 21a and 21c. As shown in 

Supplementary Figure 21b and 21d, with the help of convolutional layers, prediction accuracies 

were improved compared with those of the fully connected neural networks without 

convolutional layers. Based on the experimentally measured data, classification accuracies 

were tested as 86% and 87% for fashion product and digit, respectively, which agree well with 

the theoretical calculation results.  

(a) (b)

(c) (d)
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Supplementary Figure 22 Estimation on computational load.  

 

We run inference using the trained neural network (architecture shown in Figure 4b) to 

estimate the computational load related to optical processing. The results are shown in 

Supplementary Figure 22. The whole inference step takes 4.9×10−3 s. The convolutional 

processing step takes 5.6×10−5 s. Thus, the optical processing contributes 1.1% to the overall 

runtime. In addition, in order to implement optical processing, the two extra steps are 

rearrangement of data order and post processing (without the balanced photodetection as 

described in Supplementary Figure 9). The rearrangement of data order takes 7.5×10−6 s and 

the post processing takes 3.6×10−6 s. The sum of extra time required is 1.1×10−5 s, which is 

0.2% of the overall runtime. Error bar of each process is defined as the standard deviation of 

one hundred runtimes performed in the software using MATLAB R2021b Deep Learning 

toolbox.   

In this proof-of-concept demonstration, the photonic processor as a 2◊2 preprocessor for 

a simple CNN is not dominating in the computational load. Yet, in some popular CNNs such 

as GoogleNet, AlexNet, Overheat, and VGG, the many convolution layers can take up to 90% 

of the overall runtime.30 In principle, photonic processor can contribute to all convolutional 

processing steps to take care of computational load significantly from a futuristic perspective. 
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Supplementary Table 4 Comparison of experimentally demonstrated inferencing accuracies 

of the start-of-the-art PNNs. 

 

Platform  

Prediction accuracy 

Ref 
MNIST digit 

MNIST fashion 

product 

Integrated universal 

unitary network 
90.5% 84.2% 28 

Integrated diffractive 

network 
91.4% 81.7% 29 

Free-space diffractive 

network 
91.75% 81.13% 31 

Integrated 

convolutional network 
86% 87% This work  

 

Supplementary Table 4 compares inferencing accuracies of our integrated convolutional 

network based on the in-memory photonic–electronic hybrid platform with those of the start-

of-the-art PNNs previously reported,28,29,31 and our network exhibits one of the highest 

prediction accuracies for the MNIST fashion product. 
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Supplementary Note 16: Scaling the dot-product engine to a photonic tensor core and the 

projected compute density and compute efficiency 

 

 

Supplementary Figure 23 The proposed photonic tensor core architecture by scaling up 

the dot-product engine using optical interconnects. (a) Schematic of a photonic tensor core 

based on the photonic–electronic hybrid integration. (b) A detailed unit cell with an estimated 

footprint less than 40 × 40 μm2. 

 

Supplementary Figure 23 shows the proposed photonic tensor core architecture by scaling 

up the dot-product engine using optical interconnects. Output (yj) can be represented by 𝑦𝑗 =

∑ 𝑥𝑖 ∙ 𝑀𝑖𝑗
𝑀
𝑖=1 , where Mij is a matrix element encoded on the transmission of a PCM and xi is the 

amplitude of an input probe signal. Thus, [y1, y2, … yN] is an output vector for matrix-vector 

multiplication. Utilizing the parallel computing, multiple sets of input vectors can be processed 

in a single clock to implement matrix-matrix multiplication. Especially, this photonic–

electronic platform can be controlled using microcontroller and peripheral circuits. Based on 

the CMOS technology, vias can be used to bridge the doped silicon device layer and upper 

contact metal layer for wire bonding. In this scenario, footprint of a unit cell was estimated to 

be less than 40 × 40 μm2 by considering component footprints: doping region of less than 9 × 

14 μm2, bending radius of 10 μm, waveguide coupler length of 10 μm,32 and waveguide 

crossing of 10 × 10 μm2.33 The doped waveguide is shallowly etched and other components 

(waveguide couplers, waveguide crossings, waveguide bends) are all fully etched, with 

waveguide transitions in between.  
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Supplementary Figure 24 A schematic showing the proposed entire photonic-electronic 

chip for the matrix-vector multiplication. Freq.: frequency, Tx: transmitter, Mod.: modulator, 

Mux.: multiplexer, Demux.: demultiplexer, MRR: microring, Ref.: reference, Rx: receiver, 

DFB: distributed feedback Bragg, DAC: digital-to-analog converter, PD: photodiode, TIA: 

transimpedance amplifier, ADC: analog-to-digital converter. 

 

We propose a photonic-electronic chip with medium sized 16 × 16 waveguide crossbar 

arrays for the matrix-vector multiplication as shown in Supplementary Figure 24. And we 

provide reasonable estimations on compute density and efficiencies by considering sources, 

multiplexers, demultiplexers, transmitters (MRR-modulator-based optical DACs, CMOS 

drivers, thermal tuners, and digital backend), splitters, PCM crossbar arrays, receivers 

(photodetectors, TIAs, buffers, optically sampled ADCs, and digital backend) monolithically 

integrated on a silicon chip. We considered using two crossbar arrays (one main matrix and 

one reference matrix) and balanced photodetection scheme for non-zero-point offset correction 

due to the non-zero transmission at the lowest level encoded on the reference matrix. The 

proposed entire photonic-electronic chip as shown in Supplementary Figure 24 has digital 

backends, providing interfaces to an external digital electronic chip including microcontrollers 

and digital memory.  
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Supplementary Table 5 Estimated footprints and power consumptions of components in the 

proposed photonic-electronic chip. 

Components 
Area 

(mm2) 
Power (W) References 

DFB-

frequency 

combs 

3.92 0.7×2 = 1.4 34 

Mux. and 

Demux. 

based on the 

FSR-free 

MRRs add-

drop filters 

2 0 35 

Tx (MRR-

modulator-

based optical 

DACs, 

CMOS 

drivers, 

thermal 

tuners, and 

digital 

backend) 

15.36 
0.685 pJ/b × 25 × 109 b/s × 16 

×16 = 4.384 
36 

Splitters 1.28×10-4 0 37 

Crossbars 0.82 0 This work 

Photodiodes 0.9 

16×16×(0.0324+0.0165)=12.5 

38 

Rx.: TIAs, 

buffers 
2.304 21 

Rx.: 

Optically 

sampled 

ADCs, 

digital 

backend 

30.72 16×16×88 (mW) = 22.528 22 

Total 

area/power 
56.02 40.81  

 

Supplementary Table 5 shows estimated footprints and power consumptions of components 

in the proposed photonic-electronic chip. Assuming a data rate of 25 Gb/s and 16 WDM 
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wavelength channels in parallel, estimations on compute density, compute efficiency, and 

energy efficiency are shown below: 

Compute density: 

2×16×16×(2×16×25×109)/56.02/1012 = 7.3 TOPS/mm2 

 

Compute efficiency: 

2×16×16×(2×16×25×109)/1012/40.81 = 10.0 TOPS/W 

 

Energy efficiency: 

40.81/[2×16×16×(16×25×109)] = 0.2 pJ/MAC 

(Total power consumed in 1 second divided by number of optical MAC operations performed 

in 1 second) 

 

More details in evaluating area and energy consumption for each component are shown in 

the following part: 

 

(1) DFB-frequency combs:  

In our system, two laser soliton microcombs maybe needed for generating 16×16 wavelength 

channels (each has at least 128 comb lines), an area estimation would be taking 1/12 of the chip 

area for 24 integrated laser soliton microcombs34:  

9.8×4.8/12 = 3.92 mm2 

Wavelength ranges of dual combs are respectively 1520–1550 nm and 1550–1580 nm. If the 

comb line separation is 25 GHz, dual combs support 300 comb lines: 

(3×108/1520×10−9 − 3×108/1580×10−9)/(25×109) = 299.8001 

In ref. 39, the DFB pump laser for frequency comb generation has a wall-plug electrical power 

of 2V × 350 mA = 0.7 W, and 2 × 0.7 = 1.4 W for two DFB-comb sources. 

 

(2) Mux. and Demux. based on the FSR-free MRRs add-drop filters: 

Four groups of 16 by 16 passive MRRs35 are needed, they occupy an area of 1963 (µm2) × 16 

× 16 × 4 = 2 mm2. There is no energy consumption for these passive MRRs. 

 

(3) Transmitters: 

In ref. 36, area for one transmitter (including MRR-modulator-based optical DAC, CMOS 

driver, thermal tuner, and digital backend) is 0.06 mm2. Thus, total area for 256 transmitters is 

16 × 16 × 0.06 = 15.36 mm2. Energy per bit is Emod = 0.685 pJ/bit. And energy consumption is 

estimated as: 0.685 (pJ/b) × 25 × 109 (b/s) × 16 × 16 = 4.384 W. 

 

(4) Power splitters: 
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16 3-dB power splitters are needed to feed 50% of each input to a main crossbar and the rest to 

a reference crossbar. Footprint of each splitter is 2×4 µm2.37 And 16 splitters take an area of 

16×8 µm2 = 1.28×10−4 mm2. 

 

(5) Photonic crossbars: 

Footprint of a unit cell is 40 × 40 µm2. Then, footprint of a medium sized 16 × 16 photonic 

matrix is 40 × 40 × 256 = 409600 µm2 = 0.41 mm2. A main crossbar and a reference crossbar 

take an area of 0.82 mm2. 

 

(6) Balanced photodiodes: 

It takes an area of 240 × 220 µm2 for 5 × 6 photodiodes.38 Thus, 2×16×16 photodiodes may 

take an area of 0.9 mm2. 

 

(7) TIAs and buffers (connecting to balanced photodiodes): 

Footprint of an optical receiver Rx. (including TIA and buffer) is 0.009 mm2. For 256 receivers: 

16 × 16 × 0.009 = 2.304 mm2. Energy consumption for each receiver is (32.4+16.5) mW, in 

which a buffer consumes 16.5 mW.21 For 256 receivers, energy consumption is 16 × 16 × 

(0.0324 + 0.0165) = 12.5 W. 

 

(8) ADCs: 

According to ref. 22, estimated area is 0.12 (mm2) × 256 = 30.72 mm2. And power consumption 

is 256 × 88 (mW) = 22528 (mW) = 22.528 W. 
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