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Figure S1. Immune genes and few TE families are prone to correlate with viral load post-

infection, related to Figure 1

(A) Expression fold changes (log2FCs) of most key immune regulators are inversely correlated

with viral load post-infection. Many genes are shown to strongly correlate with viral load,

including membrane-bound receptor genes sensing infection-induced interferons, i.e., IL10RB,

IFNARI, IFNAR2, and JAK . Linear regression model was used for the correlation analysis.



Black line represents the regression line and grey lines represent the 5% and 95% quantiles. (B)
Expression fold change amongst differentially expressed genes (DEGs) correlated with viral load
are enriched in multiple virus infection pathways. 1,482 DEGs with 1og2FCs correlated with
viral load (R’ > 0.3, p value < 0.05) were identified and used for downstream pathway
enrichment analysis. (C) Enrichment of the proportion for log2FC amongst TE families
positively and inversely correlated with viral load post-infection. 17 positively and 77 inversely
correlated TE families were analyzed. Purple triangle represents the actual proportion of
correlated families among subclass or superfamily. Error bar represents the mean values and
standard deviations of 10,000 randomized proportions. One-tailed student’s z-test was used to
compare the actual proportions with randomized proportions (* p < 0.05, ™ p<0.01, ™ p <

0.001).
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Figure S2. Detection of TE families with enhanced and reduced accessibility in response to

IAYV infection, related to Figure 2

(A) Optimized TE enrichment analysis pipeline. Details were described in Methods. (B)

Distributions of the normalized number of peaks-associated instances of TE families with

enhanced accessibility. Each point represents one sample. Grey color represents the non-infected



sample and red color represents the infected sample. “+” indicates the mean value across non-
infected (grey) and infected (red) samples. The number of accessible instances were normalized
by the average number of peaks across infected and non-infected samples, respectively. (C)
Average profiles (up) and heatmaps (bottom) of H3K27ac peaks at MER41B and THEIB (£ 5
kb). H3K27ac peaks are centered at the median positions of peak summits across infected
samples. Peak regions are shown as heatmaps at the bottom. AF26 non-infected and infected
samples are shown as examples. Peak regions centered at each family are shown as red bars. (D)
Distributions of the normalized number of peaks-associated instances of TE families with
reduced accessibility. Each point represents one non-infected (grey) and infected (red) sample.
“+” indicates the mean value across non-infected (grey) and infected (red) samples. The number
of accessible instances were normalized by the average number of peaks across infected and non-

infected samples separately.
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Figure S3. High variable families display high variability in chromatin accessibility post-
infection, related to Figure 3

(A) Heatmaps of open chromatin regions at THE1B and LTR12C (£ 5 kb). Two infected and
non-infected samples are shown as examples. LTR12C shows a high variability of accessibility
between randomly-selected samples post-infection. ATAC-seq peaks are centered at the summits
in TEs. 5 kb upstream and downstream regions are shown. Compared to AF14, EU19 displays a
higher enrichment at LTR12C but comparable enrichment at THE1B. (B) Heatmap of log2
enrichment levels of 37 enhanced families in 35 non-infected samples. Semi-clustering analysis
was performed. Three individual groups observed at infected samples are not clustered together.
High variable families are highlighted in blue color. (C,D) Violin plots of age of macrophage
donors and viral load of the three individual groups. Group 3 individuals have relatively older
ages and higher viral load compared to group 1 individuals. The dot represents each individual
and the error bar represents the mean value and standard deviation. (E) Heatmap of the
chromatin state of accessible instances from high variable families in 35 infected samples. The
state of open chromatin is in blue color and closed chromatin in white color. Unsupervised
clustering analysis was performed, and the three individual groups are clustered together. A

fraction of instances shows an enrichment in group 3 compared to group 1 individuals.
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Figure S4. Characteristics of TE families display high variability in chromatin accessibility
post-infection, related to Figure 3

(A) Proportions of accessible instances per enhanced family are variable between three
individual groups post infection. Commonly accessible instances represent instances that are
accessible in more than 25% samples from at least one group (left); rarely accessible instances
represent instances that are accessible in less than 25% samples from any groups (right).
Enrichment in one individual group refers to instances that are accessible in more than 25%
samples for commonly accessible instances and one or more samples for rarely accessible
instances. High variable families are highlighted in blue color. (B) Proportions of flu-specific,
shared, and NI-specific instances of each family with enhanced and reduced accessibility. Flu-
specific instances represent instances that are accessible in > 1 infected and no non-infected
sample; NI-specific instances represent instances that are accessible in > 1 non-infected and no
infected sample; Shared instances represent instances that are accessible in > 1 non-infected and
> 1 infected samples. High variable families are in blue color. (C) Violin plot of the estimated
TE evolutionary ages (up) and GC contents (bottom). Dotted lines indicate the evolution time
when primates diverged from other mammals (~90 million years ago). No distinct patterns are
observed between high variable, low variable families, and reduced families. The estimation of
ages was described in Methods. High variable families show a higher GC content compared to
others. Group 3 individuals have comparable or lower GC content than other individuals,
supporting that the higher accessibility in high variable families for group 3 individuals are not
derived from sequencing artifacts. (D) Number of instances and accessible instances from high
variable and low variable families. P values computed by two-tailed student’s 7-test are shown

above the dot plots.
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Figure S5. TE families with accessibility changes may co-opt in the immune response to
IAYV infection, related to Figure 4

(A) Fractions of down-regulated genes near accessible TEs relative to the random distributions.
Proportions of down-regulated genes are shown within each of the genomic intervals relative to
nearby accessible TEs. More details were described in Figure 4A. (B) Proportions of up/down-
regulated genes near flu-specific, NI-specific, and shared instances. Proportions were computed
within each of the genomic intervals relative to nearby accessible instances. Upregulated genes
were analyzed for high variable and low variable families, and downregulated genes were
analyzed for reduced families. Expected distributions were computed as we described in
Methods (shaded regions, 95% confidence intervals). The proportions were compared with
corresponding expected distributions. Flu-specific instances from low variable and high variable
families and NI-specific instances from reduced families display the highest proportions of
up/down-regulated genes within 100 kb relative to nearby accessible instances, particularly
within 50 kb. (C) Pathway enrichment analysis of DEGs adjacent (< 50 kb) to each category of
families. It shows the enrichment of multiple immune-related pathways near families with
enhanced accessibility. Some pathways are differentially enriched between high variable and low
variable families, including RIG-I-like receptor signaling pathway. (D) Genomic view of an
accessible LTR12C with the expression was upregulated and initiated at the open chromatin
region post-infection. The LTR12C instance highlighted as the shaded area shows an upregulated
accessibility, expression, and H3K4me3 activity. IL/0RA gene located near the LTR12C instance
is also significantly upregulated post-infection. (E-L) Example genomic views of instances with
enhanced accessibility post-infection. Instances are highlighted as the shaded areas. Eight TE

immune-related gene pairs are shown, i.e., LTR12C-GBP2, MER41-AIM2, MER52A/THE1B-
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GBP1/3, LTR12C-TRIM?22, THE1C-IFI44, THE1B-PSMAS5, and MLT2B3-CLEC4E, and
Tigger3a-ADAM19. GBP2 has been validated to be regulated by the upstream LTR12C
instance.! 4IM2 has also been validated to be regulated by a MER41 instance;? interestingly, it
may also be regulated by another TE instance. Other three TE instances reported by Chuong et
al.? that potentially regulate APOL1, IF16, and SECTM1 did not show chromatin change in

macrophages (https://computationalgenomics.ca/tools/epivar). The dark shaded area denotes the

distribution of the average RPM values and the light shaded area denotes the standard deviation.
Signals of various epigenetic marks are shown in blue color for non-infected samples and red
color for infected samples. For RNA-seq, forward and reverse transcripts are shown in blue and
green color separately for non-infected samples; while forward and reverse transcripts are shown

in red and brown color separately for infected samples.
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Figure S6. TE peak regions and TF binding motifs reveal the association of high variability
in chromatin accessibility with KRAB-ZNFs, related to Figure 5

(A) Proportions of accessible instances with top candidate consensus sequences. Consensus
sequence information was achieved from the “.align” files generated by RepeatMasker. It shows
a high proportion for TE families with enhanced accessibility. High variable families are
highlighted in blue color. (B) Number of TE peak regions detected for high variable and low
variable families. Compared to low variable families, high variable families have significantly
more TE peak regions and more instances in the top TE peak region. P values were computed by
the two-tailed student’s ¢-test. (C) TF binding motifs enriched in each TE peak region of families
with enhanced accessibility. Top five TE peak regions are shown. Instances in other regions and
instances not within TE peak regions were analyzed separately. TE peak regions of each family
are shown as separate rows. Dot size refers to the proportion of instances in each region
containing each motif. Dotted line separates high variable and low variable families and high
variable families are also highlighted in blue color. (D) Aggregated RPM (up) and RPM
(bottom) values on each instance along the HERVE-int consensus sequence. Infected (red) and
non-infected (blue) samples are shown separately including the upstream and downstream
regions (+ 20% of the consensus sequence length). Computed RPM values were z-scaled in the
heatmap while values below zero are in white color. Deletions relative to the consensus sequence
are shown in grey color. Unsupervised clustering analysis was performed with the scaled RPM
values to determine the main clusters. Blue triangles indicate the peak centroids referring to the
highest RPM values. TE peak regions and positions are shown in the bottom (Same as Figure
5B). More details were described in Methods. (E) Number of accessible instances from each

cluster. Infected and non-infected samples are shown separately. Individuals are ordered based
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on the clustering obtained in Figure 3C. Instances from Cluster 1 and 6, most of which contain

TE peak region 3 and 4, are more abundant in group 3 individuals than group 1 individuals.
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Figure S7. KAP1 and KRAB-ZNFs are associated with high variability in chromatin
accessibility in high variable families, related to Figure 5

(A) Enrichment levels of KRAB-ZNF binding sites in high variable and low variable families in
257 HEK293T cell lines.? High variable families like MER52s, SVAs, LTR12C, and LTR28 are
shown to be enriched for KRAB-ZNF binding sites. Color intensity refers to the fold enrichment
relative to the random distribution (see Methods). (B) Proportion of KAP1 and KRAB-ZNF
binding sites that overlap with accessible regions in TEs post-infection. A 100-bp of genomic
region centered at the ATAC-seq peak centroids was used for this analysis. KRAB-ZNFs with a
minimum of 5% across enhanced families were visualized. (C) KRAB-ZNF binding motifs
enriched in enhanced families. Motifs were obtained from Barazandeh et al.* Same motifs
enriched across TE peak regions are aggregated. TE peak regions with the most instances are
shown as representatives. KRAB-ZNFs with their enrichment of binding sites in high variable

families are highlighted.
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Figure S8. TE Peak regions and TF binding motifs enriched in reduced families and
different sets of TE families may co-opt in distinct regulatory pathways in response to IAV
infection, related to Figure 5

(A) Distribution and TE peak regions on reduced families. The inset barplot shows the
proportion of instances in each TE peak region. The locations and proportions (%) of the top-five
TE peaks regions along the consensus sequence are shown. The number in each dot refers to the
proportion (above 10%) among accessible instances in each TE peak region. It shows that most
instances with reduced accessibility (in Region 1) from L1MA families are consistently located
at similar locations of the 3’end of consensus sequence. Y-axis shows the family name and the
number of accessible instances mapped to the top consensus sequence. TE peak regions were
detected as we described in Methods. (B) TF binding motifs enriched in reduced families. Same
motifs enriched across TE peak regions were aggregated and the proportions of instances
containing each motif are shown. TE peak regions with more accessible instances are shown as
representatives. Black boxes highlighted the SPI and MEF2 related motifs (green color) enriched
in reduced families. It shows that Region 1s (located at around 300 bp, Figure S6B) of LIMA
families are consistently enriched for MEF2 related motifs. MEF2 related TFs were previously
reported to regulate anti-microbial genes.® (C) TFs potentially bound to different categories of
families are involved in distinct pathways. Apart from AP-2 related pathways, TFs bound to high
variable families are mainly involved in transcription-related pathways. TFs bound to low
variable families and reduced families are mainly involved in cytokine signaling and other
immune-related pathways. Bars in different colors represent different categories of families they

are enriched. " indicates motifs that are enriched in different categories of families. IRF1 motif is
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enriched in both low variable families and reduced families. ELF1/3 motifs are enriched in both

high variable families and reduced families.
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Figure S9. Correlations between TE-associated host factors and viral load post-infection,
related to Figure 6

(A) Correlation directions among TE families that are correlated (R’ > 0.3 and p value < 0.05)
with viral load post-infection (Figure 6A). More details were described in Methods. (B)
Consistent inverse correlations between the basal transcripts of four main TE subclasses and
viral load, including LTR, DNA, LINE, and SINE. The basal amount of transcript refers to the
proportion of aggregated normalized read counts in each subclass among the global transcripts.
Black line represents the regression line. R? and p values computed by the linear regression
model are shown. (C) Correlations between the expression fold changes (log2FCs) of both
SETDBI (left) and TRIM?28 (right) and viral load. SETDBI rather than TRIM28 is shown to be
inversely correlated with viral load. (D) Correlation between the basal DNA methylation level in
TEs and viral load. Individuals with low viral load are likely to have lower TE DNA methylation
levels. (E) Correlations between both viral load post-infection (left) and basal TE transcripts
(right) and ages. Samples from younger individuals have a relatively higher amount of basal TE
transcripts with a smaller deviation compared to older samples in macrophages. Two samples
were identified as outliers having among the lowest amount of basal TE transcripts; strikingly,
they also preserved among the highest viral load. (F) Correlation between the basal TE
transcripts and viral load for individuals 40 years old or younger. It shows an increased
correlation compared to the correlation among 39 samples (Figure 6B). (G) Correlations
between the basal expression of candidate host factors and viral load post-infection. Basal
ZNF519, ZNF566, ZNF611 and PLAGLI expressions are both inversely correlated with viral
load post-infection. (H) Multivariable regression model developed for the predictive of viral load

post-infection using type I interferon (IFN) signature and age only. Details were described in
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Methods. (I) Correlation matrix chart of viral load and variables that are potentially associated
with TAV infection and TEs. Histograms and kernel density overlays of each variable are shown.
Scatterplot matrix and absolute correlations between each of two variables and viral load are also
shown. Red lines represent the distribution. R chart. Correlation function was used for the
analysis. Pearson’s correlation coefficients are shown (“ p < 0.05, ™ p <0.01, ™ p < 0.001).

(J) Multivariable regression models developed for the predictive of viral load post-infection
while age was included as an independent variable. We used the same sets of variables for the
models included in Figure S9H and Figure 6H-J. The adjusted R’ is significantly lower than the
model developed by the inclusion of age as an interaction term variable. Details were described

in Methods.
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