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Supplementary Methods 

Medication ON versus OFF order 

To minimize the physical discomfort experienced by PD participants when are OFF 

dopaminergic medications, the OFF session was scheduled at a time based on patient 

convenience and preference; therefore, the ON versus OFF order was not fully counterbalanced 

across PD participants. The mean (SD) time between ON and OFF scans was 16 (109) days with 

12 PD participants who had their OFF scan first and 24 PD participants who had their ON scan 

first. We confirmed that unbalanced ON vs. OFF order does not significantly affect any result 

reported in this study. See Supplementary Results below. 

 

fMRI preprocessing  

We used SPM12 software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), as well 

as in-house programs in MATLAB (MathWorks). Functional MRI data were first slice time 

corrected, aligned to the averaged time frame to correct for head motion, and co-registered with 

each participant’s T1-weighted images. Structural MRI images were segmented into grey matter, 

white matter, and cerebrospinal fluid. Based on the transformation matrix from structural image, 

the functional images were then transformed to the standard Montreal Neurological Institute 

(MNI) template in 2x2x2 mm3 by using the Diffeomorphic Anatomical Registration Through 

Exponentiated Lie algebra (DARTEL) toolbox 1. A 6-mm Gaussian kernel was used to spatially 

smooth the functional images. Participants with more than 3mm head motion were excluded.  

 

MDSI model for estimating causal interactions from fMRI data  
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MDSI estimates context-dependent causal interactions between multiple brain regions in latent 

quasi-neuronal state while accounting for variations in hemodynamic responses in these regions. 

MDSI has been validated using extensive simulations 22-24 and has been successfully applied to 

our previous studies 25-27. MDSI models the multivariate fMRI time series by the following state-

space equations: 

𝒔(𝑡) =  ∑ 𝑣𝑗(𝑡)𝐶𝑗
𝐽
𝑗=1 𝒔(𝑡 − 1) +  𝒘(𝑡)                  (1)  

𝒙𝑚(𝑡) = [𝒔𝑚(𝑡) 𝒔𝑚(𝑡 − 1) … . 𝒔𝑚(𝑡 − 𝐿 + 1)]′     (2) 

𝑦𝑚(𝑡) = 𝑏𝑚Φ𝒙𝑚(𝑡) + 𝒆𝑚(𝑡)        (3) 

 

In Equation (1), 𝒔(𝑡) is a 𝑀 × 1 vector of latent quasi-neuronal signals at time t of M regions, 𝐴 

is an 𝑀 × 𝑀 connection matrix wherein 𝐶𝑗 is an 𝑀 × 𝑀 connection matrix ensued by modulatory 

input 𝑣𝑗(𝑡), J is the number of modulatory inputs. The non-diagonal elements of 𝐶𝑗 represent the 

coupling of brain regions in the presence of modulatory input 𝑣𝑗(𝑡). 𝐶𝑗(𝑚, 𝑛) denotes the 

strength of causal connection   from n-th region to m-th region for j-th type stimulus. Therefore, 

latent signals s(t) in M regions at time t is a bilinear function of modulatory inputs 𝑣𝑗(𝑡), 

corresponding to deviant or standard stimulus, and its previous state s(t-1). 𝒘(𝑡) is an 𝑀 × 1  

state noise vector whose distribution is assumed to be Gaussian distributed with covariance 

matrix Q( 𝒘(𝑡) ∼ 𝑁(0, 𝑄)). Additionally, state noise vector at time instances 1,2,….,T ( 

𝒘(1), 𝒘(2) … 𝒘(𝑇) ) are assumed to be identical and independently distributed (iid).  Equation 

(1) represents the time evolution of latent signals in M brain regions. More specifically, the latent 

signals at time t, 𝒔(𝑡), is expressed as a linear combination of latent signals at time t-1, external 

stimulus at time t (𝑢(𝑡)), bilinear combination of modulatory inputs 𝑣𝑗(𝑡), 𝑗 = 1,2. . 𝐽 and its 
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previous state, and state noise 𝒘(𝑡). The latent dynamics modeled in Equation (1) gives rise to 

observed fMRI time series represented by Equations (2) and (3). 

 

We model the fMRI time series in region “m” as a linear convolution of hemodynamic response 

function (HRF) and latent signal 𝒔𝑚(𝑡) in that region. To represent this linear convolution model 

as an inner product of two vectors, the past L values of  𝒔𝑚(𝑡)  are stored as a vector.   𝒙𝑚(𝑡)  in 

equation (2) represents an 𝐿 × 1 vector with L past values of latent signal at m-th region.  

In Equation (3),  𝑦𝑚(𝑡)  is the observed BOLD signal at t of m-th region.  Φ is a 𝑝 × 𝐿  matrix 

whose rows contain bases for HRF. 𝑏𝑚 is a 1 × 𝑝 coefficient vector representing the weights for 

each basis function in explaining the observed BOLD signal 𝑦𝑚(𝑡). Therefore, the HRF in m-th 

region is represented by the product 𝑏𝑚Φ. The BOLD response in this region is obtained by 

convolving HRF  (𝑏𝑚Φ) with the L past values of the region’s latent signal (𝒙𝑚(𝑡)) and is 

represented mathematically by the vector inner product 𝑏𝑚Φ 𝒙𝑚(𝑡). Uncorrelated observation 

noise  𝒆𝑚(𝑡) with zero mean and variance 𝜎𝑚
2  is then added to generate the observed signal 

𝑦𝑚(𝑡). 𝒆𝑚(𝑡) is also assumed to be uncorrelated with 𝒘(𝜏),  at all t and 𝜏. Equation (3) 

represents the linear convolution between the embedded latent signal 𝒙𝑚(𝑡) and the basis vectors 

for HRF.  Here, we use the canonical HRF and its time derivative as bases, as is common in most 

fMRI studies. 

 

Equations (1-3) together represent a state-space model for estimating the causal interactions in 

latent signals based on observed multivariate fMRI time series. Furthermore, MDSI model also 

takes into account variations in HRF as well as the influences of modulatory and external stimuli 

in estimating causal interactions between the brain regions.  
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Estimating causal interactions between M regions specified in the model is equivalent to 

estimating the parameters 𝐶𝑗 , 𝑗 = 1,2. . 𝐽 . In order to estimate 𝐶𝑗’s, the other unknown parameters 

Q, {𝑏𝑚}𝑚=1
𝑀  and {𝜎𝑚

2 }𝑚=1
𝑀  and the latent  signal  {𝒔(𝑡)}𝑡=1

𝑇  based on the observations 

{𝑦𝑚
𝑠 (𝑡)}𝑚=1,𝑠=1

𝑀,𝑆 , 𝑡 = 1,2. . 𝑇, where T is the total number of time samples and S is number of 

subjects, needs to be estimated. We use a variational Bayes approach (VB) for estimating the 

posterior probabilities of the unknown parameters of the MDSI model given fMRI time series 

observations for S number of subjects. The statistical significance of the parameters is assessed 

by examining the posterior probabilities of the parameters 𝐶𝑗 , 𝑗 = 1,2. . 𝐽 at a given level of 

significance. 

 

MDSI-load, -group, and –medication analysis 

The significance of task-specific dynamic causal interactions in each edge was tested using 

simple t-test in each task condition. The significance of load effects was tested using paired t-

test. Group differences between HC and PD-OFF were examined using two sample t-tests 

whereas the effects of dopaminergic medication in PD were examined using paired t-tests 

comparing PD-OFF and PD-ON. All tests were corrected for multiple comparisons using FDR 

correction at p<0.05. 

 

MDSI-behaviour analysis 

The brain-behavior relationship analysis was focused on the edges that showed significant or 

marginally significant load effects and group difference (e.g. rMFG→ rPPC in HL vs. LL and 

DL vs. LL in HC and PD-OFF groups). Pearson’s correlations were examined to determine the 
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relation between the weights of causal interactions in rMFG→ rPPC in HL vs. LL and DL vs. LL 

and RT differences in the same task condition contrasts. Multiple linear regression analyses with 

covariates of age, sex, and mean framewise displacement, were used to estimate impact of 

potential confounds in MDSI-behavior analyses in each group. The statistical significance of 

difference in correlation coefficients between HC and PD-OFF was tested using Fisher’s z test 

and the statistical significance of difference in correlation coefficients between PD-OFF and PD-

ON was tested using Dunn and Clark’s z test, and both were implemented in R package “cocor” 

28. 

 

gPPI analysis 

We used generalized psychophysiological interaction (gPPI) 29, 30 to estimate non-causal task 

modulated connectivity between predefined ROIs. The gPPI model consisted of a physiological 

term, psychological terms, and PPI terms. The physiological term is the time series of the seed 

ROI; the psychological terms are HRF convolved main task effects of interest; and PPI terms are 

deconvolved raw time series of the seed ROI multiplied by main effect of interest followed by 

convolution with HRF. Thus, in each scan run, regressors consisted of the 1 physiological term 

(the seed ROI), 3 psychological terms (main task effect for LL, HL and DL), 3 PPI terms, and 6 

head motion parameters.  We conducted multiple gPPI analyses and, in each analysis, one of the 

thirteen ROIs was used as a seed and the rest were used as targets. PPI terms in each pair of 

seed-target ROIs on LL, HL and DL were extracted for further analyses. 
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Power analysis 

We performed a power analysis based on cognitive-load dependent fMRI activations the 

Sternberg WM task 31. We first calculated ROI activation levels in the DLPFC and striatum 

during the Sternberg task. In the DLPFC, 10 PD patients had a mean t-score of 2.10(SD 1.37) 

and 10 controls had a mean t-score of -0.12 (SD 1.23), yielding a Cohen’s d value of 1.7. In the 

striatum, the 10 PD patients a mean t-score of 1.22 (SD 1.21) and the 10 controls had a mean t-

score of 0.26 (SD 1.70) yielding a Cohen’s d of 0.65. Comparing all PD patients and controls, 

using the more moderate Cohen’s d value of 0.65, if we set alpha at p = 0.05 our sample size of 

50 PD and 25 controls will provide power in the 75-85% range to detect such a difference.   
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Supplementary Results 

Medication effects on behavioral performance 

We used multiple linear regression analysis to examine whether medication factors, such as use 

of levodopa, use of other dopamine (DA) agonists, and levodopa equivalent daily dose (LEDD) 

(Supplementary Table 1), may confound the main effect of medication state on behavioral 

performance. There was no significant main effect of medication state for Accuracy (p=0.10) or 

RT (p=0.18) in the Sternberg task after controlling the other medication factors. In addition, we 

examined the relationship between LEDD and behavioral performance and found that LEDD 

was significantly correlated with RT in the LL condition (r=-0.34, p=0.04) but not with any other 

variables. 

 

Lateralization of MFG→PPC causal link during working memory 

First, we examined lateralization effect and its interaction with group. We conducted ANOVA on 

the HL vs. LL load effect on the MFG→PPC causal weight with a between-subject factor “group” 

(CTL vs. PDOFF) and a within-subject factor “hemisphere” (Right vs. Left). We found a 

significant interaction between group and hemisphere (F1,78=11.58, p=0.001), a significant main 

effect of group (F1,78=4.1, p<0.05), and a marginally significant main effect of hemisphere 

(F1,78=2.9, p=0.09).  Post-hoc analysis revealed that the load effect on MFG→PPC causal 

weights was significantly different between right and left hemisphere in HC (t43=3.45, p=0.001) 

but not in PDOFF (t35=1.42, p=0.16).  We also conducted ANOVA on the DL vs. LL load effect 

on the MFG→PPC causal weight with a between-subject factor “group” (CTL vs. PDOFF) and a 

within-subject factor “hemisphere” (Right vs. Left). We found a significant interaction between 

group and hemisphere factors (F1,78=10.32, p=0.002) and a significant main effect of 

hemisphere (F1,78=4.1, p<0.05), but no significant main effect of group (F1,78=1.4, p=0.2). Post-

hoc analysis found that the load effect on MFG→PPC causal weights was significantly different 
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between right and left hemisphere in HC (t43=3.91, p=0.0003) but not in PDOFF (t35=0.95, 

p=0.35).  Together, our finding suggests that the lateralization effect of the MFG→PPC causal 

link was significantly different between HC and PD-OFF.  

 

Then, we examined lateralization effect in PD participants and its interaction with medication 

statues. We conducted ANOVA on the HL vs. LL load effect on the MFG→PPC causal weight 

with a within-subject factor “medication” (PDON vs. PDOFF) and a within-subject factor 

“hemisphere” (Right vs. Left). We found a significant interaction between medication and 

hemisphere factors (F1,35=4.8, p=0.04) but no significant main effect of medication (F1,35=0.1, 

p=0.7), and no significant main effect of hemisphere (F1,35=0.002, p=0.96). Post-hoc analysis did 

not reveal that the load effect on MFG→PPC causal weights was significantly different between 

right and left hemisphere in PDOFF (t35=1.42, p=0.16) and in PDON (t35=1.99, p=0.054). We 

also conducted ANOVA on the DL vs. LL load effect on the MFG→PPC causal weight with a 

between-subject factor medication (PDON vs. PDOFF) and a within-subject factor hemisphere 

(Right vs. Left). We found no significant interaction between group and hemisphere factors 

(F1,35=1.2, p=0.3), no significant main effect of medication (F1,35=0.05, p=0.8) and no significant 

main effect of hemisphere (F1,35=0.08, p=0.8). Post-hoc analysis did not find that the load effect 

on MFG→PPC causal weights was significantly different between right and left hemisphere in 

PDOFF (t35=0.95, p=0.35) and in PDON (t35=0.66, p=0.51).  

 

Together, these results suggest that there is a significant right lateralized load effect on the 

MFG→PPC causal weight in HCs and this lateralization effect is greater in HCs than in PD 

participants. 

 

Effects of medication order  
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In order to examine whether medication state order (ON then OFF versus OFF then ON) 

confounds medication effects on behavioral and brain measures, we included the ON versus OFF 

order as an independent variable and conducted linear mixed effect analyses. We also included 

sex as a potential confound in the analysis. In sum, we did not find that ON versus OFF order 

changed statistical significance of medication effect. 

 

Dopaminergic medication does not change overall working memory performance in PD 

We conducted linear mixed effect analysis with independent variables: medication (OFF, ON), 

order (OFF first, ON first) and sex (Female, Male), and dependent variables: ACC and RT per 

load condition. There was no significant effect of medication, order and sex factors on ACC and 

RT on any load condition (ps>0.05). Then we examined the effect of medication and order on 

load-modulation of ACC and RT (HL and DL relative to LL) and found no significant effect of 

medication, order and sex factors (ps>0.05). 

 

Dopaminergic medication improves network-level causal interactions in PD 

We conducted linear mixed effect analysis with independent variables: medication (OFF, ON), 

task condition (LL, HL and DL), order (OFF first, ON first) and sex (Female, Male), and 

dependent variables: MDSI-distance. The factor medication had a significant effect on MDSI-

distance (t=-4.34, p=2.44e-05), but the factors task, order and sex did not (all ps>0.1).  

 

Dopaminergic medication does not change frontoparietal causal link strength in PD 

We conducted linear mixed effect analysis with independent variables: medication (OFF, ON) 

and order (OFF first, ON first), and dependent variables: load-modulation of rMFG→rPPC (HL, 
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DL relative to LL). For HL versus LL, there was not significant medication and sex effect 

(p>0.05) but there was significant order effect (t=3.2, p=0.002). For DL versus LL, there was not 

significant medication, order and sex effects (ps>0.1).  

 

Dopaminergic modulation of the relation between rMFG→ rPPC and behavioral performance in 

PD  

To examine whether medication ON versus OFF order influences the relation between rMFG→ 

rPPC and behavioral performance in PD, we conducted multiple linear regression analyses. Here 

we used the number of days between ON versus OFF session (Gap) as a linear variable in the 

regression model, rather than the categorical ON first versus OFF first variable. We specifically 

focused on the DL versus LL load modulation condition, which is the core finding in the main 

text. The independent variables were load modulation (DL versus LL) of rMFG→ rPPC and 

Gap, and the dependent variable was load modulation (DL versus LL) of RT. There were no 

significant effect of load modulation of rMFG→ rPPC and Gap in PDOFF (ps>0.4). However, 

there were significant effect of load modulation of rMFG→ rPPC in PDON (t=2.94, p=0.0006) 

but no significant effect of Gap (p>0.4).  

 

Specificity of causal mechanisms: MDSI vs gPPI  

In order to examine whether the main findings in the current study are specific to causal 

interactions between regions, we examined non-causal interactions between the same brain 

regions using gPPI. We first conducted a two-way ANOVA on gPPI distance with factors 

medication state (OFF, ON) and task condition (LL, HL and DL). There was no significant 

interaction between medication state and task condition (F(2,70) = 0.90, p = 0.39, Cohen’s f = 
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0.17), no significant main effect of task condition (F(2,70) = 1.12, p = 0.30, Cohen’s f = 0.18), and 

no significant main effect of medication state (F(1,70) = 0.95, p = 0.39, Cohen’s f = 0.16). Next, 

we examined whether changes in network-level non-causal signaling are related to individual 

differences in cognitive function with dopaminergic medication. We trained a support vector 

regression model based on gPPI network distance between the PD-ON and PD-OFF states to 

predict changes in SDMT scores between ON and OFF dopaminergic medication and evaluated 

performance of the model using leave-one-out cross validation. Network distance changes did 

not predict SDMT changes between ON and OFF states (r=0.06, p=0.72).  Importantly, we 

examined whether MDSI-based prediction is significantly greater than gPPI-based prediction.  

Pearson and Filon’s z test showed that MDSI-based prediction is marginally better than gPPI-

based prediction (z=1.57, p=0.05).  

 

Finally, we determined whether the relation between the strength of the causal link rMFG→ 

rPPC and behavioral performance could be uncovered by gPPI. We found no significant relations 

between load-dependent modulation of the causal link rMFG→ rPPC and load effect in RT 

(ps>0.3). Then, we examined whether correlations between MDSI weight of the rMFG→ rPPC 

and Sternberg performance is significantly greater than the correlation between gPPI weight of 

the rMFG-rPPC and Sternberg performance. Pearson and Filon’s z test show that correlations 

between load-dependent (LL vs. DL) MDSI weights of the rMFG-rPPC and load-dependent 

Sternberg RT are significantly stronger than correlations between load-dependent gPPI weights 

of the rMFG-rPPC and load-dependent Sternberg RT in PD-ON (z=1.67, p=0.04), but not in HC 

(z=0.93, p=0.17) or PD-OFF (z=0.84, p=0.20).  
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In sum, our findings suggest that MDSI weights are better predictors of behavioral performance 

than gPPI weights for PD-ON, although there was no significant difference for HC or PD-OFF. 

 

Network analysis without cortical-STN connections in MDS results 

To determine whether the main findings depended on whether the STN was included in the 

network model, we performed additional statistical analyses after excluding dynamic interaction 

between STN and other cortical and subcortical regions. First, we conducted a two-way ANOVA 

on MDSI-derived causal weights with factors medication state (OFF, ON) and task condition 

(LL, HL and DL). Although there was no significant interaction between medication state and 

task condition (F(2,70) = 0.10, p = 0.90, Cohen’s f = 0.05) and no significant main effect of task 

condition (F(2,70) = 0.003, p = 0.99, Cohen’s f = 0.02), there was a significant main effect of 

medication state (F(1,70) = 9.07, p = 0.005, Cohen’s f = 0.51). Post-hoc analysis revealed that 

distance between PD-OFF and HC was significantly greater than that between PD-ON and HC in 

LL (t(35) = 2.10, p = 0.04, Cohen’s d = 0.35) and HL (t(35) = 2.34, p = 0.02, Cohen’s d = 0.39), and 

marginally significant in DL (t(35) = 2.02, p = 0.05, Cohen’s d = 0.34) conditions 

(Supplementary Figure S4). These results replicate the main finding that dopaminergic 

medication improves network-level causal interactions in the PD group. 

 

Next, we examined whether changes in network-level causal signaling are related to individual 

differences in cognitive function with dopaminergic medication. We trained a support vector 

regression model based on network distance between the PD-ON and PD-OFF states to predict 

changes in SDMT scores between ON and OFF dopaminergic medication and evaluated 

performance of the model using leave-one-out cross validation. Network distance changes 
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accurately predicted SDMT changes between ON and OFF states (r=0.33, p=0.05, 

Supplementary Figure S5). These results replicate the main findings that changes in causal 

signaling patterns within cognitive control circuitry contributes to cognitive changes in PD. 
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Table S1. Parkinson’s disease (PD) patient medication information. 

LEDD: levodopa equivalent daily dosage 

 

  

Medication Information  

n (%) on levodopa 33 (91.67%) 

n (%) on dopaminergic (DA) agonists 10 (27.8%) 

n (%) on both levodopa and DA agonists 8 (22.2%) 

n (%) on amantadine 9 (25.0%) 

n (%) on cholinesterase inhibitors 1 (2.8%) 

Mean (SD) LEDD 580.1 (315.7) 
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Figure S1. MDSI identified significant causal interactions between regions in the frontoparietal-

basal ganglia systems in LL, HL and DL conditions in (A) HC, (B) PD-OFF and (C) PD-ON 

groups (p < 0.05, FDR corrected). Yellow cells indicate significant positive causal interactions 

and blue cells indicate significant negative causal interactions. AI: anterior insula; DMPFC: 

dorsomedial prefrontal cortex; PM: premotor cortex; MFG: middle frontal gyrus; PPC: posterior 

parietal cortex; PUT/GP = putamen/globus pallidus ; STN: subthalamic nuclei. 
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Figure S2. The strength of causal interactions from the right middle frontal gyrus to right 

posterior parietal cortex (rMFG→rPPC) was significantly lower in PD-OFF group compared to 

healthy controls (HC). *, p<0.05, FDR corrected. 
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Figure S3. Activation maps from the General Linear Model: (A) Task effect (HL vs. LL and DL 

vs. HL) in combined HC and PD-OFF. (B) PD-related difference (HC vs. PD-OFF) in each task 

condition (LL, HL and DL). All maps were thresholded at height p<0.01 and cluster size p<0.01. 

R, right hemisphere. 
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Figure S4. Dopaminergic medication reduces MDSI-based distance, which quantifies the 

dissimilarity in network-level causal signaling between each PD participant and the HC group, in 

each task condition (i.e., LL, HL, DL) (LL: p < 0.05, HL: p < 0.05, DL: p = 0.05). Cortical-STN 

connections were excluded in determining MDSI distance.  *, p<0.05. 
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Figure S5. MDSI-based distance in causal signaling predicted change in SDMT scores between 

ON and OFF medication states in PD participants (r=0.33, p=0.05). Cortical-STN connections 

were excluded when determining MDSI distance.   
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