Cell Genomics, Volume 3

Supplemental information

Human variation impacting

MCOLN2 restricts Salmonella Typhi

replication by magnesium deprivation

Kyle D. Gibbs, Liuyang Wang, Zhuo Yang, Caroline E. Anderson, Jeffrey S. Bourgeois, Yanlu Cao, Margaret R. Gaggioli, Martin Biel, Rosa Puertollano, Cheng-Chang Chen, and Dennis C. Ko

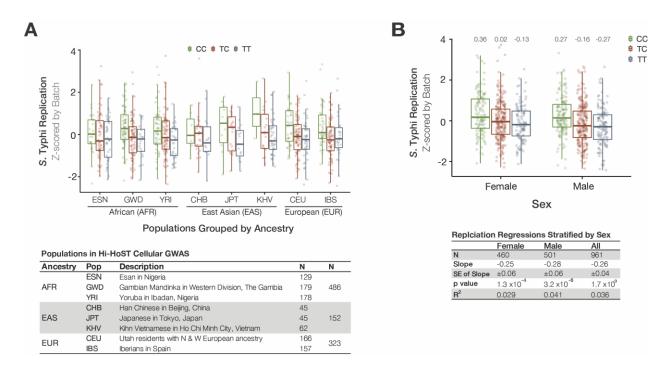
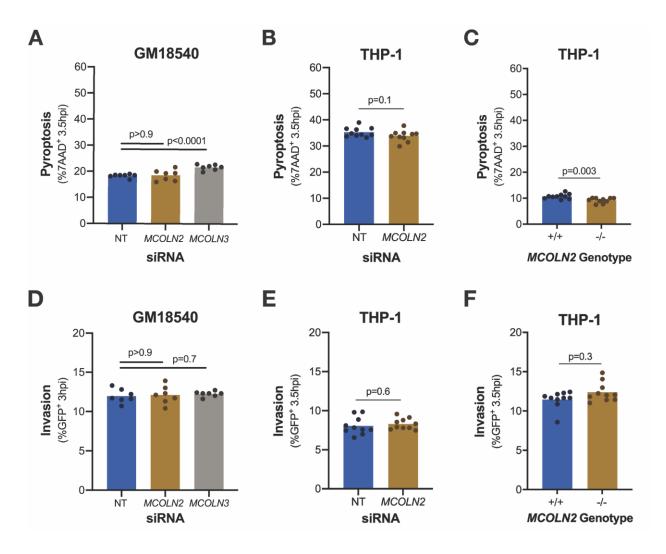
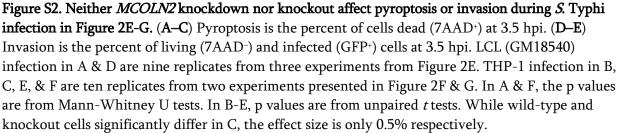




Figure S1. The rs10873679 C-allele associates with more *S*. Typhi replication across all sampled populations and in both sexes, related to Figure 1. (A) Increased z-scored *S*. Typhi replication associated with the C-allele in all populations. Individual population regressions slopes range from - 0.12 in ESN to -0.40 in GWD. Table below lists number of LCLs from each population used in cellular GWAS. (B) The rs10873679 C-allele associated with more z-scored *S*. Typhi replication in both sexes. Linear regressions are listed in the table. A two-way ANOVA with genotype and sex finds no significant interaction between sex & *MCOLN2* genotype (p = 0.8) despite both individual factors being a significant source of variation (genotype p=1.9x10⁻⁹ & sex p=0.02).

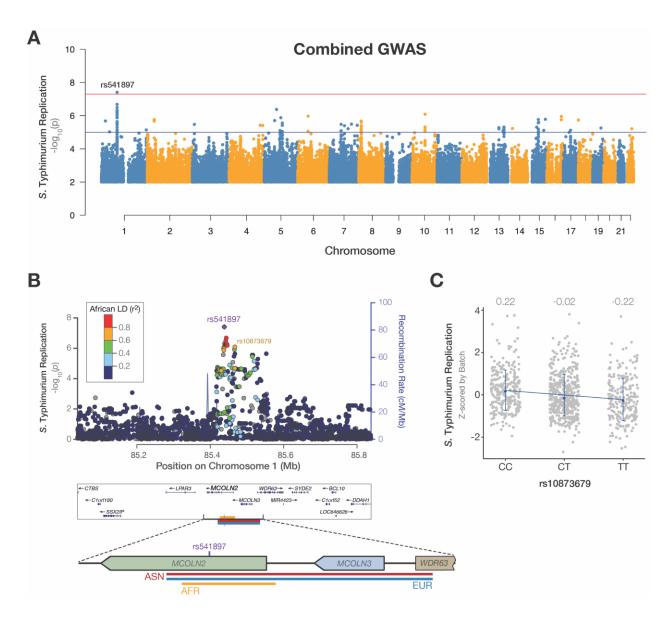
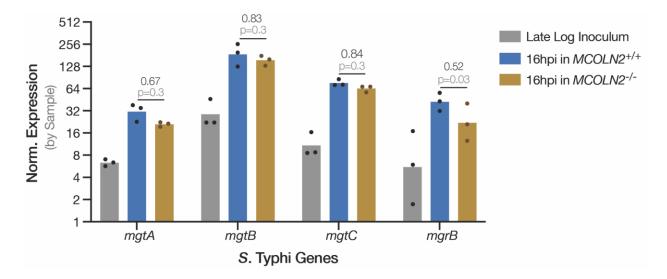
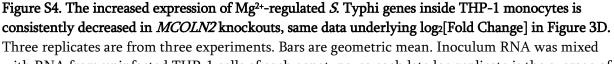




Figure S3. Increased *S*. Typhimurium replication also associates with the rs10873679 C- allele, related to Figure 2H. (A) The rs541897 locus association with z-scored *S*. Typhimurium replication (p = 3.9×10^{-8}) passes genome-wide significance threshold (5×10^{-8} ; red line). (B) A local Manhattan plot of the *S*. Typhimurium replication-associated locus on chromosome 1 (hg19 build) shows that the *S*. Typhimurium lead SNP, rs541897, is in the same locus as the *S*. Typhi lead SNP, rs10873679. The *S*. Typhi and *S*. Typhimurium lead SNPs are linked (LD r² = 0.71 in African ancestry populations). Dots for each SNP are color coded by African (AFR) linkage disequilibrium (LD; r²) from 1000 genomes Nov 2014 release. A 164 kb zoom in on the *MCOLN2/3* region indicates regions well-linked (r²>0.6) with rs541897 by continental ancestry: African with a 41 kb orange bar, European (EUR) with a 116 kb blue bar, & Asian (ASN) with a 116 kb red bar. (C) The rs10873679 C-allele associates with more *S*. Typhimurium replication. The slope of a linear regression predicting replication from genotype is significantly different from zero ($\beta = -0.22 \pm 0.04$; p = 3.5×10^{-6}). Mean replication of each genotype is listed above their respective dot plot. Bars are mean \pm SD.

with RNA from uninfected THP-1 cells of each genotype, so each late log replicate is the average of two technical (sequencing) replicates. Ratios (black text) are geometric mean from expression of bacteria replicating inside *MCOLN2* knockout over bacteria replicating in wild-type THP-1 cells. P values (grey) are from paired t tests corrected for multiple testing by Holm-Šídák method.

Table S3. *Salmonella enterica* ser. Typhi strain Ty2 gene sets used in GSEA. Related to Figures 3C and 3D.

Gene Sets	N Genes	3																						
Housekeeping	9 rpoD	aroC	dnaN	hemD	hisD	sucA	thrA	dnaK	rpoA															
SPI-1	24 sicP	sptP	iacP	prgH	invA	sigE	invF	spaM	prgl	invF	sipA	sipB	sipC	sipD	spaS	spaR	spaP	spaO	hilA	hilD	spaK	spaJ	spal	spaH
SPI-2	23 spiC	spiA	ssaD	ssaE	sseA	sseB	sscA	sseC	sseD	sseE	sscB	sseF	sseG	ssaG	ssal	ssaJ	ssaK	ssaL	ssaR	ssaR	ssaS	ssaT	ssaU	
PhoP Regulon	19 pmrD	mgtA	phoN	phoP	phoQ	mgtB	virK	ybjX	mgrB	pagP	pagD	iraP	pagC	mgtC	pipD	pagK	ugtL	pgtE	spiC					
Magnesium Influx	4 mgtA	mgtB	mgtS	mgrB																				
PmrA Regulon	11 pmrC	pmrA	pmrB	naxD	arnB	arnC	arnA	arnD	arnT	arnE	arnF													
Zinc Efflux	4 fieF	zntA	zntB	zitB																				
Zinc Influx	4 zupT	znuA	znuB	znuC																				
Ferrous Iron Efflux	2 fieF	iceT																						
Ferrous Iron Influx	3 feoA	feoB	feoC																					
Manganese Influx	7 mntH	sitA	sitB	sitC	sitD	mntR	mntS																	
Copper Response	8 copA	cueR	cueO	cueP	scsA	scsB	scsC	scsD																
MFS Efflux	5 mdtH	mdtM	mdtG	emrD	mdfA																			
ToIC Efflux	5 macB	tolC	acrA	acrE	marA																			
RpoE Regulon	5 rpoE	rseA	rseB	rseC																				

Table S4. Oligonucleotides grouped by fu	unction in study. Related to STAR Methods.
--	--

DK628 & DK629 GAAATGGGCACTGTTGAACTG

rpoD

t3131

Lambda-Red I	Recombination							
Target Gene	Gene ID	Primer Designations	Fwd for Kan ^H Cassette Generation	Rvr for Kan ^H Cassette Generation				
		DK972 & DK973	TATAATCCGCGGCGCAAATTATTTACTTACCGGAGGCGAC	TCGGGGATTAAGCACGCTGGCGAATCCCCGACGAAAGTG				
mgtA	t4491	DK972 & DK973	gtgtaggctggagctgcttc	catatgaatatcctccttag				
matP		DK974 & DK975	ATATGCAGGAAACACTACACCTTAATTTTGGGGGATTCATC	TATCGGGTGAGCGATTCATCTGGGCGATCCTCAAACATT				
mgtB	t3755	DK914 & DK915	gtgtaggctggagctgcttc	catatgaatatcctccttag				
ssaT	t1289	DK3 & DK433	tacccggcagataatgttacgaattggagagcatggttga	TCACGTAATTTCTTTTCTGTAGGCTGTTCTGTTTTCTCG				
5581	11209	DK3 & DK433	gtgtaggctggagctgcttc	catatgaatatcctccttag				
Deletion Confi	rmation							
Target Gene(s)	Gene ID	Primer Designations	Fwd	Rvr				
phoPQ	t1689 & t1690	DK1008 & DK1009	CATGACGCCGGCAAATTATATC	GAAAGTCGGGCCAGTTAAGA				
ssaT	t1289	DK434 & DK435	CGGTAGTTGGTGTCATCGTAAG	AGCGCAATCAGCTGAAATAATG				
mgtA	t4491	DK980 & DK981	CGTGACGCTGATGGTGATAAA	ACATCTCCTCCTCGTTCTG				
mgtB	t3755	DK982 & DK983	CAGGCGTATAAGGAGGGAATG	ACACCAACAGGCTAATCAGTAA				
MCOLN2	ENSG00000153898	DK859 & DK860	CTGGGGTAATTTTCCAAAAGCAGT	AGGTTATTCTTCTGTGGGACTTGT				
SYBR RT-qPC	R							
Target Gene(s)	Gene ID	Primer Designations	Fwd	Rvr				
ACTB	ENSG00000075624	DK880 & DK881	CCTGTACGCCAACACAGTGC	ATACTCCTGCTTGCTGATCC				

CAGATAGGTAATGGCTTCCGG