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Reviewer #1 (Remarks to the Author):

The paper by Weinstein et al describes a computational method called htFuncLib to generate
functional variants, and then an experimental testing and evaluation of the method using GFP. The
method and results appear promising and potentially very useful for generating libraries for large-
scale testing, and could thus be useful in other engineering efforts. In particular, by enabling
efficient combinatorial engineering in for example active sites, the method could be used to
optimize for example enzymes.

The paper is relatively dense, with several novel ideas and results. Thus, while each part of the
paper is well written, it is also easy as a reader to get lost because there are many points made,
and because many of them are presented only at an overall level. I missed a lot of details of the
results and methods, which made it difficult to evaluate the work. The comments below should
also be seen in this light; there may be points that I have missed, but in that case this could be
because the points/results/methods are in places very difficult to find.

Briefly described (if I understand the method correctly), the application to GFP starts with
manually selecting 27 sites around the chromophore assumed to be important for function and
followed by these steps: A first filtering is based on a phylogenetic analysis and single-site Rosetta
calculations and results in a list of promising amino acid substitutions at a subset of the 27 sites.
Then, Rosetta calculations of multipoint mutations constructed in spatially local neighbourhoods
are used as input for a neural network model that outputs a ranked list of substitutions from which
a selected top is used to construct a combinatorial library. Two such libraries were made and
screened for fluorescence in high throughput and for two excitation wavelengths. Screened
variants from the two libraries were pooled and a common random forest model was trained to
predict the functional state of all 11 plus 0.93 million combinatorial variants of the two libraries
respectively. The usefulness of individual substitutions in functional multipoint mutants is analysed
based on the predicted function states.

Overall, I find the paper interesting and it appears that the method can make combinatorial
libraries that are enriched in successful and potentially interesting functional variants. Although it
is not surprising to find interactions between buried and spatially close sites, the paper presents a
method that seem capable of handling this, i.e. that a substantial fraction of the variants
generated are functional. How many and what fraction is still unclear (see below for discussion on
this). One area to improve the manuscript is that the computational method, details of the high-
throughput screen and random forest model are relatively poorly described, and in places also
poorly validated, which leaves substantial uncertainties for the reader, and makes it very difficult
to evaluate the method presented.

More detailed comments and suggestions for improvements.

1.
There are some claims in the abstract that are difficult to find support for in the paper:

la.

“We screened 11 million htFuncLib designs that targeted the GFP chromophore-binding pocket ...".
The experimentally screened library in theory has 11 million members but I do not see evidence
that all have been transformed and screened. Fig. 2C suggests a maximum of ~1075
experimentally screened variants. If the abstract refers to the in silico screen using the random
forest model, please make that clear, and also say how many are known to have been screened
experimentally.

1b.

“... and isolated >16,000 unique fluorescent designs encoding as many as eight active-site
mutations”. In the body of the paper the 16,000 functional variants are referred to as “putative” or
“potentially active” which I find more reasonable due to the “Relatively loose criteria (enrichment
in the selected population relative to the presorted population >1)” by which these are identified.
If the authors wish to claim to have identified 16,000 functional variants, the rest of the paper



should be more focused on validating this, see in particular below regarding the uncertainty of the
high-throughput assay.

lc.

"By eliminating incompatible active-site mutations, htFuncLib generates a greater diversity of
functional sequences than evolutionary or mutational scanning approaches for optimizing
enzymes, binders, and other functional proteins.” Fig. 3B illustrates that when only looking at
variants containing functional site mutations, i.e. removing most variants from the other sets, then
htFuncLib seems to cover a larger space. However, it is not clear from the abstract that the other
sets are heavily reduced, in particular because variants with more mutations are likely to have at
least one outside the functional site. The text in the conclusion is a bit clearer on this point, but it
would be good that the abstract reflects this.

2)

Major parts of the methods are not described in any substantial detail. For example the deep
sequencing and random-forest model which are described with six and three sentences
respectively. This makes it almost impossible to judge the results and conclusions of the paper,
and for others to build on this work. Ideally, one should be able to examine all major parts from
reading the paper, for example, only details should by looked up in the code.

3)

I find it surprising that PROSS-eGFP performs relatively poorly in the computational and
experimental stability evaluation (Fig. 5a). If I understand correctly, PROSS-eGFP should be
optimized by something very similar to the filtering method so why does so many beneficial
substitutions show up in the filtering? The only information I can find regarding the “filtering” is
that this leaves a combinatorial space of 10”18 variants; it would be interesting to see the
resulting substitutions presented as in supplementary table S1. Also, Y145F is described in ref. 33
as a part of PROSS-eGFP but here reintroduced as a new mutation? Similarly, T1671 is presented
as a new substitution here, but seems to already be in the background in ref. 33 (looking at the
DNA sequence below the supplementary table S2). Also, in ref. 33 PROSS-eGFP is reported to
have 11 or 12 substitutions relative to eGFP but here only one (interpreting undescribed tics in Fig.
5A and the caption of Fig. 3: "PROSS-eGFP (and eGFP, which are nearly identical in the designed
positions)”. All in all, this is somewhat unclear from reading the paper. Maybe it is just me having
a hard time finding the data, but then that might also be the case for other readers. It would have
been useful to report exact sequences of eGFP and PROSS-eGFP (and sfGFP) and substitutions
used. Also, please comment on the apparent low stability of PROSS-eGFP and the relationship to
the fact that it is optimized.

4)

Regarding the number of tested designs, I cannot make the numbers in supplementary table S5
match the attached csv file: The csv holds 72 sequences incl. 3 controls, i.e. 69 tested designs
that all seems to be functional, whereas the text reports 68 designs tested in total? There may be
a way to add this up but I could not find it. The 19 variants in sfGFP background are listed in the
csv but not in table S5. Also, I can only see 15 functional random-forest designs and 10 AmCyan
variants selected for spectral shift in the csv but 16 and 14 are reported in table S5? Most
importantly, please report the sequences and number of mutations of the failed design (e.g. in the
csv and/or in the text) as this is essential information for the community. Also, please describe in
the paper the nine “Additional designs” listed in Table S5 as selected from deep sequencing, of
which only one is functional. Again, apologies if these were presented somewhere, but I could not
find it.

5)

In the top plot of Fig 3A, it seems that 100% of single variants are functional — perhaps this is WT,
i.e. zero mutations, and the x-axis is shifted? If this is the case, the RF model seems very
optimistic in identifying function with almost 100% single mutants functional (currently x=2) or at
least more than NGS. With this, I find it odd that the bottom plot shows slightly more functional
single variants in NGS than in RF (assuming most single mutants are observed in NGS). Please
check and clarify.



6)

Most striking in Fig 3A is the high fraction of the "16,000 potentially active designs” with more
than four mutations. This should be validated better if authors wish to report 16,000 functional
variants identified in the abstract. First, the authors only report tests of designs up to 8 mutations
whereas a substantial fraction of functional NGS variants have more than 8 mutations. Please
report the success rate in experimental tests per number of mutations (also related to pt. 4 above
on information about the failed designs). Second, please comment on the statistics in
supplementary Table S2: The false-positive rate is 1/12, i.e. ~8% are the falsely predicted
functional out of the actual non-functional. This is a quite high humber since the paper reports
~90% non-functional (Fig. 2C), i.e. with 100,000 non-functional variants, 8,000 are expected to
be false positive. This reflects the imbalance in training on a high-prevalence set (most functional)
and applying to a low-prevalence set (fewest functional). Third, there is very little indication of the
uncertainty in the NGS experiment. It requires a very deep sequencing to cover 100,000 unique
variants without paired-end reads, to an extent that warrants calculation of enrichments. To
calculate enrichments, the authors need to have a good idea about the abundance of a variant
prior to selection and there is no discussion on how this is addressed. Please comment on this, e.g.
size the of transformed library, how many cells are expected to have more than one plasmid, FACS
coverage (cells sorted per library size), sequencing coverage (average number of reads per unique
variant), which region of GFP is sequenced (maximum 600 bases are sequenced), are all functional
variants observed in the non-sorted sequencing, are pseudo-counts applied, frequency of
unexpected substitutions and how these are handled, etc.

7)

It would be interesting to see some more details on the construction of the neighbourhoods. E.g. a
supplementary table listing the sites of the filtered mutations could also list the neighbourhood of
each site and the number of calculated multipoint mutations. Are these mostly double mutants or
higher order mutants?

8)
It would be appropriate to make some quantitative comparison with the previous version of
FuncLib (ref. 24), e.g. by the success rates obtained in experimental validations.

9)

It would be interesting to know with a bit more detail on the phylogenetic analysis. The authors
write “In this selection step, we keep mutations that are likely to be present in the natural
diversity of sequence homologs and that are moreover predicted not to destabilize the protein
native state according to atomistic design calculations35”. GFP is sometimes considered not to
have very many natural homologs and fpbase.org (ref 35) contains a lot of synthetic variants.
Please give the number of sequences in the phylogenetic analysis and, if possible, indicate how
many of these are natural, e.g. belongs to a reference genome.

10)

The methods section describes “An alternative mutation selection approach that uses Integer
Linear Programming” which is only briefly referenced in the text. This should either be removed or
the authors should show the results.

11)

In the paragraph starting with “Our working hypothesis is that epistatic interactions most
frequently arise from three molecular sources (Supplementary Figure 1)” the third point is unclear
and not illustrated in supplementary Fig. S1: “(3) stability-mediated interactions caused by the
nonlinear relationship between the free energy of folding and the fraction of natively folded and
functional protein”.

Minor points
1)

It would be helpful if Fig. 1 more directly illustrated what “filtering” and “EpiNNet enrichment”
means and where in the pipeline it is performed



2)
Should T65S be in supplementary Fig. S2? It would be useful for the discussion in Fig. 4

3)
Fig. 4A caption “"GFP488/53" should be “"GFP488/530”

4)
In methods section under FACS sorting: “E. cloni” should probably be “E. coli”, though I quite like
the name “cloni”

5)

In the introduction the authors write “and functional multipoint mutants are exceptionally rare”,
but do not provide a reference to this general statement. Similarly with the statement “Epistasis is
a key reason for the low tolerance to multipoint active-site mutations.”

Reviewer #2 (Remarks to the Author):

In this study, Weinstein and colleagues use a combination of energetic modeling and high-
throughput screening to identify GFP variants with multiple mutations, addressing the challenge of
potential negative epistasis between mutations reducing the hit-rate. htFuncLib was used to design
a set of point mutations and then combinations of mutations that were energetically favorable.
Then, a machine learning EpiNet model was trained to discriminate favorable and unfavorable
combinations of mutations. Hits from this approach included those with > 8 mutations, which
exceeded the tolerated mutational perturbation load from previous design approaches. This work
and a companion submission on enzyme engineering show that issues with epistasis can begin to
be addressed by combining judicious energetic modeling combined with training of machine
learning models. An important and relevant study to the protein engineering field. The work is
technically sound and clearly presented.

Two comments that should be addressed:

(1) There is no functional goal in these libraries - i.e. quantum yield, photostability, color. How
would these methods be adapted if a particular functional feature, not just structure and stability
were to be optimized. Excitation and emission spectral properties were not described (peak
wavelenthgs). Can models be trained to identify what features contribute to photophysical
properties?

(2) This training of EpiNNet should be discussed in the context of the choice of host protein - a
stable version of GFP - and specifically the work earlier this year from Kondrashov
(https://doi.org/10.7554/eLife.75842) showing that mutational landscapes that are flatter are not
as useful for training models. Does the energetic modeling in htfuncLib work for more 'fragile’
proteins where epistatic interactions can have a more pronounced effect on folding/function?

Reviewer #3 (Remarks to the Author):

In this manuscript, the authors introduce the htFuncLib, a protein-engineering pipeline to design
and test variant libraries focused on protein functional sites. The motivation behind developing
such a method is to increase the sampling efficiency and diversity around a protein functional site,
which is usually highly conserved and sensitive to mutations. To achieve this goal, the authors
have to overcome the epistatic effect by introducing multiple mutations simultaneously, which, in
the past, has only been partially achieved by directed evolution through iterative mutation-
selection cycles. The htFuncLib method starts with low-energy PSSM-approved mutations in the
functional site (by phylogenetic analysis and Rosetta energy calculation), then ranks and selects
those mutations by their mutual compatibility (by a trained neuron network EpiNNet). After this in
silico screening, DNA fragments encoding these compatible point mutations are assembled in an
all-against-all combinatory library by Golden Gate method, tested by high-throughput FACS, and
read out by deep sequencing. The authors apply this engineering pipeline to GFP’s fluorescence



functional site. The results are impressive: 1.) they explore a much bigger sequence space that is
inaccessible in multiple previous attempts, 2.) the functional multipoint mutants after library
selection show desired functional diversity in terms of protein stablity, fluorescence spectra,
fluorescence lifetime, pH sensitivity, and fluorescence photo-stability, and 3.) the molecular
mechanisms of epistasis underlying the successfully selected GFP variants are interesting for
structural analysis. Overall, the manuscript presents a pragmatic way to diversify certain protein
functions and I anticipate it will attract attention among protein engineers working towards protein
tools (eg. imaging tools such as fluorescent proteins) and enzymes, thus I recommend this
manuscript for publication after a minor revision. Below are my comments for the authors:

1. A direct comparison between FuncLib and htFuncLib would be necessary here. If adding a
perceptron-based neural network (or ILP) machine learning module largely improves the end
results, it would be worthwhile to ask what Rosetta method lacks and what role Rosetta design
calculation plays in this new method.

2. The general applicability for other users and other proteins is not very clear. There are several
manual steps in the Method description(Line 455, 462, 470). While it is understandable to
introduce manual intervention on every steps during method development and the initial
application, I would like the see how the authors plan to automate the pipeline for future
applications.

3. The final paragraph in the Introduction is slightly an overstatement (Line 55, "arbitrarily large
libraries” and Line 61, "millions(and potentially billions) of designs”). From the Method description,
it is obvious that the size of the final library is a limiting factor for designing the combinatory
library (Line 462-464, Line 494-497). I would suggest the authors to revise this paragraph to
avoid misleading.

4. In Line 81-86 and Supplementary Figure 1, the authors listed three hypothesized sources for
epistatic interactions. It is hinted in the text (Line 99, “penalize backbone deformation” and Line
105 “most likely to give rise to...”) that the htFuncLib is focused on establishing type 1 epistatic
interactions only (this is my speculation). It would make the manuscript easy to understand if the
authors can offer a direct correspondence between the three types of epistatic interactions and the
htFunclLib library design’s target interactions.

5. Following comment 4, I am also confused about how the method deals with backbone
movement upon introducing multiple mutations, eg. how does the calculation “penalizes backbone
deformation(Line 105)"?

6. In Fig.2D, the overlay of the top-ranked mutations could be better illustrated in a different
color.

7. In Fig.3A, "NGS” could be better named as “htFuncLib-NGS”. I misunderstood it as all the next-
generation sequencing data combined (or, does it really mean all the data combined? See, I'm
confused.).

8. In Fig.3A, it does not make clear sense to me that the point mutants (*1” in the bottom plot)
have a functional ratio of 100% ("1.0” in the top plot) for all the libraries and “RF” prediction. Is it
a normalization point? If it is not a normalization point, does it indicate that the fluorescence
threshold for defining “functional” is arbitrarily low in this analysis? In addition, since the other
reference libraries (avGFP, cgreGFP, ...) are sorted differently, I wonder how to justify this
comparison of “functional” variants.

9. Fig.4 and Supplementary Fig. 8 are the same low-dimensional representation of protein fithess
landscape labeled with “clean” Random Forest(RF) predicted functional mutations and “noisy”
experimental data, respectively. The authors choose to focus their analysis and discussion on the
RF-predicted results (Fig.4) in the main text. While this is totally reasonable with proper
justification (as the authors have provided in line 355-356 for “false negative” and line 885-886 for
“false positive”), it should be noted if the representative mutations have strong or weak signals in
the experimental data. If they are completely missed in the FACS sorting and NGS sequencing,
further experimental validation is needed to support the authors’ claim. For example, the
discussion on the “two long parallel tails” in line 323-344 is not very convincing to me since the
same signals are not apparent in Supplementary Fig. 8A. To keep this part as a novel finding, I
would suggest the authors test the representative mutations experimentally.

10. Reference data of transferring mutations to sfGFP are missing (Line 361-362).

11. For the 68 uniques designs(Line 349) chosen for protein purification and biochemistry
characterization, how many functional-site mutations do they carry?

12. An open and honest discussion on the limitations of the htFuncLib method would make this



manuscript stronger. From several places in the main text, the htFuncLib seems to require a very
stable starting point and it cannot explicitly improve a specific aspect of the protein function. I
think that general readers will appreciate an open discussion in this regard.

Reviewer #4 (Remarks to the Author):

The manuscript describes development and application of the htFuncLib - a computational protein
design workflow combining atomistic and machine-learning based approaches. The goal of the
htFunclLib is to increase efficiency of laboratory screening efforts by eliminating poorly scoring
combinations of mutations from combinatorial libraries, allowing exploration of highly epistatic
fitness landscapes. Even for a limited set of manually curated designable positions, an
astronomically large number of combinations makes exhaustive sampling of the full sequence
space computationally intractable. To optimize amino acid composition for each position the
authors first used phylogenetic information and in silico site saturation mutagenesis (SSM) to
identify residue types most likely individually tolerable in the parent sequence context. However,
as their computations show, a dominant fraction of the designs constructed by random
combination of these individually beneficial mutants has substantially worse computational score
relative to parental sequence.

The authors propose a simple and elegant computational procedure that apparently helps to
alleviate this problem. The entire set of designable positions is split into spatial neighborhoods and
the range of allowed amino acids for each position is flexibly adjusted so as to make the total
number of sequence combinations for the neighborhood computationally tractable (under 1076).
Rosetta energy score is computed for each combination (or 10% of all combinations for large
neighborhoods) in each neighborhood and combinations are classified as “good” or “bad” relative
to the score of the parental sequence. Authors train a neural network (EpiNNet) to classify
designs, and use the trained network to rank individual mutations in a way reflecting probability of
the mutation to be in a "good” scoring combination. The main discovery of the study is that
designs constructed from higher ranking mutations ("EpiNNet enriched”) have a much higher
chance to have better energy scores than designs constructed from a set of mutations filtered
using phylogenetic information and single SSM computations.

Authors proceed to apply their workflow to construct a library of PROSS-eGFP - a previously
optimized variant of avGFP. Sorting library using FACS indicated presence of the variants retaining
fluorescence even with up to 8 mutations. While the functional status of the overwhelming
majority of >16,000 variants was assigned based on their enrichment in NGS data, some variants
were purified on a scale sufficient for more detailed biophysical analysis.

While the rationale of the method is well laid out and convincing, the findings seem a bit
underwhelming.

First, it appears that library construction using high ranking mutations lead to a mostly very
conservative set of allowed mutations. Considering this, the result of finding functionally active
variants with up to 8 mutations in the active site becomes almost trivial. Authors remark on the
inclusion of radical substitutions into the library, but it is not clear how often such mutations
appear in the active variants and more importantly how often presence of the radical substitutions
affect functionality in a practically significant way. Additionally, previous studies referenced in the
manuscript (Somermeyer, 2022) indicated various levels of robustness for different variants of the
GFP. avGFP was reported to have intermediate robustness (tolerating at most 4 mutations), but
given extensive optimization of PROSS-eGFP it may be not surprising its robustness increased to
the level allowing it to tolerate more mutations. It might be helpful to see how the method
performs for less optimized proteins.

Second, it would be helpful to see a control experiment where a library is created by combining
lowest ranking mutations, or selected positions completely randomized to be able evaluate
significance of the sequence space optimization provided by EpiNNet or any other method.



Third, authors claim functional variants having a wide range of biophysical properties (spectral
changes, thermostability changes, quantum yield, photostability, life time etc.). Given the multi-
modality of fluorescent function and its sensitivity to the immediate environment it is not
surprising to discover variants have functional diversity. It is exciting to see few variants with
greatly increased thermostability or fluorescence lifetime, but on the other hand almost all variants
are less photostable making their use limited to specific applications. And yet it is hard to imagine
similar results cannot be obtained with other types of diversification as exemplified by multiple
examples of directed evolution experiments with fluorescent proteins. Interestingly, it appears
none of the characterized variants have substantial changes in emission spectra, which is quite
often the most desired feature to be modified.

Fourth, it is not clear how significant is the role of EpiNNet in ranking and selection of the
mutations to be allowed in the library. Alternative methods to perform this task were described
and applied to optimize enzymes (Fox, 2005 DOI: 10.1016/j.jtbi.2004.11.031; Fox 2007
https://doi.org/10.1038/nbt1286)

On a subject of presentation.

Lines 204-205 Describe how many libraries were constructed, and were there more than just
nohbonds and hbonds libraries.

Lines 213-216 Reference 20 used epPCR to construct libraries with no ability to target mutations
specifically to chromophore-binding pocket, so there were probably no mutants with >= 5
mutations in the active site

Lines 267-269 How conservation score is defined and deltaPSSM is computed?

Lines 494-496 Not clear what role EpiNNet plays in selecting mutations for the library. It appears
the EpiNNet is used to rank the mutations, but not select them. Therefore, comparison between
ILP solution and EpiNNet mutation-selection process is confusing and misleading

Line 459 should it be scores greater than -2 ?

Lines 462-463 Methods section describing “"Refinement and mutation scan” seems to contain text
relevant for “Partial modeling and scoring”.

Lines 114-115 seems to erroneously reference an ILP solution to picking ranked mutations as a
method to train a model to perform classification task.

Line 584 ... and purified using <what?>

Line 618 should be pET28 instead of pBAD?

Line 619 ... restriction sites cloned introduced previously

Line 625 BL21(DE3) cells not BL21 cells? Expression from pBAD vector can be done in BL21 cells,
pET vectors with T7 promoters require BL21(DE3) cells

Figure 3A top panel suggests all # mutations=1 are active in all libraries, which is probably
incorrect. Also the color scheme is illegible, please make markers of different shapes to help read
the graph.

Figure 1C What is the side-bar color gradient illustrating?

Page 3 line 105 and page 15 line 469 A unit of distance, presumably 4, is missing. There is also
inconsistency in font on page 15.

Page 3 The definition given in parentheses of proximal positions is incomplete and misleading.
Perhaps use definition given in methods which is much more effective.

Page 5 The hbond and nohbond libraries differ in their definitions only in their inclusion of positions
involved in hydrogen bonds to the chromophore, but the smaller number of positions included in
the hbond library indicates some additional criteria differentiating selection of positions in these
two libraries

Page 52 Supplementary table 6 appears to be missing.

Page 12 line 369 Functional thermostability values are missing units, presumably °C.



We thank the Reviewers for their detailed and constructive comments. Below, please find a
detailed response to all the comments. Revisions in the resubmitted manuscript are labeled
using red font.

Reviewer #1 (Remarks to the Author):

The paper by Weinstein et al describes a computational method called htFuncLib to generate
functional variants, and then an experimental testing and evaluation of the method using GFP.
The method and results appear promising and potentially very useful for generating libraries for
large-scale testing, and could thus be useful in other engineering efforts. In particular, by
enabling efficient combinatorial engineering in for example active sites, the method could be
used to optimize for example enzymes.

The paper is relatively dense, with several novel ideas and results. Thus, while each part of the
paper is well written, it is also easy as a reader to get lost because there are many points made,
and because many of them are presented only at an overall level. | missed a lot of details of the
results and methods, which made it difficult to evaluate the work. The comments below should
also be seen in this light; there may be points that | have missed, but in that case this could be
because the points/results/methods are in places very difficult to find.

We thank the reviewer for the positive comments and for the thoughtful suggestions. In view of
the comments, we simplified the presentation in several places (noted below).

Briefly described (if | understand the method correctly), the application to GFP starts with
manually selecting 27 sites around the chromophore assumed to be important for function and
followed by these steps: A first filtering is based on a phylogenetic analysis and single-site
Rosetta calculations and results in a list of promising amino acid substitutions at a subset of the
27 sites. Then, Rosetta calculations of multipoint mutations constructed in spatially local
neighbourhoods are used as input for a neural network model that outputs a ranked list of
substitutions from which a selected top is used to construct a combinatorial library. Two such
libraries were made and screened for fluorescence in high throughput and for two excitation
wavelengths. Screened variants from the two libraries were pooled and a common random
forest model was trained to predict the functional state of all 11 plus 0.93 million combinatorial
variants of the two libraries respectively. The usefulness of individual substitutions in functional
multipoint mutants is analysed based on the predicted function states.

Overall, | find the paper interesting and it appears that the method can make combinatorial
libraries that are enriched in successful and potentially interesting functional variants. Although it
is not surprising to find interactions between buried and spatially close sites, the paper presents
a method that seem capable of handling this, i.e. that a substantial fraction of the variants
generated are functional. How many and what fraction is still unclear (see below for discussion
on this). One area to improve the manuscript is that the computational method, details of the



high-throughput screen and random forest model are relatively poorly described, and in places
also poorly validated, which leaves substantial uncertainties for the reader, and makes it very
difficult to evaluate the method presented.

More detailed comments and suggestions for improvements.

1. There are some claims in the abstract that are difficult to find support for in the paper:

1a.

“We screened 11 million htFuncLib designs that targeted the GFP chromophore-binding pocket
...>. The experimentally screened library in theory has 11 million members but | do not see
evidence that all have been transformed and screened. Fig. 2C suggests a maximum of ~10*5
experimentally screened variants. If the abstract refers to the in silico screen using the random
forest model, please make that clear, and also say how many are known to have been screened
experimentally.

We edited the abstract to reflect these uncertainties: “We applied htFuncLib to the GFP
chromophore-binding pocket, and, using fluorescence readout, recovered >16,000 unique
designs encoding as many as eight active-site mutations”.

We added a sentence to the Results saying that the transformation was efficient (estimated at 5
x 107 transformants) and more detail to the Methods section describing the deep sequencing
procedure.

1c.

“By eliminating incompatible active-site mutations, htFuncLib generates a greater diversity of
functional sequences than evolutionary or mutational scanning approaches for optimizing
enzymes, binders, and other functional proteins.” Fig. 3B illustrates that when only looking at
variants containing functional site mutations, i.e. removing most variants from the other sets,
then htFuncLib seems to cover a larger space. However, it is not clear from the abstract that the
other sets are heavily reduced, in particular because variants with more mutations are likely to
have at least one outside the functional site. The text in the conclusion is a bit clearer on this
point, but it would be good that the abstract reflects this.

Again, we agree. We removed the comparison with previous strategies from the abstract,
replacing it with: “By eliminating incompatible active-site mutations, htFuncLib generates a large
diversity of functional sequences”.

We also added statements to the figure legend to clarify that mutations outside the pocket were
ignored (“Variants with mutations outside the chromophore pocket were included, but these
mutations were ignored when calculating distances.”) and added a parenthetical sentence when
introducing this analysis in the Results that the previous libraries we refer to did not focus
diversity on the chromophore binding pocket “(albeit, these studies did not focus diversity on the
active site)”.



2)

Maijor parts of the methods are not described in any substantial detail. For example the deep
sequencing and random-forest model which are described with six and three sentences
respectively. This makes it almost impossible to judge the results and conclusions of the paper,
and for others to build on this work. Ideally, one should be able to examine all major parts from
reading the paper, for example, only details should by looked up in the code.

Right. We added extensive detail to both sections.

3)

| find it surprising that PROSS-eGFP performs relatively poorly in the computational and
experimental stability evaluation (Fig. 5a). If | understand correctly, PROSS-eGFP should be
optimized by something very similar to the filtering method so why does so many beneficial
substitutions show up in the filtering? The only information | can find regarding the “filtering” is
that this leaves a combinatorial space of 10*8 variants; it would be interesting to see the
resulting substitutions presented as in supplementary table S1. Also, Y145F is described in ref.
33 as a part of PROSS-eGFP but here reintroduced as a new mutation? Similarly, T1671 is
presented as a new substitution here, but seems to already be in the background in ref. 33
(looking at the DNA sequence below the supplementary table S2). Also, in ref. 33
PROSS-eGFP is reported to have 11 or 12 substitutions relative to eGFP but here only one
(interpreting undescribed tics in Fig. 5A and the caption of Fig. 3: “PROSS-eGFP (and eGFP,
which are nearly identical in the designed positions)”. All in all, this is somewhat unclear from
reading the paper. Maybe it is just me having a hard time finding the data, but then that might
also be the case for other readers. It would have been useful to report exact sequences of
eGFP and PROSS-eGFP (and sfGFP) and substitutions used. Also, please comment on the
apparent low stability of PROSS-eGFP and the relationship to the fact that it is optimized.

We agree that this point needs clarfication. The PROSS-eGFP design was tested and shown to
have higher resistance to thermal denaturation, but surprisingly, in our study, functional
thermostability is lower:

e \We added the following sentence to the first results paragraph: “Because active-site
mutations may reduce protein stability, we chose as a starting point a previously
designed version of enhanced GFP, PROSS-eGFP, that exhibited elevated resistance to
thermal denaturation®. In this design, active-site positions, except Tyr145Phe and
Thr167lle, were immutable. In applying htFuncLib, we also allowed design in these two
positions.” to clarify both the discrepancy regarding PROSS positions and T167 and
Y145.

e \We added supplementary Tables 3-4 describing the identities examined for each position
at the various stages of the htFuncLib algorithm.

e All control sequences are reported in Supplementary Table 12 (previously
Supplementary Table 10).

e Added a clarification for the low functional thermostability of PROSS-eGFP: “We noticed
that the PROSS-eGFP parental design is less stable than eGFP when functional
thermostability is measured (Figure 5A) rather than thermal denaturation as in the
PROSS-eGFP design study®. Apparently, the PROSS-eGFP design is more resistant to
heat denaturation, but its fluorescence is more sensitive to heat than eGFP.”



4)

Regarding the number of tested designs, | cannot make the numbers in supplementary table S5
match the attached csv file: The csv holds 72 sequences incl. 3 controls, i.e. 69 tested designs
that all seems to be functional, whereas the text reports 68 designs tested in total? There may
be a way to add this up but | could not find it. The 19 variants in sfGFP background are listed in
the csv but not in table S5. Also, | can only see 15 functional random-forest designs and 10
AmCyan variants selected for spectral shift in the csv but 16 and 14 are reported in table S57?
Most importantly, please report the sequences and number of mutations of the failed design
(e.g. in the csv and/or in the text) as this is essential information for the community. Also, please
describe in the paper the nine “Additional designs” listed in Table S5 as selected from deep
sequencing, of which only one is functional. Again, apologies if these were presented
somewhere, but | could not find it.

We thank the Reviewer for the detailed analysis. We indeed had some discrepancies in the
table. We updated the supplementary tables detailing all the designs (now Supplementary
Tables 11 & 12) and the text to reflect the results more accurately. We added all the
nonfunctional sequences to the tables, including their source.

5)

In the top plot of Fig 3A, it seems that 100% of single variants are functional — perhaps this is
WT, i.e. zero mutations, and the x-axis is shifted? If this is the case, the RF model seems very
optimistic in identifying function with almost 100% single mutants functional (currently x=2) or at
least more than NGS. With this, | find it odd that the bottom plot shows slightly more functional
single variants in NGS than in RF (assuming most single mutants are observed in NGS). Please
check and clarify.

Right. We corrected this. The NGS data in figure 3B reflect both libraries, whereas RF refers to
nohobnds only (it was only trained and applied to the nohobnds sequence space). This is the
reason why the NGS data has more single point mutants than the RF data.

6)

Most striking in Fig 3A is the high fraction of the “16,000 potentially active designs” with more
than four mutations. This should be validated better if authors wish to report 16,000 functional
variants identified in the abstract. First, the authors only report tests of designs up to 8
mutations whereas a substantial fraction of functional NGS variants have more than 8
mutations. Please report the success rate in experimental tests per number of mutations (also
related to pt. 4 above on information about the failed designs). Second, please comment on the
statistics in supplementary Table S2: The false-positive rate is 1/12, i.e. ~8% are the falsely
predicted functional out of the actual non-functional. This is a quite high number since the paper
reports ~90% non-functional (Fig. 2C), i.e. with 100,000 non-functional variants, 8,000 are
expected to be false positive. This reflects the imbalance in training on a high-prevalence set
(most functional) and applying to a low-prevalence set (fewest functional). Third, there is very
little indication of the uncertainty in the NGS experiment. It requires a very deep sequencing to
cover 100,000 unique variants without paired-end reads, to an extent that warrants calculation
of enrichments. To calculate enrichments, the authors need to have a good idea about the



abundance of a variant prior to selection and there is no discussion on how this is addressed.
Please comment on this, e.g. size the of transformed library, how many cells are expected to
have more than one plasmid, FACS coverage (cells sorted per library size), sequencing
coverage (average number of reads per unique variant), which region of GFP is sequenced
(maximum 600 bases are sequenced), are all functional variants observed in the non-sorted
sequencing, are pseudo-counts applied, frequency of unexpected substitutions and how these
are handled, etc.

We replaced the claim on variants with >8 mutations with one focusing on variants with up to 8.
We agree that the NGS coverage is problematic due to the length of the diversified region in the
amplicon. Transformation efficiency was >5x10’ for both libraries, as calculated from plating
experiments giving us at least fivefold coverage (now noted in the Results). In order to cover the
libraries to the fullest, we sorted 10 times the total library size, i.e. ~10% and ~10’ for nohbonds
and hbonds, respectively (in Methods). As the total number of reads was fairly low, the number
of reads after filtration was low as well. We thus used the relatively lax criteria of enrichment > 1.
To lower the false-positive rate, we sorted the libraries twice, purifying and re-transforming the
plasmids in between. Unexpected substitutions are handled by the LAST algorithm, which
considered fastq quality assessments. We also added supplementary figure 6 that shows the
the number of reads all sequences in the sorted samples had in the deep sequencing data.

As the nohbonds library is larger than the total number of counts available in the
deep-sequencing kit we used, we did not expect to cover the unsorted populations entirely.
Therefore, we considered any sequence from the sorted samples that was not represented in
the non-sorted sample as enriched, effectively applying a low pseudo-count.

These details are now in the methods section.

7)

It would be interesting to see some more details on the construction of the neighbourhoods. E.g.
a supplementary table listing the sites of the filtered mutations could also list the neighbourhood
of each site and the number of calculated multipoint mutations. Are these mostly double
mutants or higher order mutants?

We added supplementary tables 1-2 (one for each library) detailing which positions were in each
neighborhood, how many and which mutations were examined for each position and the
complexity of the putative libraries.

8)

It would be appropriate to make some quantitative comparison with the previous version of
FuncLib (ref. 24), e.g. by the success rates obtained in experimental validations.

FuncLib and htFuncLib are not directly comparable given the very different premises of the two
algorithms. Also, FuncLib’s success rate (and htFuncLib’s as well) are a complicated and
unpredictable function of the number of positions, their sensitivity to mutation and their
evolutionary conservation. We therefore do not feel comfortable comparing success rates
between these methods. Nevertheless, in several cases we noticed that between % and 'z of



the FuncLib designs were active. Here, for small libraries (up to 50,000 variants) the success
rate is 10% — lower (Fig. 3C), but extremely high compared to standard diversification methods.

9)

It would be interesting to know with a bit more detail on the phylogenetic analysis. The authors
write “In this selection step, we keep mutations that are likely to be present in the natural
diversity of sequence homologs and that are moreover predicted not to destabilize the protein
native state according to atomistic design calculations35”. GFP is sometimes considered not to
have very many natural homologs and fpbase.org (ref 35) contains a lot of synthetic variants.
Please give the number of sequences in the phylogenetic analysis and, if possible, indicate how
many of these are natural, e.g. belongs to a reference genome.

For the phylogenetic analysis, we only used synthetic variants based on avGFP. The analysis
started with 136 such sequences, and filtered these to 53. We added these details to the
appropriate methods section: “A total of 153 sequences were retrieved from FPBase, all
synthetic variants of avGFP”.

10)

The methods section describes “An alternative mutation selection approach that uses Integer
Linear Programming” which is only briefly referenced in the text. This should either be removed
or the authors should show the results.

We removed this section.

11)

In the paragraph starting with “Our working hypothesis is that epistatic interactions most
frequently arise from three molecular sources (Supplementary Figure 1)” the third point is
unclear and not illustrated in supplementary Fig. S1: “(3) stability-mediated interactions caused
by the nonlinear relationship between the free energy of folding and the fraction of natively
folded and functional protein”.

We added a panel to Supplementary Figure 1 with a schematic visualizing stability mediated
epistasis. We also clarified the text describing it in the results section: “stability-mediated
interactions in which destabilizing mutations do not exhibit phenotypic differences when
introduced singly but reduce stability or expression levels when combined”.

Minor points

1)

It would be helpful if Fig. 1 more directly illustrated what “filtering” and “EpiNNet enrichment”
means and where in the pipeline it is performed

We clarified the title of panel D “Apply EpiNNet to select a sequence space enriched with
mutually compatible mutations”.

2)
Should T65S be in supplementary Fig. S27? It would be useful for the discussion in Fig. 4



There is no straightforward way to model T65S as it is a part of the chromophore (a
noncanonical part of the structure). Furthermore, a Ser would be obscured by the larger Thr.

3)
Fig. 4A caption “GFP488/53” should be “GFP488/530”
Corrected. Thanks!

4)

In methods section under FACS sorting: “E. cloni” should probably be “E. coli”, though | quite
like the name “cloni”

Cloni is the commercial name of the bacteria we used. The text was clarified to reflect this.

5)

In the introduction the authors write “and functional multipoint mutants are exceptionally rare”,
but do not provide a reference to this general statement. Similarly with the statement “Epistasis
is a key reason for the low tolerance to multipoint active-site mutations.”

We added the following sentence to the introduction, alongside an appropriate reference to
clarify this: “Epistatic interactions between mutations can severely restrict the chances of finding
functional multipoint mutants in an active site”.

Reviewer #2 (Remarks to the Author):

In this study, Weinstein and colleagues use a combination of energetic modeling and
high-throughput screening to identify GFP variants with multiple mutations, addressing the
challenge of potential negative epistasis between mutations reducing the hit-rate. htFuncLib was
used to design a set of point mutations and then combinations of mutations that were
energetically favorable. Then, a machine learning EpiNet model was trained to discriminate
favorable and unfavorable combinations of mutations. Hits from this approach included those
with > 8 mutations, which exceeded the tolerated mutational perturbation load from previous
design approaches. This work and a companion submission on enzyme engineering show that
issues with epistasis can begin to be addressed by combining judicious energetic modeling
combined with training of machine learning models. An important and relevant study to the
protein engineering field. The work is technically sound and clearly presented.

We thank the Reviewer for these positive comments.

Two comments that should be addressed:

(1) There is no functional goal in these libraries - i.e. quantum vyield, photostability, color. How
would these methods be adapted if a particular functional feature, not just structure and stability
were to be optimized. Excitation and emission spectral properties were not described (peak



wavelenthgs). Can models be trained to identify what features contribute to photophysical
properties?

This is very true. We explain that htFuncLib’s goal (as implemented here) is to generate
tolerated sequence diversity. If a particular functional goal is known, and it is understood what
molecular details may lead to this goal, then htFuncLib can be adapted to it. For example, if it is
known that shorter excitation wavelengths require an aromatic amino acid at a specific position,
one may force that mutation and use htFuncLib to recommend mutations that are compatible
with it. We added a segment discussing this to the conclusions: “If a specific functional goal is
desired and the molecular underpinnings of that goal are known, they can be imposed during
the design process to focus the library on variants that exhibit the essential molecular features.”.

(2) This training of EpiNNet should be discussed in the context of the choice of host protein - a
stable version of GFP - and specifically the work earlier this year from Kondrashov
(https://doi.org/10.7554/elLife.75842) showing that mutational landscapes that are flatter are not
as useful for training models. Does the energetic modeling in htfuncLib work for more 'fragile’
proteins where epistatic interactions can have a more pronounced effect on folding/function?
Right. We do not yet know the answer to this, though it is likely that protein robustness is
important for success. We added a sentence to the Conclusion section discussing this: “The
high stability and brightness of the eGFP starting point are likely to be key to obtaining a large
number of functional variants. Further research is needed to determine whether the combination
of PROSS stability design and htFuncLib can access such large spaces of functional variants in
less robust starting points”.

Reviewer #3 (Remarks to the Author):

In this manuscript, the authors introduce the htFuncLib, a protein-engineering pipeline to design
and test variant libraries focused on protein functional sites. The motivation behind developing
such a method is to increase the sampling efficiency and diversity around a protein functional
site, which is usually highly conserved and sensitive to mutations. To achieve this goal, the
authors have to overcome the epistatic effect by introducing multiple mutations simultaneously,
which, in the past, has only been partially achieved by directed evolution through iterative
mutation-selection cycles. The htFuncLib method starts with low-energy PSSM-approved
mutations in the functional site (by phylogenetic analysis and Rosetta energy calculation), then
ranks and selects those mutations by their mutual compatibility (by a trained neuron network
EpiNNet). After this in silico screening, DNA fragments encoding these compatible point
mutations are assembled in an all-against-all combinatory library by Golden Gate method,
tested by high-throughput FACS, and read out by deep sequencing. The authors apply this
engineering pipeline to GFP’s fluorescence functional site. The results are impressive: 1.) they
explore a much bigger sequence space that is inaccessible in multiple previous attempts, 2.) the
functional multipoint mutants after library selection show desired functional diversity in terms of
protein stablity, fluorescence spectra, fluorescence lifetime, pH sensitivity, and fluorescence



photo-stability, and 3.) the molecular mechanisms of epistasis underlying the successfully
selected GFP variants are interesting for structural analysis. Overall, the manuscript presents a
pragmatic way to diversify certain protein functions and | anticipate it will attract attention among
protein engineers working towards protein tools (eg. imaging tools such as fluorescent proteins)
and enzymes, thus | recommend this manuscript for publication after a minor revision.

We thank the Reviewer for the positive assessment.

Below are my comments for the authors:

1. A direct comparison between FuncLib and htFuncLib would be necessary here. If adding a
perceptron-based neural network (or ILP) machine learning module largely improves the end
results, it would be worthwhile to ask what Rosetta method lacks and what role Rosetta design
calculation plays in this new method.

FuncLib and htFuncLib have different goals. The first searches for a small set of optimized
mutants in which each design is independent of any other and the second for a large set of
mutants that can be assembled by combinatorial mutagenesis. As such, htFuncLib does not
improve FuncLib but uses it as a platform to extend to much larger sequence spaces. We do not
think that the results we show directly suggest a lack in Rosetta. If anything, Rosetta is the
engine for computing the compatibility among mutations.

2. The general applicability for other users and other proteins is not very clear. There are
several manual steps in the Method description(Line 455, 462, 470). While it is understandable
to introduce manual intervention on every steps during method development and the initial
application, | would like the see how the authors plan to automate the pipeline for future
applications.

We agree. Our lab is committed to making design tools that are streamlined and accessible for
researchers with no expertise in modeling. We are currently working on an “upgrade” to the
FuncLib web server that will enable automated or semi-automated execution of htFuncLib. We
hope to have this in ready form within the next six months.

3. The final paragraph in the Introduction is slightly an overstatement (Line 55, "arbitrarily large
libraries” and Line 61, “millions(and potentially billions) of designs”). From the Method
description, it is obvious that the size of the final library is a limiting factor for designing the
combinatory library (Line 462-464, Line 494-497). | would suggest the authors to revise this
paragraph to avoid misleading.

We think that the method is scalable well beyond millions but certainly do not yet have data to
support that. We therefore eliminated the claim on billions of designs.

4. In Line 81-86 and Supplementary Figure 1, the authors listed three hypothesized sources for
epistatic interactions. It is hinted in the text (Line 99, “penalize backbone deformation” and Line
105 “most likely to give rise to...”) that the htFuncLib is focused on establishing type 1 epistatic
interactions only (this is my speculation). It would make the manuscript easy to understand if the



authors can offer a direct correspondence between the three types of epistatic interactions and
the htFuncLib library design’s target interactions.

We edited the text to reflect how the algorithm addresses the three types of epistasis we
mention:

The end of the third paragraph in the results section describes how indirect, backbone
mediated, epistasis is addressed: “In addition, these calculations apply harmonic coordinate
constraints to backbone atoms during whole-structure minimization, thereby penalizing
backbone deformations that may lead to indirect epistatic interactions”.

The following paragraph states that: “Since the space of potential multipoint mutations in a large
active site is computationally intractable, we focus calculations on combinations of mutations
within neighborhoods of proximal positions (Figure 1B & C, Supplementary Tables 1 and 2)
which are the most likely to give rise to direct epistatic interactions (Supplementary Figure 1A)”,
accounting for how the algorithm addresses direct epistasis.

The same paragraph later states: “The resulting library is enriched in mutually compatible
mutations, such that both direct and stability-mediated epistasis (Supplementary Figure 1A and
C) are addressed”.

5. Following comment 4, | am also confused about how the method deals with backbone
movement upon introducing multiple mutations, eg. how does the calculation “penalizes
backbone deformation(Line 105)"?

We edited the text to better explain this point: “In addition, these calculations penalize backbone
deformations to minimize indirect epistatic interactions by applying harmonic coordinate
constraints on backbone atoms (Supplementary Figure 1B).”.

6. In Fig.2D, the overlay of the top-ranked mutations could be better illustrated in a different
color.
We changed the colors of the various mutations.

7. In Fig.3A, “NGS” could be better named as “htFuncLib-NGS”. | misunderstood it as all the
next-generation sequencing data combined (or, does it really mean all the data combined? See,
I’'m confused.).

We changed the figure accordingly.

8. In Fig.3A, it does not make clear sense to me that the point mutants (“1” in the bottom plot)
have a functional ratio of 100% (“1.0” in the top plot) for all the libraries and “RF” prediction. Is it
a normalization point? If it is not a normalization point, does it indicate that the fluorescence
threshold for defining “functional” is arbitrarily low in this analysis? In addition, since the other
reference libraries (avGFP, cgreGFP, ...) are sorted differently, | wonder how to justify this
comparison of “functional” variants.

Corrected.

9. Fig.4 and Supplementary Fig. 8 are the same low-dimensional representation of protein
fitness landscape labeled with “clean” Random Forest(RF) predicted functional mutations and
“‘noisy” experimental data, respectively. The authors choose to focus their analysis and



discussion on the RF-predicted results (Fig.4) in the main text. While this is totally reasonable
with proper justification (as the authors have provided in line 355-356 for "false negative” and
line 885-886 for “false positive”), it should be noted if the representative mutations have strong
or weak signals in the experimental data. If they are completely missed in the FACS sorting and
NGS sequencing, further experimental validation is needed to support the authors’ claim. For
example, the discussion on the “two long parallel tails” in line 323-344 is not very convincing to
me since the same signals are not apparent in Supplementary Fig. 8A. To keep this part as a
novel finding, | would suggest the authors test the representative mutations experimentally.

We have added information in the main text and Figure S8 about the direct support in the
experimental data that each of the different clusters of sequences have in the experimental data
- For the three main connected clusters differing at positions 65 and 69: “All three groups
are strongly supported by many different sequences directly assessed in the sorting
experiment (Fig S8)”

- We clarified that the experimental data strongly supports the AmCyan “tail”: “The
AmCyan*®5% tajl is well-supported in the experimental data and is not an artifactual
prediction of our model, as we observe a cluster of highly mutationally connected
designs that were also among the most strongly enriched in AmCyan*%®%% sorted cells
(Figure 4D, Figure S8)”

To make these results more transparent, we provide a new Supplementary Table 10 with the
sequences belonging to the cluster and their corresponding enrichment values as shown here:

Functional Enrichm
L42 V68 Q69 S72 T108 V112 Y145 T167 H181 L220 V224 class ent
(log2)
\Y A A T E \Y Y T H \Y I AmCyan 7.2
\Y A A T E \Y M T H \Y I AmCyan 7.6
\% A A T E V F T H V I AmCyan 5.2
\% A A T E V Y \% H V I AmCyan 7.8
\% A A T E V Y T H L I AmCyan 6.2
\% A A T E V I T H V I AmCyan 5.2
\% A A T E V Y T L V I AmCyan 5.2
\Y A A T E \Y M \Y L \Y I AmCyan 5.2
\Y A A T E I Y T H \Y% I GFP 1.3

10. Reference data of transferring mutations to sfGFP are missing (Line 361-362).



Added a reference to the appropriate supplementary table.

11. For the 68 uniques designs(Line 349) chosen for protein purification and biochemistry
characterization, how many functional-site mutations do they carry?

We added a comment to clarify this: “exhibiting at least two mutations from PROSS-eGFP and
typically at least two mutations from one another”.

12. An open and honest discussion on the limitations of the htFuncLib method would make this
manuscript stronger. From several places in the main text, the htFuncLib seems to require a
very stable starting point and it cannot explicitly improve a specific aspect of the protein
function. | think that general readers will appreciate an open discussion in this regard.

We edited the paper in several places to reflect the potential limitations of the method, including:

- A paragraph in the conclusion section which states: “The high stability and brightness of
the eGFP starting point are likely to be key to obtaining so many functional variants.
Further research is needed to determine whether the combination of PROSS stability
design and htFuncLib can access such large spaces of functional variants in less robust
starting points. “

- A statement regarding the apparent stability of our starting point in the results section:
“We noticed that the PROSS-eGFP parental design is less stable than eGFP when
functional thermostability is measured (Figure 5A) rather than thermal denaturation as in
the PROSS-eGFP design study. Apparently, the PROSS-eGFP design is more resistant
to heat denaturation, but its fluorescence is more sensitive to heat than eGFP”.

- A paragraph in the results section that states: “Because active-site mutations may
reduce protein stability, we chose as a starting point a previously designed version of
enhanced GFP, PROSS-eGFP, that exhibited elevated resistance to thermal
denaturation”.

Reviewer #4 (Remarks to the Author):

The manuscript describes development and application of the htFuncLib — a computational
protein design workflow combining atomistic and machine-learning based approaches. The goal
of the htFuncLib is to increase efficiency of laboratory screening efforts by eliminating poorly
scoring combinations of mutations from combinatorial libraries, allowing exploration of highly
epistatic fitness landscapes. Even for a limited set of manually curated designable positions, an
astronomically large number of combinations makes exhaustive sampling of the full sequence
space computationally intractable. To optimize amino acid composition for each position the
authors first used phylogenetic information and in silico site saturation mutagenesis (SSM) to
identify residue types most likely individually tolerable in the parent sequence context. However,
as their computations show, a dominant fraction of the designs constructed by random
combination of these individually beneficial mutants has substantially worse computational
score relative to parental sequence.



The authors propose a simple and elegant computational procedure that apparently helps to
alleviate this problem. The entire set of designable positions is split into spatial neighborhoods
and the range of allowed amino acids for each position is flexibly adjusted so as to make the
total number of sequence combinations for the neighborhood computationally tractable (under
1076). Rosetta energy score is computed for each combination (or 10% of all combinations for
large neighborhoods) in each neighborhood and combinations are classified as “good” or “bad”
relative to the score of the parental sequence. Authors train a neural network (EpiNNet) to
classify designs, and use the trained network to rank individual mutations in a way reflecting
probability of the mutation to be in a “good” scoring combination. The main discovery of the
study is that designs constructed from higher ranking mutations (“EpiNNet enriched”) have a
much higher chance to have better energy scores than designs constructed from a set of
mutations filtered using phylogenetic information and single SSM computations.

We thank the Reviewer for the positive assessment.

Authors proceed to apply their workflow to construct a library of PROSS-eGFP — a previously
optimized variant of avGFP. Sorting library using FACS indicated presence of the variants
retaining fluorescence even with up to 8 mutations. While the functional status of the
overwhelming majority of >16,000 variants was assigned based on their enrichment in NGS
data, some variants were purified on a scale sufficient for more detailed biophysical analysis.

While the rationale of the method is well laid out and convincing, the findings seem a bit
underwhelming.

First, it appears that library construction using high ranking mutations lead to a mostly very
conservative set of allowed mutations. Considering this, the result of finding functionally active
variants with up to 8 mutations in the active site becomes almost trivial. Authors remark on the
inclusion of radical substitutions into the library, but it is not clear how often such mutations
appear in the active variants and more importantly how often presence of the radical
substitutions affect functionality in a practically significant way. Additionally, previous studies
referenced in the manuscript (Somermeyer, 2022) indicated various levels of robustness for
different variants of the GFP. avGFP was reported to have intermediate robustness (tolerating at
most 4 mutations), but given extensive optimization of PROSS-eGFP it may be not surprising its
robustness increased to the level allowing it to tolerate more mutations. It might be helpful to
see how the method performs for less optimized proteins.

Actually, the libraries introduce many radical mutations, as can be seen in Figure 2D,
supplementary Figures 2 and 3, and supplementary Table 5. It is also briefly mentioned in the
text: “Both libraries are complex: some positions allow only subtle mutations, and others,
including e.g., GIn69 and Tyr145, exhibit high diversity and radical mutations (Supplementary
Figures 2 and 3, Supplementary Table 5)”.

Additionally, we added the following text and appropriate table: “Strikingly, many of the active
designs have radical mutations, including Thr203His (13%), GIn69Met (9%), Ser205Asp (9%),
GIn94Leu (8%), and Tyr145Met (8%) (Supplementary Table 7).”



Second, it would be helpful to see a control experiment where a library is created by combining
lowest ranking mutations, or selected positions completely randomized to be able evaluate
significance of the sequence space optimization provided by EpiNNet or any other method.

The analysis depicted in Figure 2C shows that once lower ranking mutations are added to the
synthetic library, the success rate falls. By extrapolating this trend, and the fact that the non
enriched sequence spaces performed extremely poorly in the in silico energy analysis (Figure
2A) we conclude that the bottom ranking mutations are likely to encode a library that is depleted
in functional variants.

Third, authors claim functional variants having a wide range of biophysical properties (spectral
changes, thermostability changes, quantum yield, photostability, life time etc.). Given the
multi-modality of fluorescent function and its sensitivity to the immediate environment it is not
surprising to discover variants have functional diversity. It is exciting to see few variants with
greatly increased thermostability or fluorescence lifetime, but on the other hand almost all
variants are less photostable making their use limited to specific applications. And yet it is hard
to imagine similar results cannot be obtained with other types of diversification as exemplified by
multiple examples of directed evolution experiments with fluorescent proteins. Interestingly, it
appears none of the characterized variants have substantial changes in emission spectra, which
is quite often the most desired feature to be modified.

PROSS-eGFP is a very high bar given its high optimization, making the significant
improvements observed in some of our designs quite striking, in our opinion. The key point of
the biochemical analysis is that choosing designs from the FACS-selected population (almost
arbitrarily) leads to a very high diversity in multiple functional properties; the designs do not
merely expose “mutational tolerance” as most previous studies did, but potentially useful
functional diversity. As different fluorescent characteristics are required for different
experimental procedures, we suggest follow up studies use our sorted libraries (deposited in
AddGene) to screen for specific characteristics, such as high photostability.

We also note that not all applications require the spectral parameters to go in a certain direction.
For instance, low photostability is useful in FRAP experiments whereas high photostabiility is
crucial for long term experiments (this is mentioned on pg. 13). Stability in different pH also does
not exhibit an “optimum” in the usual sense of the word. The bottom line is that htFuncLib
currently provides the only way to generate functional diversity that may be relevant to multiple,
even conflicting, optimization goals. We added a statement to the conclusions section
discussing this: “Our implementation of htFuncLib did not target a specific functional outcome,
except for protein stability. This implementation is especially suitable if multiple variants for
different and potentially incompatible goals are desired. For example, FRAP experiments
require fluorescent proteins that bleach quickly, whereas long-term imaging experiments require
slow bleaching, and we recovered designs that exhibited both properties from a single library.”.
We believe that the comment the Reviewer makes on directed evolution misses the point: it is
certainly true that directed evolution leads to improvements, but typically a laborious, multi step
mutation/selection process is required for each functional goal. Here, we found thousands of
potentially useful sequences from a single experiment.

Regarding emission spectra, those are mostly modified by the residue at position 66 (within the
chromophore), which we did not modify in the current study.



Fourth, it is not clear how significant is the role of EpiNNet in ranking and selection of the
mutations to be allowed in the library. Alternative methods to perform this task were described
and applied to optimize enzymes (Fox, 2005 DOI: 10.1016/j.jtbi.2004.11.031; Fox 2007
https://doi.org/10.1038/nbt1286)

The htFuncLib approach requires no experimental data (other than a structure and a multiple
sequence alignment of homologs), whereas the ProSAR approach requires multiple iterations of
experiment and analysis. htFuncLib is essentially a single shot method for introducing mutliple
active site mutations.

On a subject of presentation.

Lines 204-205 Describe how many libraries were constructed, and were there more than just
nohbonds and hbonds libraries.
No, we only tested these two.

Lines 213-216 Reference 20 used epPCR to construct libraries with no ability to target
mutations specifically to chromophore-binding pocket, so there were probably no mutants with
>= 5 mutations in the active site

Right. We added a statement regarding this to the appropriate paragraph: “albeit, these studies
did not focus diversity on the active site”.

Lines 267-269 How conservation score is defined and deltaPSSM is computed?

We edited the appropriate methods section to clarify this: “In addition, for every variable
position, the difference in the surface accessible solvent area (SASA), PSSM score, and amino
acid category were also assigned (comparing the mutated amino acid and the PROSS-eGFP
identity)”.

Lines 494-496 Not clear what role EpiNNet plays in selecting mutations for the library. It appears
the EpiNNet is used to rank the mutations, but not select them. Therefore, comparison between
ILP solution and EpiNNet mutation-selection process is confusing and misleading

We chose to remove the ILP discussion from the main text and methods to reduce confusion.
Indeed, EpiNNet ranks the mutations and the user selects the number of top-ranked mutations
according to the library size s/he wants to construct.

Line 459 should it be scores greater than -2 ?
Yes. corrected in the text. Thanks!

Lines 462-463 Methods section describing “Refinement and mutation scan” seems to contain
text relevant for “Partial modeling and scoring”.
Correct, we moved this sentence to the correct position.

Lines 114-115 seems to erroneously reference an ILP solution to picking ranked mutations as a
method to train a model to perform classification task.
We removed all mentions of the ILP process.



Line 584 ... and purified using <what?>
We corrected the text.

Line 618 should be pET28 instead of pBAD?
Correct, we edited the text accordingly: “ Genes were inserted in the pET28 vector using Bsal
restriction sites cloned previously using QuickChange”.

Line 619 ... restriction sites cloned introduced previously
Corrected to “Genes were inserted in the pET28 vector using Bsal restriction sites previously
cloned using QuickChange”.

Line 625 BL21(DE3) cells not BL21 cells? Expression from pBAD vector can be done in BL21
cells, pET vectors with T7 promoters require BL21(DE3) cells

We corrected the text to: “pET28 plasmids containing the relevant insert were transformed into
BL21 (DE3) cells and grown overnight.”.

Figure 3A top panel suggests all # mutations=1 are active in all libraries, which is probably
incorrect. Also the color scheme is illegible, please make markers of different shapes to help
read the graph.

We corrected both the register for the entire figure and add markers.

Figure 1C What is the side-bar color gradient illustrating?
We edited the caption to explain this: “Color bars signify increasing Rosetta energies.”.

Page 3 line 105 and page 15 line 469 A unit of distance, presumably A, is missing. There is
also inconsistency in font on page 15.
The issue was with the system’s PDF, and was corrected.

Page 3 The definition given in parentheses of proximal positions is incomplete and misleading.
Perhaps use definition given in methods which is much more effective.

We removed the definition from the results section, in favor of the detailed explanation in the
appropriate methods section.

Page 5 The hbond and nohbond libraries differ in their definitions only in their inclusion of
positions involved in hydrogen bonds to the chromophore, but the smaller number of positions
included in the hbond library indicates some additional criteria differentiating selection of
positions in these two libraries

By starting with a different set of positions, we ended testing and choosing a different set of
positions to actually mutate.

Page 52 Supplementary table 6 appears to be missing.
Supplementary Table 6, now 10 was an additional file.



Page 12 line 369 Functional thermostability values are missing units, presumably °C.
Corrected.



Reviewer #1 (Remarks to the Author):

The revised paper by Weinstein et al improves the manuscript and removes some of the claims
that were previously not well supported by the data in the original version. For example, a
sentence in the abstract that originally read:

“We screened 11 million htFuncLib designs that targeted the GFP chromophore-binding pocket and
isolated >16,000 unique fluorescent designs...”

now reads

“We applied htFuncLib to the GFP chromophore-binding pocket, and, using fluorescence readout,
recovered >16,000 unique designs”

It’s still a bit unclear what the 16000 unique designs are and how many of them are fluorescent.
For example, in the first review, I had asked (pt. 6) about the ~8% false-positive rate, which
might correspond to 8000 designs. This point still remains to be answered. On the other hand, a
careful reader might find this number in Table S2.

Reviewer #2 (Remarks to the Author):

The author responses to my questions were adequate and do not require further revision. Out of
larger scientific interest beyond the scope of this study, I mention the following points:

With regard to the first question about selection for specific functional features (in the case of a
fluorescent protein - color, quantum yield, etc), the authors indicate that knowledge about
chemical/physical constraints could be incorporated into the design scheme. This is fine, although
it would be more exciting to learn these features through selection of a large, negative-epistasis
free, library.

Regarding a fragile vs. robust starting point - this approach may help us better understand the
possible anticorrelation between a large space of sequence designability in a robust background
versus a smaller space in a fragile background that could yield greater functional innovation.

Overall a very exciting study and an important contribution to the field.

Reviewer #3 (Remarks to the Author):

In the revised version of their manuscript, the authors have faithfully addressed the majority of
my questions and concerns. I recommend the manuscript for publication.

Reviewer #4 (Remarks to the Author):

I would like to thank the authors for their clarifications and changes made to the manuscript. I do
not have more questions and would recommend publishing the work.



On behalf of all authors, we would like to sincerely thank the reviewers for their thorough and thoughtful reviews. We
feel the manuscript is much better off thanks to their help.

Reviewer 1:

Reviewer #1 (Remarks to the Author):

The revised paper by Weinstein et al improves the manuscript and removes some of the claims that were previously
not well supported by the data in the original version. For example, a sentence in the abstract that originally read:

“We screened 11 million htFuncLib designs that targeted the GFP chromophore-binding pocket and isolated >16,000
unique fluorescent designs...”

now reads

“We applied htFuncLib to the GFP chromophore-binding pocket, and, using fluorescence readout, recovered >16,000
unique designs”

It's still a bit unclear what the 16000 unique designs are and how many of them are fluorescent.

For example, in the first review, | had asked (pt. 6) about the ~8% false-positive rate, which might correspond to 8000
designs. This point still remains to be answered. On the other hand, a careful reader might find this number in Table
S2.

We revised the legend of table S6 (now supplementary table 1) to better explain this.

Reviewer #2 (Remarks to the Author):

The author responses to my questions were adequate and do not require further revision. Out of larger scientific
interest beyond the scope of this study, | mention the following points:

With regard to the first question about selection for specific functional features (in the case of a fluorescent protein -
color, quantum yield, etc), the authors indicate that knowledge about chemical/physical constraints could be
incorporated into the design scheme. This is fine, although it would be more exciting to learn these features through
selection of a large, negative-epistasis free, library.

Regarding a fragile vs. robust starting point - this approach may help us better understand the possible anticorrelation
between a large space of sequence designability in a robust background versus a smaller space in a fragile
background that could yield greater functional innovation.

Overall a very exciting study and an important contribution to the field.

Reviewer #3 (Remarks to the Author):

In the revised version of their manuscript, the authors have faithfully addressed the majority of my questions and
concerns. | recommend the manuscript for publication.



Reviewer #4 (Remarks to the Author):

I would like to thank the authors for their clarifications and changes made to the manuscript. | do not have more
questions and would recommend publishing the work.



