### **Supplementary Information**

# Solving the Explainable AI Conundrum by Bridging the Gap Between Clinicians' Needs and Developers' Goals

Bienefeld, Nadine<sup>1\*</sup>; Boss, Jens Michael<sup>2</sup>; Lüthy, Rahel<sup>3</sup>; Brodbeck, Dominique<sup>3</sup>; Azzati, Jan<sup>3</sup>; Blaser, Mirco<sup>3</sup>; Willms, Jan<sup>2</sup>; Keller, Emanuela<sup>2</sup>

<sup>1</sup> Department of Management, Technology, and Economics, ETH Zurich, Zurich, Switzerland <sup>2</sup> Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland

<sup>3</sup> Institute for Medical Engineering and Medical Informatics, School of Life Sciences FHNW, Muttenz, Switzerland

\*Correspondence: Bienefeld, Nadine n.bienefeld@gmail.com

#### Supplementary Methods

| Survey Part A            | p. 2  |
|--------------------------|-------|
| Survey Part B            | p. 3  |
| Survey Part C            | p. 3  |
| Supplementary Figures    |       |
| Supplementary Figure 1   | p. 4  |
| Supplementary Figure 2   | p. 4  |
| Supplementary Figure 3   | p. 5  |
| Supplementary Tables     |       |
| Supplementary Table 1    | p.6-7 |
| Supplementary References | p. 8  |

#### **Supplementary Methods**

#### Survey instrument

#### **PART A: Scenario-based questions**

#### Patient Scenario 1:

You are responsible for a patient with aneurysmal subarachnoid hemorrhage (ruptured ACOM aneurysm managed by coiling). It is day 8 post hemorrhage. The patient has a GCS of 12, is partially agitated, and is manageable.

#### Question 1.

What would you do to assess this patient's risk for DCI? Please select one or multiple options below:

- Assess neurological status
- Check laboratory values (WBC, IL-6, CRP, PCT)
- Check blood flow velocity (Doppler)
- Check blood gases (current & over time)
- Check blood pressure & heart rate
- Check SpO2/paO2
- Check body temperature
- Check fluid balance
- Check laboratory values (GOT, GPT, Bili, Creatinine)
- Check ECG (electrocardiogram)
- Check CVP (central venous pressure

#### Patient Scenario 2:

As time progresses, the patient becomes sleepier, complains about a headache, and develops a fever. You can now use the DCIP application to support your assessment of this patient's secondary ischemia risk. The DCIP consists of a machine learning algorithm that estimates the patient's risk of secondary ischemia based on a multitude of parameters measured in each patient (e.g., monitoring data, laboratory values, and blood gases).

The DCIP indicates that the risk of secondary ischemia has increased from 60% to 90% in this patient.

#### Question 2.

Based on the information received from the DCIP, what would you do to assess the risk of DCI in this patient? Please select one or multiple options below:

- o Assess neurological status
- Order CT with perfusion & angiogram
- Call for help from a peer (nurse or resident)
- Call the attending
- Check blood flow velocity (Doppler)
- Order new blood gas analysis
- Check all values from DCIP myself
- Optimize ventilation
- I would disregard the DCIP

#### Question 3.

Which factors would help you build trust in the DCIP? Please select one or multiple options below:

- I would trust the DCIP if I can understand how it works.
- I would trust the DCIP if it is highly reliable.
- I would trust the DCIP if I see that it works well in practice.
- I would trust the DCIP if it makes my work easier / faster.
- I would trust the DCIP if my colleagues (other nurses or physicians) trust the DCIP.
- I would trust the DCIP if it is officially certified as a medical device.
- I would not trust the DCIP in principle.

#### PART B: User Experience (UX)-related questions

#### Question 4.

How would you want to be alerted by the DCIP in case of a high estimated risk? Please select one option below:

- Audio and visual
- o Visual only
- o Audio only
- o No alarms

#### Question 5.

Where should the DCIP be located so that it is easily accessible for you? Please select one or multiple options below:

- o DCIP installed by patient bedside
- $\circ\quad$  DCIP installed by the central patient monitoring station
- $\circ$   $\;$  Remote access (via tablet or office computers)

#### PART C: Questions based on the Unified Theory of Technology Acceptance (UTATU)<sup>1</sup>

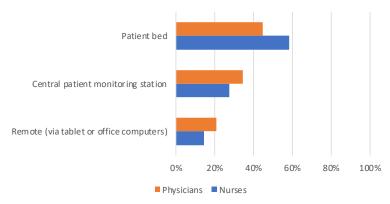
#### Question 6.

**Performance expectancy** (7-point Likert scale, 1 = strongly disagree to 7 = strongly agree) I think the DCIP system will be useful in my job. I think using the DCIP will improve the outcomes of my work.

#### Question 7.

**Effort expectancy** (7-point Likert scale, 1 = strongly disagree to 7 = strongly agree) I think it will be easy for me to become skillful at using the DCIP system. I think learning to operate the DCIP will be easy for me.

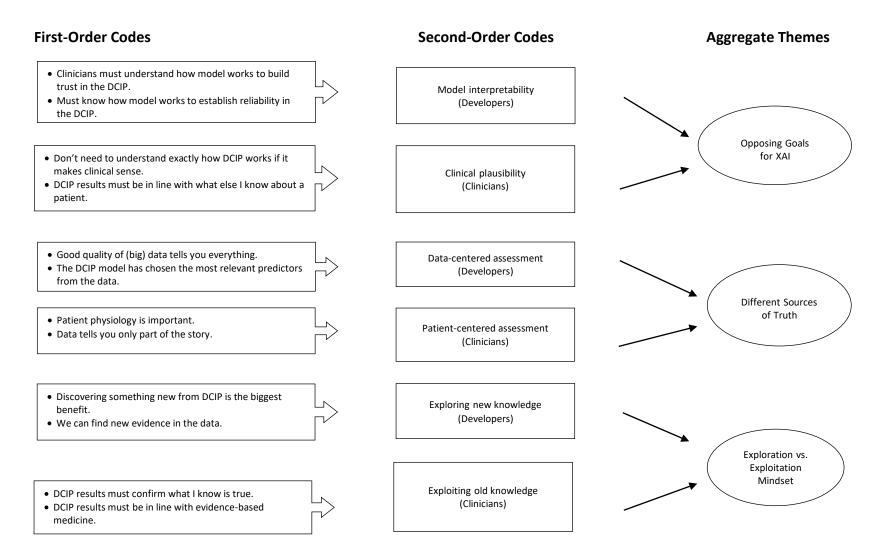
#### Question 8.


**Intention to use** (7-point Likert scale, 1 = strongly disagree to 7 = strongly agree) I intend to use the DCIP as soon as it becomes available. I will use the DCIP once it is introduced in the N-ICU.

Supplementary Figure 1: Frequencies (in %) of combined answers (physicians & nurses) for survey Q 4 regarding the DCIP alarm modalities.

1.10% 3.20% 14.60% 81.10% Audio & Visual Visual Audio No alarms

Q4: What type of alarm would you like to receive from the DCIP?


## Supplementary Figure 2: Frequencies (in %) of answers for survey Q 5 regarding the DCIP location preference.



Q5: Where should the DCIP screen be located?

Note: Responses from physicians are displayed in orange and from nurses in blue (answers are sorted by role = physician).

#### Supplementary Figure 3. Data Structure based on the Gioia Methodology<sup>2</sup>



| Code                                     | Description of Code                                                                                                                                                                                                                          | Example Quotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theme 1: Opposing Goals for              | XAI                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Model Interpretability<br>(Developers)   | Describes how developers aimed at increasing the interpretability of<br>the DCIP model by providing information such as static and dynamic<br>contributor loadings, past trend data, or Shapley values.                                      | "We use these Shapley values [referring to Figure 3, C 2 and E 5] to try and<br>make the model explainable. These values can explain the local model, that is to<br>explain why [the model] comes up with a certain decision at a specific point in<br>time. To me, these explanations make intuitive sense. But sometimes it's<br>difficult, as some scores seem to cancel each other out, and I don't know how<br>clinicians are able to interpret this. On the other hand, if you ask them how they<br>come up with a decision, I'm sure it's just as complicated." (Data scientists, 99) |
| Clinical Plausibility<br>(Clinicians)    | Describes how understanding the DCIP model itself was of limited<br>interest to clinicians. Instead, clinicians wanted to understand the<br>clinical plausibility of the included parameters and output data<br>within the clinical context. | "I don't really need to know how the algorithm works. What I need to know is<br>when [the DCIP] tells me the risk [of an upcoming DCI] is rising, why it is rising.<br>That is which factors and which values do I need to look at and why". (Resident<br>physician, 98)<br>"All I need to understand is why the risk for a particular patient to develop a DCI<br>has changed over time. To be able to see what these parameters are and if they<br>make sense clinically [referring to Figure 3, E 5]." (Attending physician, 96)                                                          |
| Theme 2: Different Sources of            | f Truth                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Data-centered assessment<br>(Developers) | Describes how ML-developers thought that the ground truth was<br>included in the quantifiable patient data that was included in the<br>DCIP model.                                                                                           | "It's all there in the model. [The data scientists] have selected all the<br>parameters that best differentiate between patients who developed a DCI in<br>the past and those that haven't. This includes the dynamic parameters over<br>time such as blood gas values as well as the static parameters such as BMI or<br>patients' age. And that's the power of the model to predict a DCI based on what<br>the model has learned from all this data, to come up with that probability."<br>(Product designer, 102)                                                                         |

#### Supplementary Table 1. Selected Codes Generated from the Focus Group and Interviews Using Grounded Theory<sup>3</sup>

| Patient-centered<br>assessment<br>(Clinicians) | Describes how clinicians thought that the ground truth could only<br>be found by combining quantifiable with non-quantifiable (e.g.,<br>information from the physical examination) patient data. | "I totally miss the information from the clinical assessment here [referring to<br>the Shapley values of static and dynamic contributors Figure 3 C 2 and E 5]. A<br>patient is more than just its data. For instance, it is crucial to know, if there is a<br>change in consciousness or if the patient has developed paralysis somewhere.<br>Sometimes, patients are able to talk, and all of a sudden, this changes. These<br>are important pieces of the puzzle one should not ignore." (Attending physician,<br>103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theme 3: Exploration vs. Ex                    | ploitation Mindset                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Exploring new knowledge<br>(Developers)        | Describes how ML-developers considered the possibility to learn<br>and discover something new as the major benefit for ML-based<br>predictions.                                                  | "We [ML-developers] always think, 'wow, look at what we can find in the data,<br>that's amazing!' We always want to better understand 'what is the meaning of<br>this particular pattern in the data', or 'why do these parameters combine in this<br>or that way in the model'. But I acknowledge that others might not have an<br>equally big interest in analyzing and learning from the data. For clinicians, who<br>must do their job and make high-risk decisions based on [the system], it is<br>probably safer to rely on what they already know. Not like us who can play<br>around with the data for as long as we like knowing that nobody dies as a result<br>of it." (Product designer, 102).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Exploiting old knowledge<br>(Clinicians)       | Describes how clinicians relied on established knowledge from<br>evidence-based medicine to compare against and build trust in the<br>DCIP model predictions.                                    | "If the algorithm keeps showing me a new biomarker for which I have no clue<br>that it has an influence on DCI [referring to Figure 3, E 5], it makes me wonder<br>'is [the system] just spitting out utter nonsense or did we [clinicians] just not<br>know about this?'. If so, studies should look at this biomarker [e.g., Creatinine]<br>and test if it really has something to do with DCI. Then one might declare the<br>algorithm detected a new biomarker. But until then, I cannot trust it because<br>there is no evidence from clinical studies." (Attending physician, 109).<br>"If the algorithm tells me, the probability [for a particular patient to develop a<br>DCI] is 70% [referring to the overall risk score of the DCIP combining static and<br>dynamic contributors, Figure 3, B 1] and I look at the patient and the<br>neuromonitoring etc. and I don't see anything abnormal, I don't think I would<br>trust [the system]. I might be alert and look more closely at all the information<br>and make my own clinical assessment of the patient again but to take it at face<br>value, no, it would take a long time to have this kind of trust in the system."<br>(Attending physician, 105) |

#### Supplementary References

- Venkatesh, V., Sykes, T. A. & Zhang, X. 'Just What the Doctor Ordered': A Revised UTAUT for EMR System Adoption and Use by Doctors. in 2011 44th Hawaii International Conference on System Sciences 1–10 (2011). doi:10.1109/HICSS.2011.1.
- 2. Gioia, D. A., Corley, K. G. & Hamilton, A. L. Seeking Qualitative Rigor in Inductive Research: Notes on the Gioia Methodology. *Organ. Res. Methods* **16**, 15–31 (2013).
- 3. Glaser, B. G. & Strauss, A. L. *Discovery of Grounded Theory: Strategies for Qualitative Research*. (Routledge, 2017).