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Supplementary Methods 
 

Study participants 

4,491 patients with PD (with available genotyping data and quality control) were 

longitudinally assessed with 3,3406 study visits in 15 cohorts from North America and Europe 

between 1986 and 2017: Harvard Biomarkers Study (HBS)1, Neuroprotection Exploratory Trials 

in PD- Long term Study-1 (NET-PD LS1)2, Drug Interaction with Genes in PD (DIGPD)3 , 

PROfiling PARKinson’s disease (PROPARK) study4, PROPARK-Cross sectional cohort; 

Cambridgeshire Parkinson’s Incidence from GP to Neurologist (CamPaIGN)5-7; Parkinsonism: 

Incidence, Cognition and Non-motor heterogeneity in Cambridgeshire (PICNICS)8; Parkinson’s 

Disease Biomarkers Program (PDBP)9; Banner Health study(Arizona Study of Aging/Brain and 

Body Donation Program)10; ParkWest11 and PIB12; Deprenyl and Tocopherol Antioxidative 

Therapy of Parkinsonism (DATATOP)13; Parkinson Research Examination of CEP-1347 Trial/A 

Longitudinal Follow-up of the PRECEPT Study Cohort (PreCEPT/PostCEPT)14 and Tartu15, 

Parkinson’s Progression Markers Initiative (PPMI)16 . For PPMI, approval was obtained to 

download and analyze the publicly accessible WGS and clinical data. 13 cohorts enrolled patients 

with a diagnosis of PD established according to modified UK PD Society Brain Bank diagnostic 

criteria as previously reported1-5,8,9,11,12,14-18. In DATATOP, the eligibility criteria required a 

clinical diagnosis of early, idiopathic PD (HY stages 1 or 2) with patients not on anti-parkinsonian 

medications17. Banner Health study: all subjects have come to autopsy and have had full 

neuropathological examinations with diagnosis10. Diagnostic certainty was increased by 

confirming the clinical diagnosis of PD during longitudinal follow-up visits19 in all cohorts. 
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Serial Mini Mental State Exam (MMSE) scores20 were longitudinally collected in 10 cohorts. 

Montreal Cognitive Assessment (MoCA)21 scores were collected in the PDBP, PPMI study and 

converted to MMSE scores according to a published formula22. SCOPA-COG were collected in 

PROPARK, PROPARK-C and NET-PD LS1 cohort and converted to MMSE scores. 

Polymorphism identification and haplogroup classification 

The genotyping data of the 4,491 subjects with Parkinson’s disease were reported in Ref.23. 

Briefly, the samples (excluded PPMI with WGS) were genotyped with Illumina Multi-Ethnic 

Genotyping Array (MEGA, Illumina), which includes 810 SNP markers in mtDNA after quality 

control as described in Ref.23 810 mtDNA variants were converted from “plink” format to “vcf” 

format according to the rCRS reference alleles. We removed 25 mismatched SNPs and InDel 

SNPs, 11 duplicated SNP probes on the array, and 11 variants with highly discordant MAF (> 5%) 

compared to Phase 1 and 3 of the 1000 Genomes Project24 mitochondrial variants (n = 503 

European) as called by the MToolBox pipeline25. The remained 763 SNPs were used to predict 

mitochondrial haplogroups using Haplogrep2.026 with default parameter using rCRS reference. 

Haplotype quality-control was performed according to the Haplogrep2 instruction and 44 subjects 

with quality score < 0.8 were excluded (Supplementary Fig. 1). We next simplified the sub-

haplogroups (455 sub-haplogroups) to the 34 haplogroups (Supplementary Table 1) according 

to the mtDNA tree http://www.phylotree.org/tree/index.htm. 4,447 subjects were successfully 

assigned haplogroup, and 24 of these patients had no clinical records of note so were removed 

from the analysis. We further removed the haplogroups with less than 100 subjects 

(Supplementary Table 1, total 359 subjects), and the remaining 4,064 subjects with 30,515 study 

visits were used for haplogroup analysis (including H, HV* (excluding H, V), I, J, K, T, U# 
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(excluding K) haplogroups). It should be note that in our work, U# denotes all U haplogroups (U1, 

U2, U3, U4, U5, U6, U7…) but not haplogroup K as in Ref27. Out of 763 SNPs, 102 SNPs with 

allele frequency > 1% were used for single SNP Cox regression analysis. Notably, common 

mtDNA haplogroup or mtDNA variants are often ancient and are usually homoplasmic28. We did 

not analyze heteroplasmic mtDNA mutations in this study. 

Statistical analysis 

The Cox proportional hazards statistic was used to estimate the influence of different 

mitochondrial haplogroups on time (years from onset of PD) to reaching the endpoint of motor 

disability with postural instability (Hoehn and Yahr stage HY 3) or global cognitive impairment 

(GCI) as indicated by a MMSE ≤ 25 according to the recommendation the International Parkinson 

and Movement Disorder Society (MDS) Task Force29 as in Ref.30. For HY analysis, age at onset 

of PD, sex and GBA carrier status were included as covariates. In the GCI analysis, age at onset 

of PD, sex, years of education, and polygenic hazard score (PHS including GBA carrier status, 

APOE ε4 allele haplotype and three novel progression variants rs182987047, rs138073281 and 

rs8050111 from Ref.23) were included as covariates in the Cox analyses. A “cohort” term was 

included as a random effect (a random effects Cox model is often termed a “frailty” model). 

29,115 (95.4 %) of the visits from 4,088 patients with PD occurred within 12 years of longitudinal 

follow-up from disease onset with a median follow-up time of 6.7 years (inter-quartile range, 4.2 

years), thus we focused our survival analyses on the 12-year time frame from disease onset. 

Patients were left-censored and those with missing or non-quality clinical data were excluded. 

Cox proportional hazards analyses were performed using the coxph function in the Survival 

package (v2.38-1)31 and the “breslow” method was used for handling observations that have tied 
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survival times in the analysis and P values less than or equal to 0.05 were considered as indicative 

of haplogroup significance. 

For single polymorphism variants analysis, we used a similar Cox proportional hazards 

regression model (same co-variants as mentioned above) to investigate each SNP effect on motor 

and cognitive impairment. Bonferroni correction was performed using p.adjust function with 

"bonferroni" in R. 

Generalized longitudinal mixed fixed and random effects analysis (LMM)32 of cognitive 

decline was performed with serial Mini Mental State Exam (MMSE) scores longitudinally 

assessed at varying times (enrollment visit and multiple longitudinal follow-up visits) in the 

combined data set. Two cohorts (PROPARK-C and Tartu) were excluded from the LMM because 

no longitudinal MMSE scores were available. The MMSE score was the dependent variable and 

the primary predictors were mitochondrial haplogroup status, time in the study (years), and their 

interaction. An intercept term and linear rate of change across time per subject were the random 

terms (permitted to be correlated). Subject level fixed covariates were age at baseline, sex, years 

of education, duration of PD illness at baseline, as well as PHS score. A study term was included 

as a random effect. This analysis was performed using the lme4 package (v1.1-23). All analyses 

were conducted in the R statistical environment version 4.0.2. 

Comparison of models  

The original multivariable Cox model from a previous study33 included age at Parkinson’s 

disease onset, years of education, sex, MMSE at enrolment, MDS-UPDRS III score at enrolment, 

depression at enrolment and GBA carrier status, and a cohort term was included as a random effect 

(using a frailty Cox model). 2,629 patients in the original nine longitudinal cohorts with available 



 

 11 

mitochondrial variants, and 2,376 patients (253 left censored patients were removed) with 22,617 

visits within 12 years of longitudinal follow-up from disease onset were used for comparison of 

different Cox regression genetic models (GBA carrier, APOE ɛ4, m.2706A>G, m.14766C>T), 

adjusting by age at Parkinson’s disease onset, years of education, sex, MMSE at enrolment, MDS-

UPDRS III score at enrolment, depression at enrolment, and a cohort term was included as a 

random effect. 

Combination analysis of two genetic risk (GBA carrier and m.2706A>G variant/APOE ɛ4 

and m.2706A>G variant) was performed using 2,376 patients from the Cox regression model, 

adjusting by the same six clinical predictors as mentioned bove, and a cohort term was included 

as a random effect. 
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Supplementary Table 1 Classification of mitochondrial haplogroups in patients with PD 
across the 15 cohorts 

Haplogroups Number 
Sub-haplogroups of H Number 

H 1,829 
U# 666 H1 599 
T 440 H2 599 
J 427 H3 155 
K 393 H5 146 

HV* 218 H6 94 
I 115 H4 75 

W 93 H13 47 
X 75 H46 20 
N1 65 H15 11 
V 42 H26 11 

R0& 17 H7 10 
L2 11 H41 8 
M1 9 H14 6 
D 7 H79 6 
A 5 H85 6 
C 5 H28 5 
L1 4 H44 5 
R1 4 H24 4 
L3e 3 H100 3 
B 2 H22 3 

L3b 2 H81 3 
M9 2 H56 2 
N2 2 H94 2 
N3 2 H17 1 
G 1 H30 1 
L0 1 H33 1 
M7 1 H34 1 
M30 1 H42 1 
M33 1 H49 1 
M49 1 H50 1 
N9 1 H73 1 
Y 1 H77 1 
Z 1   

Haplogroups according to the mtDNA tree http://www.phylotree.org/tree/index.htm. 4,447 
subjects were successfully assigned haplogroup. HV*: not including H, HV; U#: including all U 
haplogroups (U1, U2, U3, U4, U5, U6, U7…) but not haplogroup K as in Ref27; R0&: not including 
HV, H, V. 
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Supplementary Table 2 Clinical characteristics of patients with PD at enrollment with 
different macro-haplogroups across the 15 cohorts 

n = 4,423 
Marco-haplogroup  

H HV* I J K T U# Others P& 

Number of men 
(n, %) 

1,819 
(63.2) 

217 
(65.4) 

115 
(57.4) 

427 
(61.8) 

391 
(65.7) 

435 
(62.1) 

660 
(63.8) 

359 
(62.1) 

0.76 

Age at onset, mean 
(SD), years 

60.6 
(10.6) 

61.4 
(10.1) 

61.0 
(10.8) 

61.6 
(10.9) 

61.1 
(9.6) 

60.9 
(10.5) 

60.7 
(11.0) 

61.3 
(10.1) 

0.45 

Age at enrollment, 
mean (SD), years 

64.2 
(10.2) 

64.8 
(9.8) 

64.5 
(10.5) 

65.1 
(10.4) 

64.2 
(9.3) 

64.4 
(10.1) 

64.3 
(10.5) 

64.8 
(10.3) 

0.62 

Years of education, 
mean (SD), years 

14.2 
(3.8) 

14.6 
(3.7) 

14.1 
(4.1) 

14.4 
(3.9) 

14.6 
(3.8) 

14.1 
(3.9) 

14.2 
(3.6) 

14.7 
(3.6) 

0.08 

Study years, mean 
(range), years 

3.8 (0-
19.9) 

3.7 (0-
9.3) 

3.9 (0-
8.3) 

3.6 (0-
13.1) 

3.8 (0-
14.5) 

3.6 (0-
13.5) 

3.6 (0-
12.6) 

3.5 (0-
12.3) 

0.26 

Hoehn and Yahr, 
mean (SD) 

1.9 (0.8) 
1.9 
(0.7) 

1.8 
(0.6) 

1.9 
(0.8) 

1.9 
(0.7) 

2.0 
(0.7) 

2.0 
(0.7) 

1.9 
(0.7) 

0.28 

MDS-UPDRS III, 
mean (SD) 

28.4 
(14.2) 

27.2 
(13.5) 

27.4 
(13.7) 

27.9 
(14.5) 

26.9 
(13.0) 

28.4 
(13.7) 

28.4 
(14.0) 

27.9 
(14.9) 

0.72 

MMSE, mean(SD) 
28.2 
(2.2) 

28.2 
(1.9) 

28.5 
(1.5) 

28.1 
(2.3) 

28.3 
(2.0) 

28.2 
(2.1) 

28.2 
(2.2) 

28.3 
(2.4) 

0.47 

LED, mean(SD) 
436.6 
(439.9) 

402.3 
(470.0) 

428.6 
(458.2) 

415.2 
(428.0) 

373.6 
(398.2) 

399.9 
(416.8) 

433.2 
(446.0) 

418.7 
(447.7) 

0.34 

24 subjects have no available clinic data, the table showed clinical characteristics of 4,423 patients 
with PD. 
& Fisher exact test was used for the number of men in each group. Group comparisons were 
performed using Kruskal-Wallis test for age at onset, age at enrollment, years of education, study 
years, HY, MDS-UPDRS III, MMSE, LED.  
HV*: The sub-haplogroups of haplogroup HV, not including haplogroup H, V. 
U#: The sub-haplogroups of haplogroup U, not including haplogroup K. 
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Supplementary Table 3 The percentage (%) of different mitochondrial haplogroups in 
European population from literatures 

Haplogroup 
Latvia34 
n=299 

Spain35 
n=312 

Portugal36 
n=241 

France37 

n=210 
Norway34 

n=397 
Czech38 
n=300 

Germany34 
n=333 

Iceland27 
n=467 

Italy39 
n=124 

H 44.5 42.3 40.7 41.9 45.1 40.7 47.7 47.6 41.1 

HV* 2.3 NA NA NA 0.3 2.7 0.6 NA 1.6 

I 4.3 1.6 0.8 2.9 2.3 2.0 1.8 4.7 NA 

J 6.4 6.7 6.6 5.2 12.6 8.3 8.4 14.1 4.8 

K 2.3 4.8 5.4 11.4 5.0 4.0 7.5 7.7 1.6 

T 9.4 8.3 10.8 11.9 9.8 8.0 9.0 10.1 8.1 

U# 23.1 16.0 17.4 17.6 16.9 21.3 13.5 11.8 30.6 

HV*: The sub-haplogroups of haplogroup HV, not including haplogroup H, V; 
H: sum of available sub-haplogroups of H;  
J: sum of available sub-haplogroups of J; 
K: sum of available sub-haplogroups of K;  
T: sum of available sub-haplogroups of T; 
U#: sum of available sub-haplogroups of haplogroup U, but not including haplogroup K. 
  



 

 15 

Supplementary Table 4 Test for residual heterogeneity for each haplogroup compared 
to haplogroups of H in GCI combined analysis 

Haplogroups (H as 
reference) 

Heterogeneity Q P value& I2 

HV* 5.32 0.87 0% 
I 12.59 0.32 12.61% 
J 4.88 0.96 0% 
K 7.54 0.82 0% 
T 5.05 0.96 0% 
U# 15.90 0.20 24.54% 

HV*: The sub-haplogroups of haplogroup HV, not including haplogroup H, V. 
U#: The sub-haplogroups of haplogroup U, not including haplogroup K. 
&The Cochran's Q-test was used to test for residual heterogeneity across studies via R metafor 
package (version 2.4-0). I2 index (100%×(Q-df)/Q) was used to quantify the degree of 
heterogeneity. 
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Supplementary Table 5 The association of mitochondrial haplogroups in Alzheimer 
disease 

Haplogroup Years Effect Ethnicity 
Dataset size 
(case/control) 

Dataset type 

H 200940 Risk Poland 222/252 Whole mitochondrial 
genomics 

201141 Risk Caucasian 422/318 Control_region 
position (16624-576) 
+ 9 coding SNPs 

HV 200940 Risk Poland 222/252 Whole mitochondrial 
genomics 

201141 Risk Caucasian 422/318 Control_region 
position (16624-576) 
+ 9 coding SNPs 

K 200142 Protective Italian 213/389 10 restricted sites 
201141 Protective Caucasian 422/318 Control_region 

position (16624-576) 
+ 9 coding SNPs 

202043 Protective American 309/507 Whole mitochondrial 
genomics 

K1A1B 201344 Risk Caucasian 154/175 138SNPS 
J 200940 Protective in 

males 
Poland 222/252 Whole mitochondrial 

genomics 
202043 Risk American 309/507 Whole mitochondrial 

genomics 
T 201141 Protective in 

females 
Caucasian 422/318 Control_region 

position (16624-576) 
+ 9 coding SNPs 

JT 201141 Protective in 
females 

Caucasian 422/318 Control_region 
position (16624-576) 
+ 9 coding SNPs 

U 200142 Protective Italian 213/389 10 restricted sites 
200445 Risk in males, 

protective in 
females 

Caucasian 989/328 10 SNPs 
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Supplementary Figure 1 The classification of haplogroup in patients with PD across 15 
cohorts. 

 
A The haplogroup quality score of 4,491 patients with PD was evaluated from HaploGrep2.026 

based on Kulczynski measure: (HaplogroupWeight + SampleWeight) ́  0.5. The HaploGrep2.0 
applied this formula to all haplogroups in Phylotree and returned the overall best hit and the 
score represented its haplogroup quality. The quality of 0.8 as cutoff was recommended and 
4,447 subjects were successfully assigned mitochondrial haplogroup. B The donut plot presents 
the proportion of patients with PD within diverse mitochondrial macro-haplogroups 
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Supplementary Figure 2 The stacking diagram for distribution of seven macro-
haplogroups in patients with PD across 15 cohorts 

 
Each vertical bar corresponds to one cohort and consists of 7 sub-bars representing the 
proportions of the 7 macro-haplogroups H, HV*, I, J, K, T and U# in relevant cohort. There was 
no any difference in the proportion of seven macro-haplogroups in 15 cohorts (P » 1, Fisher 
exact test). 
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Supplementary Figure 3 Patients with PD with major sub-haplogroups of H have 
similar risk of progression to global cognitive impairment 

 
Cox regression analysis did not show any different hazard ratio (HR) to develop global 
cognitive impairment (MMSE ≤ 25) in combined population, according to the recommendation 
of the International Parkinson and Movement Disorder Society (MDS) Taks Force29, among 
patients with PD in six major sub-haplogroups of H. 
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Supplementary Figure 4 Patients with PD in seven macro-haplogroups have similar risk 
of progression to HY3.  

 
Cox regression analysis did not show any difference in hazard ratio (HR) for development of 
motor disability with postural instability (Hoehn & Yahr stage 3) during the progression of 
disease in seven macro-haplogroups from (A) discovery, (B) replication and (C) combined 
population. 
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Supplementary Figure 5 Patients with PD in seven mitochondrial macro-haplogroups 
have similar polygenic hazard scores  

 
Violin-plot showed no significant difference between Polygenic hazard score to develop PD 
dementia among seven macro-haplogroups in combined population. Violin plot is a mixed of a 
box plot and a kernel density plot: the white dot represents the median, and black bar represents 
the interquartile range of score, the thin black line represents the rest of distribution and each 
side of the line is a kernel density estimation. 
  

H
(1829)

HV*
(218)

I
(115)

J
(427)

K
(393)

T
(440)

U#

(666)

Haplogroups

Po
ly

ge
ne

ic
 h

az
ar

d 
sc

or
e 

of
 P

D
 d

em
en

tia

2.0

3.0

4.0

5.0

0.0

1.0

Kruskal-Wallis rank sum test
P = 0.59



 

 22 

Supplementary Figure 6 The exploratory analysis for global cognitive impairment 
models with different genetic factors. 

 
The forest plots show hazard ratios (Methods) for global cognitive impairment (GCI) in 
different genetic models (A) GBA carrier, (B) APOE ɛ4, (C) m.2706A>G and (D) m.14766C>T 
with the same six clinical risk factors. The squares represent point estimates, with the height of 
the square inversely proportional to the standard error of the estimates. The horizontal lines 
indicate 95% confidence intervals of the estimates. 
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Supplementary Figure 7 Exploratory analysis for global cognitive impairment models 
with APOE ɛ4 and m.2706A>G. 

 
Covariate-adjusted survival curves for patients with PD stratified into six subgroups: APOE ɛ4 
negative and non-m.2706A carriers (n = 1,061), APOE ɛ4 negative and m.2706A carriers (n = 
728), APOE ɛ4 heterozygotes and non-m.2706A carriers (n = 295), APOE ɛ4 heterozygotes and 
m.2706A carriers (n = 244), APOE ɛ4/ɛ4 and non-m.2706A carriers (n = 33), APOE ɛ4/ɛ4 and 
m.2706A carriers (n = 15).  
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