

Supplementary Figure 1.

a. Enlarged field of view of an EGFP-UtrCH (cyan) expressing neuron visualized by 3D gSTED. Image is max projected. Neurons are co-stained with Bassoon (magenta) and Synapsin (yellow). The staining procedure is as described in Fig.1. A composite image is followed by separated channels. The cyan dashed-line box contains the representative presynapse used for Fig.1. The white dashed-line box contains a typical axon.

b. Enlarged view of the axon contained within the dashed-line box in a. Multiple actin ring containing boutons and some partial ring containing boutons are shown, emphasized by white dashed-line boxes. A composite image is followed by separated channels.

Supplementary Figure 2

a. Additional example 3D gSTED micrographs showing the localization of filamentous actin relative to the active zone and reserve pool vesicle cluster in neurons. The active zone is marked by anti-Bassoon antibody and its secondary antibody, the reserve pool vesicle cluster is marked by anti-Synapsin antibody and its secondary antibody. Composite images of synapses are shown above the corresponding three individual channels. Five ring-like actin distributions are shown.
b. Percentage of synapses containing ring-like actin (64%), partial actin rings (27%), or actin patches (9%). Distribution from 33 synapses (n) across 2 cultures (N) reconstructed by 3D gSTED.

c. Example 2D STED micrographs showing the localization of Dynamin 1xA (Dyn1xA) relative to the active zone.

d. Schematic of Latrunculin A (LatA) and Jasplakinolide (Jasp) effects on F-actin filaments. Lat A sequesters actin monomers (Globular-actin, G-actin) to affect the rate of polymerization, while Jasp stabilizes F-actin.

e. Additional example 2D STED micrographs showing the localization of filamentous actin (Factin) relative to the active zone in neurons treated with DMSO (control), Latrunculin A (Lat A), and Jasplakinolide (Jasp). The active zone is marked by anti-Bassoon antibody and its secondary antibody. (bottom) Effect on actin filaments (F-actin) by Lat A or Jasp treatment.

b

Supplementary Figure 3.

a. Snapshots from model simulation showing the spatial-temporal changes in the bending energy (E_B) of the membrane over time. The model parameter and setup correspond to the same condition as the nominal case in Fig. 1e. In the colormap, the bending energy of the local membrane (in the unit of k_BT) is plotted in the natural log-scale to optimally discern the spatial-temporal changes.

b. Model results showing that the maximal mean curvature of the resulting endocytic pits decreases with the bending modulus of the active zone and endocytic zone, κ_2 , while keeping all the other parameters and the geometry of fusing vesicles as those in the nominal case in Fig. 1e.

c. A representative trajectory showing the evolution of the adaptive simulation timestep over time in the numerical simulation of the nominal case in Fig. 1e.

d. Model result showing that the total energy of the system is minimized over time during the simulation. Here, the model parameter and setup correspond to the same condition as the nominal case in Fig. 1e.

Supplementary Figure 4.

Additional electron micrographs showing ChetaTC-expressing wild-type neurons, treated with 0.1% DMSO, 10 µM Latrunculin A (LatA), and 100 nM Jasplakinolide. The left panel show unstimulated conditions, while the right panel show 100 ms after single stimulus (10 ms light pulse, 37 °C, 4 mM external Ca²⁺). Black arrow: endocytic pit. White arrowhead: ferritin-positive endocytic vesicle. White arrow: ferritin-positive endosomes. N=2 cultures, n=200.

Supplementary Figure 5.

a. Snapshots from simulation, showing the evolution of membrane shape within the active zone
upon a single vesicle fusion. As long as the membrane area is conserved, the fusing vesicle
cannot flatten out completely. However, when the membrane area conservation was turned off at
7 ms, the exocytic pit fully collapse into the active zone.

Supplementary Figure 6.

a. Additional example micrographs showing wild-type synapses unstimulated (left) or stimulated with electric field for 1 ms and frozen 100 ms later (right). The external calcium concentration is 1.2 mM. Black arrow: endocytic pit. N=2 cultures, n=200.

b. Additional example micrographs showing wild-type and $Doc2\alpha$ knockou unstimulated or stimulated with electric field for 1 ms and frozen 100 ms later. Black arro endocytic pit. N=2 cultures, n=200.

Supplementary Figure 7.

a. A schematic showing the protein structural elements of Epsin1. Epsin1 contains ENTH domain,

NPF and DPW. The C-terminal domain, marked light red, interacts with F-actin, while the ENTH domain, marked light blue, interacts with plasma membrane.

b. An example Western blot and a plot showing efficiency of Epsin1 knock-down (KD). In each case, Epsin1 signal intensity is normalized by the amount of actin, and then, the abundance of Epsin1 is calculated based on the normalized intensity in the scramble (scr) shRNA control. The mean and SEM are shown. Dot: one culture. N=3 cultures, ***p<0.001.

c. Additional example electron micrographs showing wild-type and Epsin1 KD s unstimulated or stimulated with a single electrical pulse (1 ms) and frozen 100 ms or 1 s later. Black arrow: endocytic pit. White arrow: ferritin-positive endosomes.

Model Parameter	Physical Range	Nominal Value used in the model
Bending modulus of post-fusion vesicle, κ_1	100 - 400 $k_{\rm B}$ T (~ 4.3 × 10 ⁻¹⁹ J - 1.7 × 10 ⁻¹⁸ J) ^{31,33}	300 <i>k</i> _B T (~ 1.3 × 10 ^{−18} J)
Bending modulus of the active zone and endocytic zone, κ_2	$\frac{10 - 100 k_{\rm B}T}{(\sim 4.3 \times 10^{-20} \text{ J} - 4.3 \times 10^{-19} \text{ J})^{40.41}}$	20 <i>k</i> _B T (~8.6 × 10 ⁻²⁰ J)
Bending modulus of the actin- enriched periactive zone, κ_3	Same as κ_1^{42-44}	300 <i>k</i> _B T (~ 1.3 × 10 ^{−18} J)
Osmotic pressure	$\sim 1 \text{ kPa}^{103}$	1 kPa
Effective viscous drag coefficient of membrane shape changes	$\sim 2 \times 10^9 \text{ Pa} \cdot \text{s} \cdot \text{m}^{-1}$ ¹⁰⁴	$2 \times 10^9 $ Pa·s·m ⁻¹

Supplementary Table 1: Model Parameters used in this study.

Note (*): The temperature, T, is chosen to be 37°C.

Supplementary Table 2: A summary of statistical analysis used in this study.

Fig. 1b distribution

	DMSO	Jasp	LatA	Dyn1xA
Test for normal				
distribution				
Anderson-Darling				
test				
A2*	0.4894	0.3809	0.3179	1.018
P value	0.1783	0.3423	0.4913	0.0071
Passed normality test				
(alpha=0.05)?	Yes	Yes	Yes	No
P value summary	ns	ns	ns	**
D'Agostino &				
Pearson test				
K2	3.607	3.721	3.097	2.671
P value	0.1647	0.1556	0.2126	0.263
Passed normality test				
(alpha=0.05)?	Yes	Yes	Yes	Yes
P value summary	ns	ns	ns	ns
Shapiro-Wilk test				
W	0.8899	0.9075	0.9234	0.7993
P value	0.1175	0.1982	0.315	0.0092
Passed normality test				
(alpha=0.05)?	Yes	Yes	Yes	No
P value summary	ns	ns	ns	**
Kolmogorov-Smirnov				
test				
KS distance	0.1736	0.141	0.1223	0.2417
P value	>0.1000	>0.1000	>0.1000	0.0511
Passed normality test				
(alpha=0.05)?	Yes	Yes	Yes	Yes
P value summary	ns	ns	ns	ns
Number of values (n)	339	390	458	185
Number of cultures				
(N)	3	3	3	2
Minimum	-33.38	-14.86	-16.63	-27.97
25% Percentile	95.2	132.2	114.5	61.09
Median	169.4	218.4	212.5	114.1
75% Percentile	262.9	326	349.8	167.7
Maximum	514	545.6	544.5	440.6
Range	547.3	560.5	561.1	468.5
Mean	187.4	233	234.4	122.1
Std. Deviation	122.4	131.7	141.9	89.97
Std. Error of Mean	6.647	6.668	6.631	6.615

Dunn's multiple				Adjusted P
comparisons test	Mean rank diff.	Significant?	Summary	Value
DMSO vs. Jasp	-131.3	Yes	****	< 0.0001
DMSO vs. LatA	-124.7	Yes	****	< 0.0001
DMSO vs. Dyn1xA	208	Yes	****	< 0.0001
Jasp vs. LatA	6.588	No	ns	>0.9999
Jasp vs. Dvn1xA	339.3	Yes	****	< 0.0001
LatA vs. Dvn1xA	332.7	Yes	****	< 0.0001
Fig. 1b intensity				
	DMSO	Jasp	LatA	
Test for normal				
distribution				
Anderson-Darling				
test				
A2*	2.222	2.167	2.618	
P value	<0.0001	<0.0001	<0.0001	
Passed normality test				
(alpha=0.05)?	No	No	No	
P value summary	****	****	****	
D'Agostino &				
Pearson test				
K2	4 986	5 498	11 76	
P value	0.0826	0.064	0.0028	
Passed normality test	0.0020	0.001	0.0020	
(alpha=0.05)?	Yes	Yes	No	
P value summarv	ns	ns	**	
		115		
Shapiro-Wilk test				
W	0 7445	0.75	0 6975	
P value	0.0001	0.0001	<0.0001	
Passed normality test	0.0001	0.0001	0.0001	
(alpha=0.05)?	No	No	No	
P value summarv	***	***	****	
Kolmogorov-Smirnov				
test				
KS distance	0 2435	0 2688	0 2651	
P value	0.0021	0.0004	0.0005	
Passed normality test	0.0021	0.0004	0.0000	
(alpha=0.05)?	No	No	No	
P value summarv	**	***	***	
Number of values (a)	104	170	000	
Number of outures (II)	134	179	233	
		2	2	
(11)	3	3	3	
Minimum	0.5	2 416	Λ	
	5.0	2.110	0	

25% Percentile	7.244	6.718	4.798	
Median	9.921	9.592	6.847	
75% Percentile	14.51	14.24	11.06	
Maximum	34.02	40	32.9	
Range	33.52	37.59	32.9	
Mean	11.33	11.33	8.556	
Std. Deviation	5.647	6.298	5.588	
Std. Error of Mean	0.4878	0.4707	0.3661	
Kruskal-Wallis test				
Dunn's multiple				Adjusted P
comparisons test	Mean rank diff.	Significant?	Summary	Value
DMSO vs. Jasp	7.691	No	ns	>0.9999
DMSO vs. LatA	94.14	Yes	****	< 0.0001
Jasp vs. LatA	86.45	Yes	****	< 0.0001

						p values
			n			(against no
		Ν	(synatic			stim
		(culture)	profiles)	mean	sem	control)
DMSO	no stim	2	200	0.01	0.007053	
	100 ms	2	200	0.105	0.02173	0.0002
LatA	no stim	2	200	0	0	
	100 ms	2	200	0.005	0.005	>0.9999
Jasp	no stim	2	193	0.00518	0.005181	
	100 ms	2	200	0.17	0.02663	< 0.0001

Fig. 2d Kruskal-Wallis test with Dunn's multiple comparisons test

Dunn's				
multiple				
comparison	Mean rank	Significa	Summar	Adjusted
s test	diff.	nt?	у	P Value
DMSO no				
stim vs.				
DMSO 100				
ms	-56.67	Yes	***	0.0002
DMSO no				
stim vs.				
LatA no				
stim	5.965	No	ns	>0.9999
DMSO no				
stim vs.				
LatA 100				
ms	2.983	No	ns	>0.9999
DMSO no				
stim vs.				
Jasp no				
stim	2.874	No	ns	>0.9999
DMSO no				
stim vs.				
Jasp 100				
ms	-95.44	Yes	****	<0.0001
DMSO 100				
ms vs.				
LatA no				
stim	62.63	Yes	****	<0.0001
DMSO 100				
ms vs.				
LatA 100				
ms	59.65	Yes	****	<0.0001
DMSO 100				
ms vs.				
Jasp no				
stim	59.54	Yes	****	<0.0001

DMSO 100				
ms vs.				
Jasp 100				
ms	-38.77	Yes	*	0.0409
LatA no				
stim vs.				
LatA 100				
ms	-2.982	No	ns	>0.9999
LatA no				
stim vs.				
Jasp no				
stim	-3.091	No	ns	>0.9999
LatA no				
stim vs.				
Jasp 100				
ms	-101.4	Yes	****	<0.0001
LatA 100				
ms vs.				
Jasp no				
stim	-0.1082	No	ns	>0.9999
LatA 100				
ms vs.				
Jasp 100				
ms	-98.42	Yes	****	<0.0001
Jasp no				
stim vs.				
Jasp 100				
ms	-98.31	Yes	****	<0.0001

Fig. 2e Kruskal-Wallis test with Dunn's multiple comparisons test

			n			p values (against po
		N	(synatic			stim
		(culture)	profiles)	mean	sem	control)
DMSO	no stim	2	237	0.09705	0.02188	
	1 s	2	207	0.2222	0.0313	0.0009
LatA	no stim	2	207	0.01932	0.009591	
	1 s	2	209	0.01914	0.0095	>0.9999
Jasp	no stim	2	199	0.05528	0.01624	
	1 s	2	213	0.1784	0.03021	0.0097
Dunn's						
multiple						
comparison	Mean rank	Significa	Summar	Adjusted		
s test	diff.	nt?	у	P Value		
DMSO no						
stim vs.						
DMSO 1s	-75.92	Yes	***	0.0002		

DMSO no				
stim vs.				
LatA no				
stim	44.08	No	ns	0.1764
DMSO no				
stim vs.				
LatA 1s	44.2	No	ns	0.1699
DMSO no				
stim vs.				
Jasp no				
stim	21.34	No	ns	>0.9999
DMSO no				
stim vs.				
Jasp1s	-45.49	No	ns	0.1321
DMSO 1s				
vs. LatA no				
stim	120	Yes	****	<0.0001
DMSO 1s				
vs. LatA 1s	120.1	Yes	****	<0.0001
DMSO 1s				
vs. Jasp no				
stim	97.26	Yes	****	<0.0001
DMSO 1s				
vs. Jasp 1				
S	30.43	No	ns	>0.9999
LatA no				
stim vs.				
LatA 1s	0.117	No	ns	>0.9999
LatA no				
stim vs.				
Jasp no				
stim	-22.74	No	ns	>0.9999
LatA no				
stim vs.				
Jasp1s	-89.57	Yes	****	<0.0001
LatA 1s vs.				
Jasp no				
stim	-22.86	No	ns	>0.9999
LatA 1s vs.				
Jasp1s	-89.68	Yes	****	<0.0001
Jasp no				
stim vs.				
Jasp1s	-66.83	Yes	**	0.0034

Fig. 3d	Mann-Whitney	y test				
		N (culture)	n (synatic profiles)	mean	sem	p values (against no stim control)
wild type	no stim	2	209	0.00479	0.004785	
	100 ms	2	218	0.1147	0.0235	< 0.0001

Fig. 3fKruskal-Wallis test with Dunn's correction

			n			p values
		Ν	(synatic			(against no
		(culture)	profiles)	mean	sem	stim control)
Doc2a+/+	no stim	2	243	0.02881	0.01075	
	100 ms	2	212	0.1274	0.0239	0.0012
Doc2a-/-	no stim	2	235	0.04681	0.01381	
	100 ms	2	234	0.03846	0.01398	0.9742

Dunn's multiple				
comparisons	Mean rank	Significa	Summar	Adjusted
test	diff.	nt?	у	P Value
wt no stim vs.				
wt 100 ms	-43.38	Yes	****	< 0.0001
wt no stim vs.				
doc2a no stim	-8.299	No	ns	>0.9999
wt no stim vs.				
doc2a 100 ms	-2.592	No	ns	>0.9999
wt 100 ms vs.				
doc2a no stim	35.08	Yes	**	0.003
wt 100 ms vs.				
doc2a 100 ms	40.79	Yes	***	0.0003
doc2a no stim				
vs. doc2a 100				
ms	5.707	No	ns	>0.9999

Fig. 3hKruskal-Wallis test with Dunn's correction

			n			p values
		Ν	(synatic			(against no
		(culture)	profiles)	mean	sem	stim control)
DMSO	no stim	2	200	0.025	0.01107	
	100 ms	2	167	0.1078	0.0269	0.0012
EGTA	no stim	2	201	0	0	
	100 ms	2	159	0.02516	0.01246	>0.9999

Dunn's multiple				
comparisons	Mean rank	Significa	Summar	Adjusted
test	diff.	nt?	у	P Value

no stim vs. 100				
ms	-25.82	Yes	**	0.0012
no stim vs. no				
stim	9.063	No	ns	>0.9999
no stim vs. 100				
ms	-0.057	No	ns	>0.9999
100 ms vs. no				
stim	34.88	Yes	****	<0.0001
100 ms vs. 100				
ms	25.76	Yes	**	0.0027
no stim vs. 100				
ms	-9.119	No	ns	>0.9999

		n						
		(synap					maxim	skewne
	N (culture)	se)	minimum	25%	median	75%	um	SS
scramble	3	75	108.3	219.2	374.8	661.9	1269	0.7593
Epsin1 KD	3	66	62.49	123.8	221.4	376.5	1324	1.868

Fig. 4e Kruskal-Wallis test with Dunn's correction

Fig. 4g Games-Howell's multiple comparisons test

						p values
		Ν	n			(against
		(culture	(synatic			no stim
)	profiles)	mean	sem	control)
scramble	no stim	2	225	0.02222	0.00985	
	100 ms	2	118	0.1356	0.03165	0.0045
Epsin1 KD	no stim	2	235	0.00426	0.00426	
	100 ms	2	199	0.01005	0.00709	0.8967

Games-					
Howell's					
multiple		95.00%	Below		
comparison		CI of	threshol	Summar	Adjusted
s test	Mean Diff.	diff.	d?	у	P Value
scr no stim		-0.1996			
vs. scr 100		to -			
ms	-0.1134	0.0271	Yes	**	0.0045
scr no stim		-			
vs. kd no		0.0097			
stim	0.01797	48 to	No	ns	0.3389
scr no stim		-			
vs. kd 100		0.0191			
ms	0.01217	4 to	No	ns	0.7477
scr 100 ms		0.0481			
vs.kd no		5 to			
stim	0.1313	0.2145	Yes	***	0.0004
scr 100 ms		0.0411			
vs. kd 100		2 to			
ms	0.1255	0.2100	Yes	***	0.001
kd no stim		-			
vs. kd 100		0.0271			
ms	-0.005795	4 to	No	ns	0.8967

Fig. 4hGames-Howell's multiple comparisons test

						p values
		Ν	n			(against
		(culture	(synatic			no stim
)	profiles)	mean	sem	control)
scramble	no stim	2	225	0.03556	0.01237	

	1 s	2	127	0.3071	0.04543	< 0.0001
Epsin1 KD	no stim	2	235	0.08085	0.02152	
	1 s	2	232	0.0819	0.02	>0.9999

Games-					
Howell's					
multiple		95.00%	Below		
comparison		CI of	threshol	Summar	Adjusted
s test	Mean Diff.	diff.	d?	у	P Value
scr no stim		-0.3939			
vs. scr 1 s	-0.2715	to -	Yes	****	<0.0001
scr no stim		-0.1094			
vs. kd no		to			
stim	-0.0453	0.0187	No	ns	0.2633
scr no stim		-0.1070			
vs.kd1s	-0.04634	to	No	ns	0.2011
scr1svs.		0.0959			
kd no stim	0.2262	1 to	Yes	****	< 0.0001
scr1svs.		0.0964			
kd 1 s	0.2252	4 to	Yes	****	< 0.0001
kd no stim		-			
vs.kd1s	-0.001045	0.0768	No	ns	>0.9999