### **Supplementary Material**

# A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells

Antonio Carusillo, Sibtain Haider, Raul Schäfer, Manuel Rhiel, Daniel Türk, Kay O. Chmielewski, Julia Klermund, Laura Mosti, Geoffroy Andrieux, Richard Schäfer, Tatjana I. Cornu, Toni Cathomen and Claudio Mussolino

| Supplementary Figure 1 | Schematic of the Cas9 fusions used                                                  |
|------------------------|-------------------------------------------------------------------------------------|
| Supplementary Figure 2 | Identification of the best performing <i>BFP</i> -specific nuclease                 |
| Supplementary Figure 3 | Impact of the donor architecture on gene conversion<br>frequency                    |
| Supplementary Figure 4 | HDR-mediated DSB repair is consistent at different loci and in different cell lines |
| Supplementary Figure 5 | TIDE analysis in K562 upon genome editing using an AAV repair matrix                |
| Supplementary Figure 6 | Cas9-CtIP-dnRNF168 does not influence genomic stability                             |
| Supplementary Figure 7 | HSPCs editing using a dsODN repair template                                         |
| Supplementary Figure 8 | Localization of Cas9-CtIP-dnRNF168 upon DNA damage                                  |
| Supplementary Table 1  | Sequences of ODN repair templates used in this study                                |
| Supplementary Table 2  | Chromosomal fusions identified via CAST-seq                                         |

#### Carusillo et al., Supplementary Figure 1



**Supplementary Figure 1. Schematic of the Cas9 fusions used.** The different components of the Cas9 fusions used in this study are indicated on the right side as colored rectangles. The NHEJ-inhibiting or HDR-promoting proteins used either as single or double fusions to the Cas9 are indicated in brackets. The molecular weight of each effector used is indicated (in kDa). Unless otherwise indicated, each effector is fused to the Cas9 as full-length.

#### Carusillo et al., Supplementary Figure 2



#### Supplementary Figure 2. Identification of the best performing BFP-specific nuclease

(A) Schematic representation of the *BFP* coding sequence with highlighted the nucleotides responsible for the *BFP*-to-*GFP* conversion and the target sites of the sgRNA included in the *BFP*-specific CRISPR/Cas9 tested (upper panel). The activity of the indicated *BFP*-specific nucleases is monitored via T7 endonuclease 1 assay (lower panel). The arrows indicate the position of the expected cleavage products. The average percentage of modified alleles is indicated below the panel. (B) Exemplary plots showing the targeting efficiency of the different *BFP*-specific nucleases tested measured as reduction in the BFP+ population.



#### Supplementary Figure 3. Impact of the donor architecture on gene conversion frequency.

(A) Schematic of the different ODN architectures used in the *BFP*-to-*GFP* assay. The total length of the ODN was kept constant (131nt) and changes include the use of single stranded (#1 and #2) or double stranded (#3 and #4) ODNs with homology arms of the indicated length. nt: nucleotides (B) The bar graph shows the precision score of the indicated nucleases using the ODN indicated below and calculated as fold change relative to the unmodified Cas9.



#### Supplementary Figure 4. HDR-mediated DSB repair is consistent at different loci and in different cell lines.

Targeted integration frequency of a green fluorescent protein (GFP) expression cassette at the *AAVS1* locus in K562 cells (**A**, **B**) or a Clover expression cassette at the *LMNA* locus in HEK293T cells (**C**, **D**). The bar graphs on the left indicate the percentage of NHEJ or HDR events as determined by TIDE or flow cytometry, respectively. The graphs on the right show the precision score, computed as the ratio between the HDR and NHEJ events measured as reported on the left, for the indicated CRISPR system. Each dot represents a biological replicate. Error bars indicate SEM.



#### Supplementary Figure 5. TIDE analysis in K562 upon genome editing using an AAV repair matrix.

(A) Representative plots showing the amount of cells expressing a stably integrated GFP expression cassette nine days after electroporation of the indicated nucleases followed by transduction with the AAV repair matrix. (B) Schematics of the in-out PCR strategy used to determine the correct integration of the transgene at the *AAVSI* locus (upper panel) and the resulting PCR products resolved on 2% agarose gel (lower panel). (C) The graphs show the length of the different indel mutation identified by TIDE analysis in K562 cells edited with the indicated nucleases. The TIDE analysis shown is representative of three independent experiments. W/O: without AAV.



#### Supplementary Figure 6. Cas9-CtIP-dnRNF168 does not influence genomic stability.

Loss of chromosomal terminal upon CRISPR/Cas activity. (A) Schematic of the terminal p-arm of chromosome 11. The position of the *CARS1* and *HBB* genes relative to the telomere and to the *HBB* gene is shown. The arrow on top indicates the Cas9 cleavage site within the *HBB* gene. (B) Droplet digital PCR is used to estimate the extent of chromosomal terminal loss upon CRISPR/Cas activity. The histogram indicates the fold change relative to the mock control of the ratio between the copy number of *CARS1* and the *HBE* genes located at either sides of the *HBB* target gene. Each dot represents a biological replicate read in triplicate. Error bars indicate SEM.

#### Carusillo et al., Supplementary Figure 7



#### Supplementary Figure 7. HSPCs editing using a dsODN repair template.

The histograms indicate the frequency of NHEJ- or HDR-mediated DSB resolution assessed via TIDER (left panels) and the corresponding precision score computed as the ratio between the HDR and NHEJ events (right panels) in hematopoietic stem and progenitor cells (HSPCs) edited using a dsODN repair template. Each dot represents a biological replicate. Fold change, as compared to the cells receiving the unmodified Cas9 nuclease, are reported within the graph. Error bars indicate SEM.



#### Supplementary Figure 8. Localization of Cas9-CtIP-dnRNF168 upon DNA damage.

Representative immunofluorescence staining of HEK293T cells, homogeneously irradiated with 50 Gy, 48 hours after receiving a Cas9-CtIP-dnRNF168 expression plasmid via Lipofection. Staining of phosphorylated  $\gamma$ -H2AX (green) foci is used to visualize irradiation-induced DNA damage, 24 hours after irradiation. Nuclei are stained with DAPI (blue) and the Cas9 is stained with a rabbit anti-HA antibody revealed using an Alexa Fluor 568 goat anti rabbit IgG secondary antibody (red). Scale bars: 10  $\mu$ m.

| Supplementary rable 1. Sequences of Obivirepair templates used in this study |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

| ODN ID       | Sequence (5'> 3') <sup>a, b, c</sup>                                                   | Purpose           |
|--------------|----------------------------------------------------------------------------------------|-------------------|
|              | CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCA                           |                   |
| ssODN_#1F    | C <u>A</u> CTGA <b>C</b> C <b>T</b> ACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGAC | BFP -to-GFP assay |
|              | TTCTTCAAGTCC                                                                           |                   |
|              | GCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAA                             |                   |
| ssODN_#2F    | GCTGCCCGTGCCCTGGCCCACCCTCGTGACCA C <u>A</u> CTGA <b>CCT</b> ACGGCGTGCAGTGCTTCA         | BFP -to-GFP assay |
|              | GCCGCTACCCCGAC                                                                         |                   |
|              | GGACTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGTAGCGGCTGAAGCACTGCACG                             |                   |
| ssODN_#3R    | CCGT <b>A</b> G <b>G</b> TCAG <u>T</u> GTGGTCACGAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTG   | BFP -to-GFP assay |
|              | CAGATGAACTTCAGGG                                                                       |                   |
|              | GCGCTCCTGGACGTAGCCTTCGGGCATGGCGGACTTGAAGAAGTCGTGCTGCTTCATGT                            |                   |
| ssODN_#4R    | GGTCGGGGTAGCGGCTGAAGCACTGCACGCCGT <b>A</b> G <b>G</b> TCAG <b>T</b> GTGGTCACGAGGGTGG   | BFP -to-GFP assay |
|              | GCCAGGGCACGGGCA                                                                        |                   |
| CCR5_site#1F | TTCTGGGCTCACTATGCTGCCGCCCAGTGGGACTTTGGAAATACAATGTGTCAACTCTT                            |                   |
|              | G <b>CT</b> AG <u>C</u> GCTCTATTTTATAGGCTTCTTCTGGAATCTTCTTCATCATCCTCCTGACAATC          | CCR5 editing      |
|              | GATAG                                                                                  |                   |
|              | CTATCGATTGTCAGGAGGATGATGAAGAAGATTCCAGAGAAGAAGCCTATAAAATAGA                             |                   |
| CCR5_site#1R | GC <u>G</u> CT <b>AG</b> CAAGAGTTGACACATTGTATTTCCAAAGTCCCACTGGGCGGCAGCATAGTG           | CCR5 editing      |
|              | AGCCCAGAA                                                                              |                   |
|              | TGTCAAGTCCAATCTATGACATCAATTATTATACATCGGAGCCCTGCCAAAAAATCAATG                           |                   |
| CCR5_site#2F | TGAAGCAAATCGCAGCCCGC <b>TA</b> GCTGCCTCCGCTCTACTCACTGGTGTTCATCTTTGGTT                  | CCR5 editing      |
|              | TTGTGGGCAACATGCTGGTCATCCTCATCCTGATAAACTGCAA                                            |                   |

<sup>a</sup> Homology arms are indicated in italics. The nucleotide changes, as compared to initial sequences, are in bold. The nucleotide changes necessary for PAM disruption are in bold underlined.

<sup>b</sup> The dsODNs #3 and #4 in Supplementary Figure 2 derive from annealing ssODN\_#1F and ssODN\_#3R or ssODN\_#1F and ssODN\_#4R, respectively

<sup>c</sup> The dsODN in Supplementary Figure 4 derive from annealing of CCR5\_site#1F and CCR5\_site#1R

| Supplementary Table 2 | . Chromosomal | fusions identified | via CAST-seq $^{\#}$ |
|-----------------------|---------------|--------------------|----------------------|
|-----------------------|---------------|--------------------|----------------------|

| chromosome       | Type <sup>§</sup> | start     | end       | read*   | hits* |
|------------------|-------------------|-----------|-----------|---------|-------|
| chr3 (on target) | ON                | 46354559  | 46388912  | 3424216 | 8841  |
| chr22            | OMT               | 29072571  | 29075210  | 143442  | 592   |
| chr13            | OMT               | 24883679  | 24889410  | 139765  | 521   |
| chr19            | OMT               | 35351642  | 35353222  | 129119  | 513   |
| chr16            | OMT               | 3054662   | 3055266   | 36925   | 78    |
| chr1             | OMT               | 31944121  | 31944708  | 6174    | 24    |
| chr6             | OMT               | 34176235  | 34176890  | 13986   | 19    |
| chr22            | OMT               | 42925805  | 42927384  | 8626    | 18    |
| chr5             | OMT               | 172700318 | 172700854 | 6423    | 16    |
| chr15            | OMT               | 64815357  | 64815881  | 3173    | 15    |
| chr10            | OMT               | 11712391  | 11712940  | 5527    | 13    |
| chr9             | OMT               | 34869332  | 34869838  | 4368    | 11    |
| chr11            | OMT               | 70509416  | 70509930  | 4843    | 10    |
| chr19            | OMT               | 35358021  | 35358530  | 4940    | 9     |
| chr19            | OMT/HMT           | 45516296  | 45516820  | 4714    | 9     |
| chr19            | OMT               | 47492202  | 47492753  | 2915    | 9     |
| chr9             | OMT               | 133583476 | 133584263 | 4002    | 8     |
| chr15            | OMT               | 84934931  | 84935515  | 6192    | 7     |
| chr3             | OMT               | 46331188  | 46332498  | 2069    | 7     |
| chrX             | OMT               | 153901851 | 153902356 | 8858    | 5     |
| chr19            | OMT               | 14064757  | 14065263  | 4088    | 5     |
| chr15            | OMT               | 50765350  | 50765850  | 2215    | 2     |
| chr8             | HMT               | 30370457  | 30372275  | 745     | 5     |

## **CRISPR/Cas9**

Total: 3.967.325

## CRISPR/Cas9-CtIP-dnRNF168

| chromosome | Type <sup>§</sup> | start     | end       | read*     | hits* |
|------------|-------------------|-----------|-----------|-----------|-------|
| chr3       | ON                | 46354471  | 46379896  | 1650055   | 6460  |
| chr22      | OMT               | 29071594  | 29076155  | 150913    | 1071  |
| chr13      | OMT               | 24883679  | 24888101  | 67963     | 491   |
| chr19      | OMT               | 35351646  | 35353622  | 47191     | 403   |
| chr16      | OMT               | 3054662   | 3055223   | 7584      | 28    |
| chr1       | OMT               | 31944127  | 31946801  | 18783     | 74    |
| chr22      | OMT               | 42926691  | 42927642  | 8061      | 45    |
| chr18      | OMT               | 26644196  | 26646368  | 10610     | 45    |
| chr3       | OMT               | 46382788  | 46389769  | 4120      | 19    |
| chr12      | OMT               | 105902012 | 105902860 | 1154      | 13    |
| chr12      | OMT               | 57449620  | 57450178  | 4399      | 12    |
| chr12      | OMT               | 109617835 | 109618431 | 2097      | 11    |
| chr11      | OMT               | 119513944 | 119514456 | 4226      | 7     |
| chr7       | OMT               | 101767757 | 101768263 | 2677      | 6     |
| chr11      | OMT               | 396291    | 396811    | 2425      | 6     |
|            |                   |           | Total:    | 1.982.258 |       |

<sup>#</sup>The sites identified with both nucleases are highlighted in grey.

\*The numbers reported result from the sum of two replicate reads

 $^{\$}\text{ON:}$  on target; OMT: off target mediated translocation; HMT: homology mediated translocation