
Supplementary Material

Statistical model

Here we provide more details on the model described by (1) and (2).
We assume ↵(t) is smooth enough that it can be represented by a smoothing cubic spline

with one knot every seven years. If we have less than seven years of data, then ↵(t) is simply
a linear function of time. To represent the seasonal trend we assumed a harmonic model :

s(t) =
KX

k=1

{ak cos(2⇡kt/365) + bk sin(2⇡kt/365)},

where the parameters a = [a1, . . . , aK ] and b = [b1, . . . , bK ] are estimated from data. More-
over, we model the weekday-specific e↵ects using seven indicator variables and seven con-
strained parameters:

w(t) =
7X

d=1

wdXd(t),
7X

d=1

wd = 0

with Xd(t) = 1 if day t is day of the week d and 0 otherwise. Exploratory data analy-
sis demonstrated that this source of variability is pronounced in younger age groups that
have higher death rates during the weekends. We note that if this source of variability is
unaccounted for, the estimation of the parameters defining the error structure are a↵ected.

We further assumed the vector " = ["1, . . . , "T ]> follows a truncated multivariate distri-
bution with mean 1 (no change). To account for natural correlated variability we assumed
" had variance-covariance matrix, denoted with ⌃, determined by an auto-regressive (AR)
process of order p:

var(") ⌘ ⌃ = �2
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with ⇢1, . . . ⇢T�1 determined by the parameters of the AR(p) process. To assure E(Yt | "t) > 0
we assumed that Pr("t > 0) = 1. Note that the percent change in death rate due to natural
variation, not accounted for seasonality and secular trends, observed in practice is exclusively
between 20% smaller and 20% larger than mortality (0.8 < "t < 1.2), which consistent with
this assumption.

Estimating event e↵ects

Here we describe the three-step approach that we use to estimate f(t) and standard error for
these estimates. The general idea is to first estimate µt and ⌃ during periods with control
periods, and then estimate the most interest component: f(t).
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The first step is to estimate ↵(t), s(t), and w(t). To do this, we select a control period
Icontrol for which we know there were no natural disasters nor outbreaks and can assume
f(t) = 0. Natural disasters and outbreaks are rare, hence, it should be possible to find such
periods for most datasets. With this assumption in place model (1) reduces to:

Yt | "t / Poisson(µt"t), t 2 Icontrol

Note that if we have N ⌘ bT/365c years of daily data, given the choices described in
the Tuning parameters section of the eAppendix, we are only fitting N/7 + 7 + 4 + 1
parameters to T data points. As an example, for seven years of data this translates into
2,556 data points and 13 parameters. As a result, we can obtain highly precise estimates µ̂t

even in the presence of the extra dispersion introduced by "t. We therefore fit a quasi-Poisson
Generalized Linear Model (GLM) to regions in Icontrol and estimate the expected value for
t /2 Icontrol using the newly learned parameters. The quasi-Poisson assumption permits us
to model the extra variability introduced by "t.

In the second step we use the control region to estimate the variance-covariance matrix
⌃ as described in detail in the eAppendix. With this estimate in place we then use an
iterative generalized least square procedure to estimate f(t) and its standard error. We use
the Central Limit Theorem approximation to assume f̂(t) follows a normal distribution. As
explained in the eAppendix, this standard error includes the variability introduced by the
uncertainty in the estimate of the expected mortality rate µ̂t.

Estimating standard errors

The first step is to estimate the variance-covaiance matrix ⌃. We use data in the control
period to do this. First, let rt be the observed percent change from expected mortality:

rt =
Yt � µ̂t

µ̂t

To propagate the uncertainty in the estimation process in the first step, we employ a first-
order Taylor approximation of rt. Note that E[µ̂t] = µt and E[Yt] = µt, where the latter
equality holds by the law of total expectation. Then, we can approximate rt around (µt, µt)
and find that:

E (rt) ⇡ 0 and Var (rt) ⇡ �2 + 1/µ̂t +Var (log µ̂t)

where we used the law of total variance to find Var(Yt). Intuitively, the terms in Var(rt)
represent the variance added by ", the Poisson variability, and the uncertainty from the first
step, respectively. The above implies that the following random variable:

Zt =
rtp

Var (rt)

has the same correlation structure as "t. We therefore use the Yule-Walker equations to
estimate the AR process parameters from the observed Zt within Icontrol. To estimate �2
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we use:

�̂2 = max

(
1

T

TX

t=1

"✓
Yt � µ̂t

µ̂t

◆2

� 1

µ̂t
� Var(log µ̂t)

#
, 0

)

Using these we can form an estimate ⌃̂.
In the third and final step we estimate f(t). Denote r = (r1 . . . , rT )

>, f = (f(1), . . . , f(T ))> =
B✓, with B and ✓ the design matrix and parameters, respectively, that define the natural
cubic spline and D a diagonal matrix with entries:

dt,t =

s

[1 + f(t)]2 +
1 + f(t)

µ̂t�̂2
+

1

�̂2
[1 + f(t)]2 Var(log µ̂t)

Then, we can use the fact that

E(r) = B✓ and Var(r) = D⌃D

to obtain an unbiased estimate of f using generalized least squares:

✓̂ = (B>(D⌃D)�1B)�1B>(D⌃D)�1r

along with a variance estimate:

Var(✓) = (B>(D⌃D)�1B)�1

Since D⌃D depends on the estimand f , we use an iterative procedure in which we plug-in
the current estimate to compute the variance.

Excess mortality estimate

To estiamte the standard error for �̂[t0,t1], let B and ✓ be as they were defined above. Then,
note that we can conveniently represent excess deaths at time t as µt⇥f(t) and define excess
deaths for any time period [t0, t1] by just adding these up:

�[t0,t1] =
t1X

t=t0

µt ⇥ f(t) = (µt0 , . . . , µt1)B[t0:t1,]✓

where B[t0:t1,] represents rows t0,. . . ,t1 of matrix B. We therefore estimate cumulative excess
deaths for any interval I = [t0, t1] by adding the excess deaths for each day in I:

�̂[t0,t1] =
t1X

t=t0

µ̂t ⇥ f̂(t) = (µ̂t0 , . . . , µ̂t1)B[t0:t1,]✓̂
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where ✓̂ is the Maximum Likelihood estimate of ✓. We construct a 95% confidence interval
using the CLT approximation to assume the sum is approximately normally distributed with
variance given by:

Var

"
t1X

t=t0

µ̂t ⇥ f̂(t)

#
= (µ̂t0 , . . . , µ̂t1)B[t0:t1,]

⇥
B>(D⌃D)�1B

⇤�1
B>

[t0:t1,](µ̂t0 , . . . , µ̂t1)
>.

Note that our excess deaths estimate µ̂t⇥ f̂(t) for time t is a smooth version of the estimate
based on single time point: Yt � µ̂t. In fact, our estimate converges to Yt � µ̂t when the
number of knots that define f is equal to the number of observations. The corresponding
argument in our software package is the knots_per_year argument in the excess_model
function.

Mortality data stratified by demographic indicators

When mortality data is stratified by demographic indicators, such as age and sex, we can
estimate event e↵ect for each group. Note that we can then use this to estimate adjusted
marginal e↵ect. Specifically, if f̂k(t) is the estimated e↵ect at time t in group k we can define
the adjusted overall-e↵ect as event e↵ect as a weighted sum of the group-specific e↵ects:

f̂(t) =
KX

k=1

⇡k(t)⇥ f̂k(t), where ⇡k(t) ⌘
µ̂k,tPK
i=1 µ̂i,t

and µ̂k,t is the expected value of group k at time t. As before, we can approximate Var
⇣
f̂(t)

⌘

with a first-order Taylor approximation around (f1(t), . . . , fK(t), µ1,t, . . . , µK,t) and find that:

Var
⇣
f̂(t)

⌘
⇡

KX

k=1

h
⇡k,1(t)Var

⇣
f̂k(t)

⌘
+ ⇡k,2(t)Var (µ̂k,t)

i

, where

⇡k,1 ⌘
 

µ̂k,tPK
i=1 µ̂i,t

!2

and ⇡k,2 ⌘

0

B@
f̂k(t)PK
i=1 µ̂i,t

�
PK

k=1 µ̂k,t ⇥ f̂k(t)⇣PK
i=1 µ̂i,t

⌘2

1

CA

2

Tuning parameters

Our approach included four fixed parameters that need to be defined before fitting the model
to data. Here we motivate the default values we have set in the software implementation.

• We represent ↵(t) as a smoothing cubic spline with one knot every seven years. If we
have less than seven years of data, then ↵(t) is simply a linear function of time. This
choice is motivated by the observation that in many jurisdictions death rates have been
slowly declining for the past decades.
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• The seasonal trend is estimated by s(t), a periodic function with K harmonics. By
computing and plotting the daily average count for each day of the year, for the 35
years of the Puerto Rico dataset, we noted that the pattern was not exactly sinusoidal
(K=1) but that adding one harmonic (K=2) captured the extra complexity for most
jurisdictions. We recommend generating this plot to guide the choice of K and we
provide software in our package to do so.

• We can use our approach in an exploratory mode to search for periods in which f(t) 6= 0.
To do this, we use a flexible spline with 12 knots per year. This allows sharp increases to
be captured. However, once we discover a period of increased death rates, we generate
exploratory plots to determine if a smoother estimate is more appropriate. We used a
spline with six knots per year for all hurricane e↵ects and a discontinuity on landfall
day.

• We set the degree of the AR process at seven. This choice was made by examining
residual auto-correlation plots and assessments based on comparing observed and pre-
dicted standard errors for excess mortality estimates generated from periods for which
we expected f(t) = 0. The software implementation permits the user to change this
parameter or use AIC to determine the degree, as implemented in the R function ar.

Population size estimates

We used yearly population estimates from the US Census, which correspond to the popu-
lation size on July 1, to estimate daily population counts, Nt, via linear interpolation. For
days past the last value from the US Census, we assumed the population was constant and
equal to the last day for which we had data. Yearly population estimates for Puerto Rico
were obtained from the Puerto Rico Institute of Statistics (PRIS). Similarly, we estimated Nt

via linear interpolation of the observed values. However, to account for population displace-
ment after hurricane Maŕıa [27, 28], we used estimates based on mobile phone records pro-
vided by Teralytics —a technology company that partners with telecommunication operators
worldwide to assess human mobility[29]. Specifically, Teralytics provided daily population
proportion estimates relative to a confidential baseline from May 2017, to April 2018. We
multiplied these proportions by the 2017 mid-year population value from PRIS and gener-
ated smooth estimates with local regression. Finally, from the United Nations, we obtained
age-specific population proportions in five year intervals for Puerto Rico from 1950 to 2020.
Since we only have mortality data for Puerto Rico dating back to 1985, we generated daily
demographic proportion estimates via linear interpolation of the five year interval values
starting in 1985. Then, we computed age-specific population estimates by multiplying the
demographic proportions times the aforementioned smooth population estimates.
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Simulation studies

To assess our procedure we conducted a Monte Carlo simulations. We designed simulation
studies to mimic three scenarios 1) a natural disaster, 2) an infectious disease epidemic, and
3) a typical period with no events. The event e↵ect, f(t), for the natural disaster scenario
was defined by a strong direct e↵ect followed by a slow decaying indirect e↵ect, as seen after
natural disasters. To achieve this, we fit model (2) to mortality data from Puerto Rico for
all deceased 75 and older to periods with no known events. This provides estimates for ↵̂(t),
ŝ(t), and ŵ(t) (eFigure 13) which we use to define µt for our simulations. We then fit model
(1) to the period of July 20, 2017, to April 20, 2018, which includes Hurricane Maŕıa, and
used the resulting estimate f̂(t) as the true f(t) for the first simulation study. To generate
realistic e↵ects f(t) for the infectious disease epidemic scenario, we fit model (1) from May
14, 2014, to February 14, 2015, which includes the Chikungunya outbreak in Puerto Rico,
and use the resulting f̂(t) as the true f(t). Finally, we let f(t) = 0 for the entire period for
the typical scenario simulation.

For natural variability we simulated serially correlated random variables {"1, . . . , "T}
centered at one with an AR process of degree two and coe�cients obtained using the Yule-
Walker equations (see eAppendix for details). We set the standard deviation of "t to 0.05
and used data from January 1, 2002 to December 31, 2013, a contiguous time period in which
no known events occurred, to estimate the coe�cients. With these parameters in place we
then generated B = 100, 000 simulated datasets following model (1):

Y (b)
t ⇠ Poisson

⇣
µt[1 + f(t)]"(b)t

⌘
for t = 1, . . . , T

for b = 1, . . . , B. Note that Y (b)
t refers to the simulated number of deaths at time t for

simulation b. In eFigure 1, the solid-red curves represent the true curve or true standard
error, whereas the dashed-black curves correspond to our estimates. We find that our method
consistently estimates the true curve precisely under all three scenarios (eFigures 1A-C). Our
estimated standard error also estimates the true standard error precisely (eFigures 1D-F).

Small death counts

The smoothing approach we employ improves power over methods based on measurements
from a single day, particularly in situations where the signal to noise ratio is low. This
implies that our method can be useful even when the death counts per time unit are small.
We conducted a simulation study to determine the lower limit for deaths per day rates
that our approach can handle. Specifically, we simulated data using the same approach we
described above, but we normalized the counts such that the average deaths per day was
� = {0.05, 0.10, 0.50, 1.00} across the simulated data. Specifically, we use:

Y (b)
t ⇠ Poisson

 
� ⇥ µt[1 + f(t)]

PT
j=1 µj[1 + f(j)]

"(b)t

!
for t = 1, . . . , T
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The simulation demonstrated that for daily count rates above 0.10 our model performs well
(eTable 1, eFigures 2 & 3). Finally, we note that for the demographics groups described in
Section and used in Sections and , the lowest counts per day rate was 0.30.

Amount of training data

The first step of our approach is to estimate the expected counts µt for each time t using
data in the control region. To assess the impact of the length of this control baseline period
in our estimation procedure, we employed the same simulation scheme we described above,
but we limited the length of the control region to 2, 4, 6, and 8 years. We found that results
were practically equivalent for all training periods (eTable 4, eFigures 4 & 5)

False Discovery Rates and Power Analysis

To study the false discovery rate of our procedure we again repeated the simulation used in
Section using the null model f(t) = 0. For each simulated dataset, we fit our model with 6
and 12 knots per-year. We also considered the saturated model that results in the estimate
f̂(t) = (Yt � µ̂t)/µ̂t. For each model fit, we then searched for regions and recorded recorded
all intervals for which f̂(t) was statistically di↵erent from 0 and the length of this interval.
We then considered several period length requirements and reported the number of detected
false events per year.

We repeated the simulation above but this time for a case in which f(t) > 0. Specifically,
we defined f using the Tukey tri-weight function:

f(t) = aW

✓
t� t0
b

◆
for t = 1, . . . , T,

where t0 is the day where the e↵ect is highest, a is the peak e↵ect, 2b is the length of the
e↵ect in days, and W (u) = (1� |u|3)3 , for |u|  1. For this simulation we set a = 0.20 and
b = 45, hence the period of indirect e↵ect lasted 90 days. Similar to above, for each period
length requirement, we recorded the proportion of years where one of our detected intervals
had a non-null intersection with the interval for which f(t) > 0, specifically [t0 � b, t0 + b].
We reported the proportion of years for which the event of concern was detected.

We found that our method greatly improved sensitivity over the saturated model ap-
proach without much loss of specificity (eTables 2 & 3). If we require to see at least 5, 10,
or 30 days above the threshold with a 12 knot smoother, then we see a false event every
2, 3, and 33 years, respectively, As described in the Methods section, we can also control
specificity and sensitivity by increasing the confidence level.

Natural variability and correlated counts

To demonstrate the perilous e↵ects of incorrectly assuming independence between counts,
when in fact they are correlated, we compared our method to a Poisson and over-dispersed
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Poisson model that assumes independent observations. We fit each of the three models to the
Puerto Rico data for individuals 75 and over. Then, we randomly selected 100 intervals of
sizes L = 10, 50, and 100 days from periods with no events, and computed the total number of
deaths in each interval Sl =

P
t2L Yt. We then used the fitted models to estimate the expected

value Ê(Sl) and standard error ŜE(Sl). If the expected value and the variance are estimated
correctly, the Central Limit Theorem predicts that the statistic Zl = [Sl � Ê(Sl)]/ŜE(Sl)
should have an approximate Gaussian distribution with mean zero and variance one. We
found that the Poisson and over-dispersed Poisson model underestimates the SE(Sl) resulting
in larger than expected values of |Zl|.
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Supplementary Tables

Counts Estimate SE estimate SE estimate
per day median bias median bias median RMSE

1.00 0.0004 0.0003 0.0082
0.50 0.0005 0.0013 0.0156
0.10 0.0030 0.0582 0.1073
0.05 0.0153 0.1277 0.2324

Supplementary Table 1: Assessment of the performance of our model when the rate of deaths
per day is small. The first column shows the rate of deaths per day in each simulation. The
second column shows the median, over time, of the absolute value of the bias of our estimate
of the event e↵ect. The third column shows the median, over time, of the absolute value of
the bias of our estimate of the standard error of f̂ . The fourth column shows the median,
over time, root mean squared error of our estimate of the standard error of f̂ .

knots � 1 day � 3 days � 5 days � 10 days � 1 month � 2 months

6 0.327 0.324 0.318 0.295 0.140 0.011
12 0.561 0.549 0.525 0.424 0.038 0.000

Saturated⇤ 4.659 0.001 0.000 0.000 0.000 0.000

Supplementary Table 2: False discovery rates based on a simulation study where f(t) = 0,
for all t. The results are shown as the rate of false events detected per year, out of the
100,000 simulated years. The first column shows the amount of smoothness. The second
column shows results for all detected regions. Column 3 through 7 shows results for regions
of length 3, 5, 10, 30, 60 or larger, respectively.
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knots � 1 day � 3 days � 5 days � 10 days � 1 month � 2 months

6 1.000 1.000 1.000 1.000 1.000 0.999
12 1.000 1.000 1.000 1.000 1.000 0.762

Saturated⇤ 1.000 0.119 0.003 0.000 0.000 0.000

Supplementary Table 3: Power analysis based on a simulation study where f(t) > 0 for an
interval of 90 days. The results are shown as the rate of years in which we correctly detect
the event of concern, out of the 100,000 simulated years. The first column shows the amount
of smoothness. The second column shows results for all detected regions. Column 3 through
7 shows results for regions of length 3, 5, 10, 30, 60 or larger, respectively.

Length of the Estimate SE estimate SE estimate
control region median bias median bias median RMSE

8 0.0001 0.0035 0.0041
6 0.0001 0.0023 0.0032
4 0.0001 0.0031 0.0043
2 0.0001 0.0020 0.0040

Supplementary Table 4: Assessment of the e↵ect of the length of the control period used to
estimate the expected counts. The first column shows the rate of deaths per day in each
simulation. The second column shows the median, over time, of the absolute value of the
bias of our estimate of the event e↵ect. The third column shows the median, over time, of
the absolute value of the bias of our estimate of the standard error of f̂ . The fourth column
shows the median, over time, root mean squared error of our estimate of the standard error
of f̂ .
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Supplementary Figures
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Supplementary Figure 1: Assessment of our procedure based on a simulation study. A)
The solid-red curve represents the true event e↵ect, f(t), for the natural disaster scenario.
The dashed-black curve is the Monte Carlo approximation of E[f̂(t)]: 1/B

PB
b=1 f̂

(b)(t).

The grey curves are a random sample of ten event e↵ects, f̂ (b)(t). B) As A) but for
the infectious disease epidemic scenario. C) As A) but for the typical scenario. D)
The solid-red curve represents the Monte Carlo approximation of the standard errorq

1/B
PB

b=1[f̂
(b)(t)� 1/B

PB
b=1 f̂

(b)(t)]2. The dashed-black curve represents the average of

the standard errors across all simulations: 1/B
PB

b=1 ŜE[f̂
(b)(t)]. The grey curves represent

a random sample of ten such standard errors: ŜE[f̂ (b)(t)]. E) As D) but for the infectious
disease epidemic scenario. F) as D) but for the typical period scenario.
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Supplementary Figure 2: Assessment of our estimate of the event e↵ect based on a simulation
study where the number of deaths per day was small. A) The average number of deaths per
day was set to 1. The solid-red curve represents the true event e↵ect, f(t). The dashed-black
curve is the Monte Carlo approximation of E[f̂(t)]: 1/B

PB
b=1 f̂

(b)(t). The grey curves are a

random sample of ten event e↵ects, f̂ (b)(t). B) As A) but for a scenario where the average
number of deaths per day was set to 0.50. C) As A) but for a scenario where the average
number of deaths per day was set to 0.10. D) As A) but for a scenario where the average
number of deaths per day was set to 0.05.
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Supplementary Figure 3: Assessment of our estimate of the standard error of the event
e↵ect based on a simulation study where the number of deaths per day was small. A)
The average number of deaths per day was set to 1. The solid-red curve represents the

Monte Carlo approximation of the standard error
q

1/B
PB

b=1[f̂
(b)(t)� 1/B

PB
b=1 f̂

(b)(t)]2.
The dashed-black curve represents the average of the standard errors across all simulations:
1/B

PB
b=1 ŜE[f̂

(b)(t)]. The grey curves represent a random sample of ten such standard

errors: ŜE[f̂ (b)(t)]. B) As A) but for a scenario where the average number of deaths per day
was set to 0.50. C) As A) but for a scenario where the average number of deaths per day
was set to 0.10. D) As A) but for a scenario where the average number of deaths per day
was set to 0.05.
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Supplementary Figure 4: Assessment of our estimate of the event e↵ect based on a simulation
study where we varied the length of the control region. A) The length of the control region
was 8 years. The solid-red curve represents the true event e↵ect, f(t). The dashed-black
curve is the Monte Carlo approximation of E[f̂(t)]: 1/B

PB
b=1 f̂

(b)(t). The grey curves are a

random sample of ten event e↵ects, f̂ (b)(t). B) As A) but for a scenario where the length of
the control region was 6 years. C) As A) but for a scenario where the length of the control
region was 4 years. D) As A) but for a scenario where the length of the control region was
2 years.
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Supplementary Figure 5: Assessment of our estimate of the standard error of the event e↵ect
based on a simulation study where we varied the length of the control region. A) The length
of the control region was 8 years. The solid-red curve represents the Monte Carlo approxima-

tion of the standard error
q

1/B
PB

b=1[f̂
(b)(t)� 1/B

PB
b=1 f̂

(b)(t)]2. The dashed-black curve

represents the average of the standard errors across all simulations: 1/B
PB

b=1 ŜE[f̂
(b)(t)].

The grey curves represent a random sample of ten such standard errors: ŜE[f̂ (b)(t)]. B) As
A) but for a scenario where the length of the control region was 6 years. C) As A) but for
a scenario where the length of the control region was 4 years. D) As A) but for a scenario
where the length of the control region was 2 years.
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Supplementary Figure 6: Cross-validation study to assess the performance of our mean
model. For years 1999 to 2013 in Puerto Rico we removed each year, one by one, estimated
µt without that year and compared it to the estimate obtained when including that year in
the analysis. The title of each pane represents the year that was removed. The points are
the average deaths for every week , the solid-blue curve is the expected value when excluding
each year, and the dashed-orange curve is the expected value when we did not exclude each
year.
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Supplementary Figure 7: Farrington model fit to daily Puerto Rico data for a period that
includes the landfall of Hurricane Maria. Gray points represent daily deaths counts. The
black and the orange curves are the expected number of daily counts and the threshold
for significant excess deaths, respectively, as defined by the Farrington algorithm. The red
rectangle denotes the number of consecutive days with excess deaths since the landfall of
Hurricane Maria as determined by the Farrington algorithm.
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Supplementary Figure 8: Comparison between the Farrington model and our method based
on estimates for Puerto Rico from a period including Hurricane Georges. A) Gray points
represent daily deaths counts. The black and the orange curves are the expected number of
daily counts and the threshold for significant excess deaths, respectively, as defined by the
Farrington algorithm. The red rectangle denotes the number of consecutive days with excess
deaths since the landfall of Hurricane Maria as determined by the Farrington algorithm. B)
Gray points represent weekly death counts. The black and the orange curves are the expected
number of daily counts and the threshold for significant excess deaths, respectively, as defined
by the Farrington algorithm. The red rectangle denotes the number of consecutive week
with excess deaths since the landfall of Hurricane Maria as determined by the Farrington
algorithm. C) Gray points represent daily death counts. The black curve is the estimated
expected counts based on our method and the blue curve represents the event e↵ect estimate,
µ̂t[1 + f̂(t)]. The black and blue ribbons are point-wise 95% confidence intervals for the
expected counts and event e↵ect, respectively. Finally, the red rectangle is as in B) but for
our method.
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Supplementary Figure 9: Estimated hurricane e↵ects as percent increase over expected mor-
tality for the six hurricanes. A) Event e↵ect of Hurricane Maria in Puerto Rico. The blue
curve and ribbon represent the event e↵ect, 100 ⇥ f(t), and corresponding point-wise 95%
confidence intervals. B) As A) but for Hurricane Georges in Puerto Rico. C) As A) but for
Hurricane Hugo in Puerto Rico. D) As A) but for Hurricane Sandy in New Jersey. E) As
A) but for Hurricane Katrina in Louisiana. F) As A) but for Hurricane Irma in Florida.
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Supplementary Figure 10: Estimated e↵ects as percent increase over expected mortality
during the Chikungunya epidemic for di↵erent age groups. The grey data points correspond
to observed daily percent changes from expected mortality. The blue curve and ribbon
represent the event e↵ect and its point-wise 95% confidence interval.
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Supplementary Figure 11: Evidence of correlated errors. A) A Poisson GLM was fitted to
Puerto Rico daily death counts of individuals 75 years and older from an interval with no
known natural disasters or outbreaks (Jan 1, 2006 to Dec 31, 2013). The plot shows the
Pearson residual quantiles versus theoretical quantiles from the normal distribution. One
can see that the tail of the empirical data are larger than the theoretical values. B) The
sample autocorrelation function for these Pearson residuals with the red-dash lines represent
a 95% confidence interval centered at zero. C) As A) for residuals that were adjusted for the
correlation in the data based on an estimate of the covariance matrix. D) As B) for residuals
that were adjusted for the correlation in the data based on an estimate of the covariance
matrix.
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Supplementary Figure 12: Accounting for correlation in the error structure improves un-
certainty estimates. A) Wald-statistics versus theoretical quantiles for the standard normal
distribution for excess deaths estimated based on 10 days in the control interval. B) As A)
but for 50 day intervals. C) As A) but for 100 day intervals.

A B C

60

70

80

1990 2000 2010 2020
Date

Av
er

ag
e 

ye
ar

ly
 ra

te
 o

f m
or

ta
lit

y

−0.06

−0.03

0.00

0.03

0.06

0 100 200 300
Day of the year

Se
as

on
al

 tr
en

d

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

−0.01

0.00

0.01

0.02

Sun Mon Tue Wed Thu Fri Sat
Weekday

W
ee

kd
ay

 e
ffe

ct

Supplementary Figure 13: Assessment of the mean model based on a simulation study. A)
The solid-red curve represents the true ↵(t), the dashed-black curve is the Monte Carlo
approximation of the expected value of this estimate: 1/B

PB
b=1 ↵̂

b(t), and the grey curves
are a random sample of 10 ↵̂b(t)s. B) As A) but for s(t). C) The red points represent the
true w(t), the black points are the Monte Carlo approximation of the expected value of these
estimates: 1/B

PB
b=1 ŵ

b(t), and the grey points are a random sample of 10 ŵb(t)s.
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