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Web Appendix A. Schematic illustration of stepped wedge

cluster randomized trial

The stepped wedge cluster randomized trial (CRT) is a design variation in which treatment is

rolled out in different clusters at randomly-assigned time points, until all clusters are exposed

under the treatment condition; see Figure S1 for a graphical illustration of this design with

8 clusters and 5 time periods.

Figure S1: A schematic illustration of stepped wedge cluster randomized trial. “O” represents
control intervention and “A” represents treatment intervention.

Time
Cluster 1 2 3 4 5

1 O A A A A
2 O A A A A
3 O O A A A
4 O O A A A
5 O O O A A
6 O O O A A
7 O O O O A
8 O O O O A

Web Appendix B. Causal interpretation of treatment

effect parameters

In this section we provide a perspective on the model-based causal interpretation of the

parameters in Models 1-5. Recall the general model formulation is

h{E(Ykti | Ekt, αk)} = µ+ βt + θ(Ekt) + αk, (S1)

where µ is the global mean on the link function scale, βt (t = 1, . . . , T ) is the fixed effect for

time (β1 = 0 for identifiability), θ(Ekt) is the treatment effect for each exposure time, and
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αk ∼ N (0, σ2
α) is a random cluster intercept. We assume that for each cluster k, there is a

common underlying source population of size Nk, from which a random sample of size nkt

(nkt << Nk) is obtained during each period t. This is typical assumption made in cross-

sectional stepped wedge CRTs. We then write Y e
kti as the potential outcome for participant i

(i = 1, . . . , Nk) in cluster k at period t that would have been observed if exposure time was set

to e. For the purpose of this presentation, we focus on a standard stepped wedge design with

one baseline period such that E = T − 1. Due to the study design, the potential outcomes

Y e
kti’s are well defined only when t ≥ e + 1, because the maximum exposure time never

exceeds the period count minus one. To connect the potential outcome with the observed

outcome, we then assume that there are not multiple versions of the exposure, meaning

that all individuals receiving treatment for exposure time e cannot receive different forms

of treatment which have different effects. We also assume that the potential outcomes are

not affected by treatment assignments in other clusters and there is no interference between

subjects in different clusters. These conditions lead to the consistency assumption such that

Ykti = Y e
kti if the exposure-time treatment level is set to be Ekt = e in a specific period t with

e ≤ t− 1 (VanderWeele, 2009).

Under the above set up, for each participant i (i = 1, . . . , Nk) in the underlying source

population during calendar period t in cluster k, and for any e ≤ t− 1, we have

E(Y e
kti | αk) = E(Y e

kti | Ekt = e, αk) = E(Ykti | Ekt = e, αk). (S2)

The first equation holds because the randomized treatment sequence (and hence the

exposure time Ekt which is fully determined by the sequence) is independent of any potential

outcomes in each cluster; the second equation holds due to the consistency assumption.

From equation (S2), Model (S1) can be viewed as an example of a longitudinal structural

mixed model (Sitlani et al., 2012; Li et al., 2021). Then, the parameters θ(e) in the general
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model (S1) can be written as a participant-level contrast:

θ(e) = h {E(Y e
kti | αk)} − h

{
E(Y 0

kti | αk)
}

for i = 1, . . . , Nk, 0 < e ≤ t− 1. (S3)

In other words, θ(e) measures the difference between transformed mean potential out-

comes under exposure time e and usual care, for a typical participant in the source popu-

lation. This is a well-defined individual-level causal parameter once we reformulate the po-

tential outcome as Ỹ e
ki = h (E(Y e

ki | αk)), and provides a plausible perspective on the causal

interpretation of the exposure-time specific treatment effect parameter θ(e). Since Model S1

does not involve additional covariates to account for between-individual heterogeneity, the

parameter θ(e) can be alternatively interpreted as a population-level causal effect parameter,

by noticing

θ(e) =

∑K

k=1 [h {E(Y
e
kti | αk)} − h {E(Y 0

kti | αk)}]∑K

k=1Nk

for 0 < e ≤ t− 1. (S4)

This is a well-defined causal effect parameter because we are averaging contrasts in trans-

formed potential outcomes over a common population combined over all clusters.

Furthermore, we can average the exposure-time specific causal effects (comparing expo-

sure level e and usual care) over levels of exposure times to obtain

(Exposure-time) average treatment effect

=
1

E

E∑

e=1

θ(e) =

∑E

e=1

[
h
{
E(Y e

k,e+1,i | αk)
}
− h

{
E(Y 0

k,e+1,i | αk)
}]

E
. (S5)

This average treatment effect is a well-defined participant-level causal effect parameter, be-

cause it is a well-defined summary of exposure-time specific causal effect parameter θ(e) for

a typical participant in the underlying source population from cluster k. We can similarly

interpret (S5) as a population-level causal parameter by averaging over the entire popula-

tion over clusters. We acknowledge that the above discussion is only one possible framework
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under which the general model (S1) can be causally interpreted. Future work is needed is

to develop estimands and their interpretations under the nonparametric causal model with

fewer assumptions (and possibly including covariates).

Web Appendix C. Visual representation and comparison

of exposure-time specific treatment effects estimates for

the data example

To illustrate the use of our methods in settings where treatment effect varies by exposure

time, we conducted an analysis of synthetic data where heterogeneity was induced in the

Trajman et al. (2015) data described in Section 3 of the main paper. The procedure for

inducing heterogeneity is also described in Section 3 of the main paper.

The exposure-time specific treatment effects from the simulated synthetic data are het-

erogeneous with increasing magnitude over exposure time (i.e. effect at exposure time 1 is

less than effect at exposure time 2, and so on), with an average treatment effect of 1.19.

Figure S2 shows the odds ratio estimates and their 95% confidence interval for each model’s

estimate of the exposure-time specific effect, compared with the true odds ratio which was

used to generate the synthetic data. The 95% confidence interval was constructed using the

within-cluster bootstrap standard error for each exposure-time effect estimate. In Model

1, we see a constant treatment effect over time with narrow confidence intervals. Model

1 is severely biased in our synthetic data, estimating the average treatment effect to be

0.86 (compared with 1.19). Model 2, which assumes a linearly exposure-time trend, slightly

overestimates the odds ratios, with wider confidence intervals as the exposure-time period

increases. Model 3 underestimates the later exposure-time effects, with the most severe un-

derestimation being at month 7. Model 4 also over-estimates the later exposure-time effects,

with increasing variance as exposure time increases. Model 5 had more stable confidence
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Figure S2: Estimated odds ratio (OR), with 95% confidence interval (CI), as a function of ex-
posure time for the synthetic data (with induced treatment effect heterogeneity) created from the
XpertMTB/RIF Tuberculosis stepped wedge cluster randomized trial. Confidence intervals are
constructed using the within-cluster bootstrap standard error. True OR is represented with a grey
dotted line, estimated OR is represented with a solid black line.
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interval widths over time, with effect estimates closest to the truth. The confidence intervals

of Models 2, 4, and 5 all cover the true effect.

Web Appendix D. Additional continuous outcome sim-

ulation studies

We conducted two additional sets of simulations varying sample sizes and level of treatment

effect heterogeneity across exposure time. For the first set, data were generated similarly to

the simulation study in Section 4.2.1 except that the number of steps was increased from

8 to 30. For the 2nd set, we considered nkt ∈ {30, 100} and varying σ2
δ ∈ {0.0, 0.2, 2.0}.

Results are presented in Tables S1 and S2.
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Table S1: Estimation of the average treatment effects with varying types of treatment effect
heterogeneity across exposure time in 1000 simulated datasets with continuous outcomes. Each
simulated dataset represents a stepped wedge CRT with E = 29 exposure-time periods, T = 30
steps, K = 29 clusters, and n = 100 individuals per cluster per time period. The Monte Carlo
error associated with 95% coverage for 1000 simulation iterations is 0.7%. We use ∆ to denote the
average treatment effect, ∆̂ to denote its estimator, Ê(·) and ŜD(·) to denote sample average and

sample standard deviation across simulated experiments, and ŜE(·) to denote the standard error
estimator.

Bootstrap
Model-based Within cluster Within cluster-period

Model Ê(∆̂) Ê(σ̂α) Ê(σ̂δ) ŜD(∆̂) Ê(ŜE(∆̂)) Ê(ŜE(∆̂)) Coverage (%) Ê(ŜE(∆̂)) Coverage (%)
g(e) = 2, ∆ = 2, σδ = 0, σα = 0.141

1 2.000 0.140 - 0.012 0.012 0.012 94.6 0.011 94.5
2 2.000 0.140 - 0.019 0.019 0.019 94.6 0.019 94.7
3 2.000 0.140 - 0.012 0.012 0.012 94.6 0.012 94.8
4 2.000 0.140 - 0.020 0.020 0.020 94.0 0.019 94.5
5 2.000 0.140 0.005 0.012 0.012 0.012 95.7 0.012 96.0

g(e) = 2 + δe, δe ∼ N (0, 22), ∆ = 2, σδ = 2, σα = 0.141

1 1.630 0.226 - 0.012 0.020 0.022 0.0 0.012 0.0
2 2.107 0.168 - 0.020 0.033 0.023 0.0 0.018 0.0
3 1.893 0.182 - 0.012 0.021 0.023 0.0 0.012 0.0
4 2.000 0.140 - 0.020 0.020 0.020 94.1 0.019 93.4
5 2.000 0.141 2.000 0.020 0.372 0.020 93.8 0.019 93.3

g(e) = (e− 1.840)/1.080, ∆ = 2, σδ = 2, σα = 0.141

1 -1.405 1.040 - 0.011 0.015 0.015 0.0 0.012 0.0
2 1.999 0.139 - 0.019 0.019 0.019 94.1 0.019 94.6
3 -1.208 0.975 - 0.012 0.015 0.016 0.0 0.012 0.0
4 1.999 0.139 - 0.020 0.020 0.020 94.2 0.019 94.4
5 1.997 0.139 1.999 0.019 0.372 0.020 94.6 0.019 94.6

g(e) = −2.536I(e = 1) + 2.756I(e > 1), ∆ = 2, σδ = 2, σα = 0.141

1 0.294 0.605 - 0.012 0.025 0.037 0.0 0.012 0.0
2 2.734 0.260 - 0.021 0.039 0.028 0.0 0.019 0.0
3 2.000 0.142 - 0.012 0.012 0.012 94.8 0.012 94.6
4 2.000 0.142 - 0.020 0.020 0.020 94.2 0.019 93.6
5 1.999 0.143 2.001 0.021 0.372 0.020 93.8 0.019 93.5
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Table S2: Estimation of the average treatment effects with varying degrees of exposure-time treat-
ment effect heterogeneity in 1000 simulated datasets with continuous outcomes. Each simulated
dataset represents a stepped wedge CRT with E = 29 exposure-time periods, T = 30 steps, K = 29
clusters, and n individuals per cluster per time period. The Monte Carlo error associated with 95%
coverage for 1000 simulation iterations is 0.7%. We use ∆ to denote the average treatment effect,
∆̂ to denote its estimator, Ê(·) and ŜD(·) to denote sample average and sample standard deviation

across simulated experiments, and ŜE(·) to denote the standard error estimator.

Bootstrap
Model-based Within cluster Within cluster-period

n σδ Model Ê(∆̂) Ê(σ̂α) Ê(σ̂δ) ŜD(∆̂) Ê(ŜE(∆̂)) Ê(ŜE(∆̂)) Coverage (%) Ê(ŜE(∆̂)) Coverage (%)
30 0.0 1 2.000 0.140 - 0.021 0.021 0.021 92.4 0.020 92.2
30 0.0 2 2.001 0.140 - 0.036 0.033 0.032 91.7 0.031 90.9
30 0.0 3 2.000 0.140 - 0.022 0.022 0.021 92.7 0.021 91.2
30 0.0 4 2.000 0.140 - 0.037 0.035 0.033 93.2 0.032 91.7
30 0.0 5 2.000 0.140 0.009 0.022 0.022 0.022 94.0 0.021 93.7
30 0.2 1 1.965 0.141 - 0.022 0.021 0.021 60.0 0.020 58.8
30 0.2 2 2.011 0.140 - 0.034 0.034 0.032 92.5 0.031 91.9
30 0.2 3 1.990 0.140 - 0.023 0.022 0.021 90.7 0.021 89.8
30 0.2 4 2.000 0.140 - 0.035 0.035 0.033 92.7 0.033 92.8
30 0.2 5 2.000 0.140 0.199 0.031 0.049 0.029 93.3 0.029 93.2
30 2.0 1 1.653 0.217 - 0.022 0.036 0.040 0.0 0.021 0.0
30 2.0 2 2.112 0.161 - 0.038 0.054 0.037 14.4 0.028 5.9
30 2.0 3 1.906 0.175 - 0.023 0.036 0.040 24.6 0.020 0.8
30 2.0 4 2.002 0.139 - 0.036 0.035 0.033 93.0 0.032 91.6
30 2.0 5 2.002 0.139 2.000 0.036 0.373 0.033 92.8 0.032 91.6
100 0.0 1 2.000 0.140 - 0.012 0.012 0.012 94.6 0.011 94.5
100 0.0 2 2.000 0.140 - 0.019 0.019 0.019 94.6 0.019 94.7
100 0.0 3 2.000 0.140 - 0.012 0.012 0.012 94.6 0.012 94.8
100 0.0 4 2.000 0.140 - 0.020 0.020 0.020 94.0 0.019 94.5
100 0.0 5 2.000 0.140 0.005 0.012 0.012 0.012 95.7 0.012 96.0
100 0.2 1 1.963 0.141 - 0.012 0.012 0.012 11.8 0.011 10.9
100 0.2 2 2.010 0.140 - 0.019 0.019 0.019 91.1 0.019 90.5
100 0.2 3 1.989 0.140 - 0.012 0.012 0.012 83.9 0.012 83.1
100 0.2 4 2.000 0.140 - 0.020 0.020 0.020 94.0 0.019 94.5
100 0.2 5 1.999 0.140 0.199 0.019 0.042 0.019 94.4 0.018 94.2
100 2.0 1 1.630 0.226 - 0.012 0.020 0.022 0.0 0.012 0.0
100 2.0 2 2.107 0.168 - 0.020 0.033 0.023 0.0 0.018 0.0
100 2.0 3 1.893 0.182 - 0.012 0.021 0.023 0.0 0.012 0.0
100 2.0 4 2.000 0.140 - 0.020 0.020 0.020 94.1 0.019 93.4
100 2.0 5 2.000 0.141 2.000 0.020 0.372 0.020 93.8 0.019 93.3
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Web Appendix E. Additional simulation study to assess

estimation of exposure-time specific effects

To assess estimation of the exposure-time specific effects in each of the five models, we

conducted simulations A-B, in which we considered a study conducted over 8 months. The

corresponding 7 clusters were labelled as such: cluster 1 receives their first unit of exposure

time at month 2, cluster 2 receives their first unit of exposure time at month 3, and so on.

Each cluster k had an equal number of subjects (nkt = 30) sampled at each time point t.

Data were generated from the logistic generalized linear mixed model: logit{P(Ykti = 1 |

αk, Ekt)} = logit(0.7)+ f(t)+ g(Ekt)+αk, where f(t) corresponds to a background calendar

time trend, g(Ekt) models the treatment effect as a function of exposure time, and αk is drawn

from N (0, 0.05). Figure S3 shows the functional forms of f(t) and g(Ekt), respectively, that

we considered. Table S3 describes these functional forms in equations.

Figure S4 shows the 95% CI coverage and width for each exposure-time specific treatment

effect estimate in scenario 10 (A and B), where data were generated from Model 5 with

δEkt
∼ N (0, σ2

δ ). Here, Models 1, 2, and 3 are all misspecified. Model 1 assumes a constant

effect over exposure time, implying the same estimate for each exposure time effect. As

such, the coverage is constantly below nominal (average coverage is 89.7%). Models 4 and

5 have similar coverage for earlier exposure months. In exposure months 1-4, coverage for

Model 4 ranges from 92.7% to 94.7% and coverage for Model 5 ranges from 92.5% to 94.7%.

For months 5 and 6, Model 5 has higher coverage than model 4, with coverage ranging

from 95.8% to 97.1% in Model 5 and 92.3% to 93.9% in Model 4. We infer that this is

because coverage based on Model 5 is generally higher in exposure-time periods which had

an exposure-time specific effect closer to the average treatment effect as Model 5 shrinks

the estimates of the exposure-time treatment effects towards the overall mean. At month

7, both Models 4 and 5 have similar coverage ranging from 96.2% to 97.5%, with Model 4

having a much wider confidence interval (2.2 vs. 0.8). The CI width for estimates based on
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Table S3: Simulation scenarios for different exposure-time treatment effect patterns (both A
and B). Data were generated from the logistic generalized linear mixed model, logit{P(Ykti =
1|αk, Ekt)} = logit(0.7)+f(t)+g(Ekt)+αk, where f(t) corresponds to a background calendar time
trend, g(e) models the treatment effect as a function of exposure time e, and αk is drawn from
N (0, 0.05). Simulation scenarios A and B differ only in the background secular trend. Scenario A
sets f(t) = 0.5 sin {2π(t− 1)/7} and scenario B sets f(t) = 1.5et−1/(1 + et−1) − 0.75. AR-1: first
order autoregressive

Scenario Treatment effect as a function of Ekt

1 g(e) = log(1.2)

2 g(e) = log(1.2)/4e

3 g(e) = −log(1.2)/4e+ 2 log(1.2)

4 g(e) = log(1)I(e = 1) + 7
6
log(1.2)I(e > 1)

5 g(e) = {6 log(1.2)− 5 log(1.1)}I(e = 1) + log(1.1)I(e > 1)

6 g(e) = 0.28 sin
{

0.8π(e−1)
6

}
+ 2 log(1.2)

7 g(e) = −0.28 sin
{

0.8π(e−1)
6

}
+ 2 log(1.2)

8 g(e) = 0.14 sin
{

2π(e−1)
6

}
+ log(1.2)

9 g(e) = −0.14 sin
{

2π(e−1)
6

}
+ log(1.2)

10 Model 5 with φ = log(1.2) and δEkt
∼ N (0, 0.12)

11 Model 5 with φ = log(1.2) and δEkt
= 0.022Z + 0.025Z2 + 0.01Z3, Z ∼ N (0, 1)

12 Model 5 with φ = log(1.2) and δ ∼ N (0, 0.12M), M AR-1 with correlation 0.2
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Figure S3: Graphical illustration of (A) baseline prevalence in simulation scenarios A and B,
defined as expit(logit(0.7) + f(t)) as a function of time t; and (B) exposure-time treatment effect
function, g(e), on the link function scale for each simulation scenario 1-12. e is the exposure time
unit ranging from 1 to 7.
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Model 4 increase with increasing exposure time, ranging from 0.8 to 2.2 in both scenarios

A10 and B10. The CI widths for estimates based on Model 5, however, are stable over time

(all 0.8) due to increased efficiency by modeling the set of treatment parameters via random

effects.

Figure S4: Summary of 95% confidence interval (CI) coverage of exposure-time specific treatment
effect, using within-cluster bootstrapped standard error, from scenario 10 (A and B) in simulation
study. Circle size is proportional to CI width. Model 1 is pink, 4 is blue, and 5 is orange. Black
line indicates 95% coverage, lower and upper dotted lines indicate 93.6% and 96.4% coverage,
respectively.
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Web Appendix F. Additional information on trial plan-

ning

F.1 Derivation of variance expression for the average treatment

effect estimator in Model 4

In this section we briefly describe how to compute the weighted least squares variance for

trial planning with an average treatment effect target based on Model 4. Let

Ykti = µ+ βt + θEkt
+ αk + ǫkti,

where µ is the intercept, βt (t = 1, . . . , T ) is the fixed effect for time (β1 = 0 for iden-

tifiability), θEkt
is the treatment effect for each exposure time (θ0 = 0 for identifiability),

αk ∼ N (0, σ2
α) is a random cluster intercept, and ǫkti ∼ N (0, σ2

ǫ ). To facilitate the deriva-

tion, we can re-parameterize the model by dropping the overall mean, such that the model

becomes

Ykti = βt + θEkt
+ αk + ǫkti, (S6)

where there is no restriction on βt but the restriction that θ0 = 0 remains. Assuming Model

S6, the variance of the estimated average treatment effect, E−1
∑E

e=1 θ̂e is the lower right

entry of C′Var(θ̂)C, where Var(θ̂) is the lower E × E block of (F′V−1F)−1, C = E−11E

and

F =




IT Z1

IT Z2

...
...

IT ZK




⊗ 1n
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where Zk is a T × E matrix of the form

Zk =




0(s−1)×E

I(T−s+1)×E


 ,

where s is the period in which treatment k starts to receive treatment, 1n is a n-vector of

ones, In is an n × n identity matrix, and the covariance matrix for all observations can be

partitioned as

V =




V1 0 . . . 0

0′ V2 . . . 0

...
...

. . .
...

0′ 0′ . . . VK




,

where Vk = σ2
ǫ In + σ2

αJn, Jn = 1n1
′

n. Using the property of Kronecker products that

(A⊗B)′ = A′ ⊗B′, we have

F′ =




IT Z1

IT Z2

...
...

IT ZK




′

⊗ 1′

n

=




IT IT . . . IT

Z′

1 Z′

2 . . . Z′

K


⊗ 1′

n.
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Next, we have

F′V−1 =







IT IT · · · IT

Z′

1 Z′

2 · · · Z′

K


⊗ 1′

n







V−1
1 0 . . . 0

0 V−1
2

...

...
. . . 0

0 . . . 0 V−1
K




=




(IT ⊗ 1′

n)V
−1
1 (IT ⊗ 1′

n)V
−1
2 · · · (IT ⊗ 1′

n)V
−1
K

(Z′

1 ⊗ 1′

n)V
−1
1 (Z′

2 ⊗ 1′

n)V
−1
2 · · · (Z′

K ⊗ 1′

n)V
−1
K


 .

Then, F′V−1F equals

=




(IT ⊗ 1′

n)V
−1
1 (IT ⊗ 1′

n)V
−1
2 · · · (IT ⊗ 1′

n)V
−1
K

(Z′

1 ⊗ 1′

n)V
−1
1 (Z′

2 ⊗ 1′

n)V
−1
2 · · · (Z′

K ⊗ 1′

n)V
−1
K










IT Z1

IT Z2

...
...

IT ZK




⊗ 1n




=



∑K

k=1 (IT ⊗ 1′

n)V
−1
k (IT ⊗ 1n)

∑K

k=1 (IT ⊗ 1′

n)V
−1
k (Zk ⊗ 1n)

∑K

k=1 (Z
′

k ⊗ 1′

n)V
−1
k (IT ⊗ 1n)

∑K

k=1 (Z
′

k ⊗ 1′

n)V
−1
k (Zk ⊗ 1n)


 .

Since we are assuming that the covariance matrix is the same for each cluster (due to the

conventional assumption of equal cluster size), then V1 = · · · = VK = V∗, and so

F′V−1F =




K (IT ⊗ 1′

n)V
−1
∗

(IT ⊗ 1n) (IT ⊗ 1′

n)V
−1
∗

(∑K

k=1 Zk ⊗ 1n

)

(∑K

k=1 Z
′

k ⊗ 1′

n

)
V−1

∗
(IT ⊗ 1n)

∑K

k=1 (Z
′

k ⊗ 1′

n)V
−1
∗

(Zk ⊗ 1n)




Let




A11 A12

A21 A22


 =




K (IT ⊗ 1′

n)V
−1
∗

(IT ⊗ 1n) (IT ⊗ 1′

n)V
−1
∗

(∑K

k=1 Zk ⊗ 1n

)

(∑K

k=1 Z
′

k ⊗ 1′

n

)
V−1

∗
(IT ⊗ 1n)

∑K

k=1 (Z
′

k ⊗ 1′

n)V
−1
∗

(Zk ⊗ 1n)



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Then, using the definition of the inverse of a partitioned matrix, the lower E ×E matrix of

(Z′V−1Z)
−1

is given by
(
A22 −A21A

−1
11 A12

)−1
and so

Var(θ̂) =

(
K∑

k=1

D′

kV
−1
∗
Dk −

1

K
B′V−1

∗
G
(
G′V−1

∗
G
)−1

G′V−1
∗
B

)−1

where B =
(∑K

k=1 Zk ⊗ 1n

)
,G = (IT ⊗ 1n) and Dk = Zk ⊗ 1n, and

Var

(
1

K

E∑

e=1

θ̂e

)
= C′

(
K∑

k=1

D′

kV
−1
∗
Dk −

1

K
B′V−1

∗
G
(
G′V−1

∗
G
)−1

G′V−1
∗
B

)−1

C

We then further simplify the expression. Importantly, we define the (generalized version

of) design constant as U1 =
∑K

k=1 Z
′

k1T as the E vector, W1 =
(∑K

k=1 Z
′

k

)(∑K

k=1 Zk

)
is an

E×E matrix, W2 =
∑K

k=1 Z
′

kJTZk is also an E×E matrix, and finally U2 =
∑K

k=1 Z
′

kZk is

an E × E matrix. First we notice that the common variance matrix of the outcome vector

in each cluster is simple exchangeable, given by V∗ = σ2
y [(1− ρ)ITn + ρJTn] = σ2

yR,

where σ2
y = σ2

α + σ2
e is the total outcome variance, and ρ = σ2

α/σ
2
y is the common ICC.

The correlation matrix R has two eigenvalues, λ1 = 1 − ρ, λ2 = 1 + (Tn − 1)ρ. Thus, the

inverse is given by

R−1 =
1

1− ρ
ITn −

ρ

(1− ρ)[1 + (Tn− 1)ρ]
JTn =

1

λ1

ITn −
λ2 − λ1

Tnλ1λ2

JTn = aITn + bJTn, (S7)
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with a = 1/λ1 and b = −(λ2 − λ1)/(Tnλ1λ2). Then we observe

G′R−1G = (IT ⊗ 1′

n) (aITn + bJTn) (IT ⊗ 1n) = (IT ⊗ 1′

n) (aIT ⊗ In + bJT ⊗ Jn) (IT ⊗ 1n)

= anIT + bn2JT ,

(
G′R−1G

)−1
=

1

an
IT −

bn2

an (an+ Tbn2)
JT =

λ1

n
IT +

λ2 − λ1

Tn
JT =

1

n

(
λ1IT +

λ2 − λ1

T
JT

)

B′R−1G =

(
K∑

k=1

Z′

k ⊗ 1n

)
(aIT ⊗ In + bJT ⊗ Jn) (IT ⊗ 1n)

= an
K∑

k=1

Z′

k + bn2

K∑

k=1

Z′

kJT =
n

λ1

K∑

k=1

Z′

k −
(λ2 − λ1)n

λ1λ2T
U11

′

T

G′R−1B = an
K∑

k=1

Zk + bn2

K∑

k=1

JTZk =
n

λ1

K∑

k=1

Zk −
(λ2 − λ1)n

λ1λ2T
(U11

′

T )
′

We then simplify (B′R−1G) (G′R−1G)
−1

(G′R−1B) as

=n

(
1

λ1

K∑

k=1

Z′

k −
λ2 − λ1

λ1λ2T
U′

11
′

T

)(
λ1IT +

λ2 − λ1

T
JT

)(
1

λ1

K∑

k=1

Zk −
λ2 − λ1

λ1λ2T
(U11

′

T )
′

)
α(n)

=
1

λ1

W1 −
λ2 − λ1

λ1λ2T
U⊗2

1 +
λ2 − λ1

λ2
1T

U⊗2
1 −

λ2 − λ1

λ1λ2T
U⊗2

1 −
(λ2 − λ1)

2

λ2
1λ2T

U⊗2
1

+
(λ2 − λ1)

2

λ1λ2
2T

U⊗2
1 −

(λ2 − λ1)
2

λ2
1λ2T

U⊗2
1 +

(λ2 − λ1)
3

λ2
1λ

2
2T

U⊗2
1

=
1

λ1

W1 −
2 (λ2 − λ1)

λ1λ2T
U⊗2

1 +
λ2 − λ1

λ2
1T

U⊗2
1 −

2 (λ2 − λ1)
2

λ2
1λ2T

U⊗2
1

+
(λ2 − λ1)

2

λ1λ2
2T

U⊗2
1 +

(λ2 − λ1)
3

λ2
1λ

2
2T

U⊗2
1

=
1

λ1

W1 +
(λ2 − λ1)

λ1T

[
−

2

λ2

+
1

λ1

−
2 (λ2 − λ1)

λ1λ2

+
(λ2 − λ1)

λ2
2

+
(λ2 − λ1)

2

λ1λ2
2

]
U⊗2

1

=
1

λ1

W1 −
(λ2 − λ1)

λ1λ2T
U⊗2

1

and further notice that

D′

kR
−1Dk = (Z′

k ⊗ 1′

n) (aIT ⊗ In + bJT ⊗ Jn) (Zk ⊗ 1n) = anZ′

kZk + bn2Z′

kJT
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Then the inverse variance is proportional to

K∑

k=1

anZ′

kZk +
K∑

k=1

bn2Z′

kJTZk −
1

K

(
B′R−1G

) (
G′R−1G

)−1 (
G′R−1B

)

=
n

λ1

U2 −
λ2 − λ1

Tλ1λ2

nW2 −
n

K

1

λ1

W1 +
n

K

(λ2 − λ1)

λ1λ2T
U⊗2

1

=
n

Kλ1

(KU2 −W1)−
n (λ2 − λ1)

KTλ1λ2

(
KW2 −U⊗2

1

)

The variance matrix for the vector of treatment effect estimators become

Var(θ̂) = σ2
y

[
n

Kλ1

(KU2 −W1)−
n (λ2 − λ1)

KTλ1λ2

(
KW2 −U⊗2

1

)]−1

= σ2
y

KTλ1λ2

n

[
λ2 (KTU2 − TW1)− (λ2 − λ1)

(
KW2 −U⊗2

1

)]−1

= σ2
y

KTλ1λ2

n

[
λ2

(
U⊗2

1 +KTU2 − TW1 −KW2

)
+ λ1

(
KW2 −U⊗2

1

)]−1
,

where U⊗2
1 = U1U

′

1. Notice that this form resembles the variance expression in Hussey and

Hughes (2007) and reviewed in Li et al. (2021; equation (7)), but now with the generalized

version of design constants. Finally, the variance of the average treatment effect estimator

from Model 4 is

Var

(
1

E

∑

e

θ̂e

)
=

1

E2
Var

(
1′

E θ̂
)

=
KTλ1λ2σ

2
y

nE2
1′

E

[
λ2

(
U⊗2

1 +KTU2 − TW1 −KW2

)
+ λ1

(
KW2 −U⊗2

1

)]−1
1E.

(S8)

To explicate the design constants needed in the final variance expression (S8), we given a

specific example below. We assume a standard stepped wedge design with 1 baseline period,

and one cluster crosses over to intervention during each period. In this setup, we can define

the exposure-time treatment indicator matrix for each cluster as Zk. This is a matrix of

dimension T ×E in a standard design where the earliest treatment timing is period 2. Then,
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if cluster k receives treatment at time 2, the form of this design matrix is written as

Zk =




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 0 0

...
...

. . .
...

...

0 0 . . . 0 1




If cluster k receives treatment at time 3, the form of this design matrix is written as

Zk =




0 0 . . . 0 0

0 0 . . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0




And we define the period when cluster k initiates treatment is sk ∈ {2, . . . , T}. And

without loss of generality, we assume there is only one baseline period, and we order k such

that cluster 1 has the smallest s1 (start treatment earliest), and cluster K has the largest sK

(start treatment the latest); in other words, sk is increasing in k. So there are sk − 1 rows
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of zeros and T − sk + 1 rows of basis vector. We can write

Zk =




0′

0′

...

e′1

e′2
...

e′T−sk+1




Where el is the E×1 orthonormal basis with the l-th element equal to 1 and zero everywhere

else. Then notice the following intermediate steps

Z′

kZk =

T−sk+1∑

l=1

ele
′

l

Z′

k1T =

T−sk+1∑

l=1

el

Z′

kJTZk = Z′

k1T (Z′

k1T )
′
=

(
T−sk+1∑

l=1

el

)(
T−sk+1∑

l=1

el

)′

Then

U1 =
K∑

k=1

T−sk+1∑

l=1

el

U2 =
K∑

k=1

T−sk+1∑

l=1

ele
′

l

W2 =
K∑

k=1

(
T−sk+1∑

l=1

el

)(
T−sk+1∑

l=1

el

)′

W1 =
K∑

k=1

(
T−sk+1∑

l=1

el

)(
T−sk+1∑

l=1

el

)′

= W2

Thus, in this standard design, we have W1 = W2 and the variance can be further written
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as

Var

(
1

E

∑

e

θ̂e

)
=

KTλ1λ2σ
2
y

nE2
1′

E

[
λ2

(
U⊗2

1 +KTU2 − TW1 −KW1

)
+ λ1

(
KW1 −U⊗2

1

)]−1
1E

With a binary outcome, the variance expression of the average treatment effect estimator

in a generalized linear mixed model is more complicated. One possible direction is to follow

the general linearization approach outlined in Section 3.2 in Davis-Plourde et al. (2021).

The resulting expression can again be approximated by a weighted least squares variance

but is analytically less tractable because the binomial variance is an explicit function of the

mean.

F.2 An illustration of trial planning

F.2.1 Planning a trial with continuous outcomes

In this section, we illustrate the planning of a stepped wedge CRT with continuous out-

comes using our derived analytical variance expression (S8) for the average treatment effect

estimate based on Model 4 (the general time-on-treatment effect formulation). As noted in

the main paper, this formula does not require information about the exposure-time specific

treatment effects, and only concerns the design resources, randomization schedule, and the

ICC parameter ρ.

By way of example, suppose we are designing a trial with T = 8 steps, E = 7 exposure

times, andK = 14 clusters as in the XpertMTB/RIF Tuberculosis study described in Section

3 of the main article. Suppose further that the primary outcome Ykti is continuous and

follows Model 4. Then, the analytic variance formula (S8) can be used to facilitate power

calculation. We provide an R function ATE.fixed.power in the Supporting Information for

its implementation. This function first computes the analytical variance from (S8) using the

input parameters described in Table S4. It then uses a Wald test to compute the power of

such a trial to detect a pre-specified average treatment effect.
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Table S4: Arguments for ATE.fixed.power

Argument Description
ate ∆, average treatment effect
t_max T , number of periods
k_max K, number of clusters
n_per n, constant cluster-period size
crossover_t Vector of length K indicating the crossover time of each cluster

rho ρ, outcome ICC for Model 4, defined by σ2
α

σ2
α+σ2

ǫ

sigma_epsilon_sq σ2
ǫ , individual-level random error

alpha Type I error (defaults to 0.05)

Assuming that ρ = 0.01, σ2
ǫ = 1, and n = 34, the code below returns the study power for

detecting an average treatment effect of 0.206 with significance level of 0.05:

ATE.fixed.power(ate = 0.206, t_max = 8, k_max = 14, n_per = 34,

crossover_t = rep(2:8,each=2), rho = 0.1, sigma_epsilon_sq = 1, alpha = 0.05)

In practice, because the outcome ICC is often unknown, we recommend examining set-

tings with a variety of parameter values. To illustrate this, we explore the detectable effect

sizes of the hypothetical stepped wedge CRT above for varying outcome ICC. Table S5 shows

the minimum detectable average treatment effect size in order for the trial to have 80% power

when analyzed via Model 4 at a significance level of 0.05.

Table S5: Detectable effect size with 80% power

Outcome ICC (ρ) ∆
0.00 0.143
0.01 0.206
0.05 0.246
0.10 0.256
0.20 0.261

F.2.2 Planning a trial with binary outcomes

In this section, we illustrate the use of simulation-based methods, implemented in an R func-

tion ATE.sim.power.binary provided in the Supporting Information, to aid in the design of
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stepped wedge CRTs with binary outcomes. This function approximates the power to detect

a pre-specified average treatment effect for analysis with either Model 4 (the general time-on-

treatment effect formulation) or Model 5 (our proposed model formulation which uses random

effects to model treatment effect heterogeneity). In practice, one would pre-specify which

model they plan to use beforehand and use the power estimate from ATE.sim.power.binary

which corresponds to their respective model. The function ATE.sim.power.binary first gen-

erates data from Model 4 using the formula logit {P (Ykti = 1)} = µ+ βt + θEkt
+ αk, where

where µ is the intercept, βt (t = 1, . . . , T ) is the fixed effect for background calendar time

with β1 = 0 for identifiability, θEkt
is the treatment effect as a function of the exposure

time, and αk ∼ N (0, σ2
α) is a random intercept that allows for correlation within clusters.

We then use the simulated data to fit both Models 4 and 5, and record their respective

estimated average treatment effects. After many iterations, we take the empirical variance

of the average treatment effect estimates for each model. Using each empirical variance, we

then use a Wald test to approximate the power to detect a pre-specified average treatment

effect for both Models 4 and 5. The required input parameters are provided in Table S6.

Unlike the analytical formula (S8) for continuous outcomes, this function requires apriori

full model specification as well as specification of the design parameters and randomization

schedule to simulate trial data.

Table S6: Arguments for ATE.sim.power.binary

Argument Description
t_max T , number of periods
k_max K, number of clusters
n_per n, constant cluster-period size or a vector of cluster-period sizes
crossover_t Vector of length K indicating the crossover time of each cluster
intercept µ, intercept
betas (β2, . . . , βT ), background calendar time trend
expt_eff (θ1, . . . , θE), exposure-time specific with mean ∆
sigma_alpha_sq σ2

α, cluster-level heterogeneity
nsims Number of simulation iterations
alpha Type I error (defaults to 0.05)

We use ATE.sim.power.binary to calculate power of a hypothetical stepped wedge CRT
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as in the XpertMTB/RIF Tuberculosis study with T = 8 steps, E = 7 exposure times, and

K = 14 clusters. The number of individuals per cluster-period “n per” (median [range]: 34

[6-96]) are set to be the same as in the trial. The average treatment effect “ate”, background

calendar time trend “betas”, and “sigma alpha sq” are estimated from the trial data. The

exposure-time specific treatment effect parameters “expt eff” are set to be the same ones

used in the synthetic data with induced heterogeneity as described in Section 3 of the main

article. The code below returns the power of such a trial to detect a pre-specified average

treatment effect estimated via either Model 4 or Model 5 based on 1000 simulated datasets.

ATE.sim.power.binary(t_max = 8, k_max = 14, n_per, crossover_t = rep(2:8,each=2),

intercept = 0, betas = c(-0.0134, 0.1667, 0.0365, -0.0660, -0.1915, -0.1881,

0.0059), expt_eff = c(-0.375, -0.252, 0.412, -0.141, -0.119, 0.471, 0.004),

sigma_alpha_sq = 0.34, nsims = 1000, alpha = 0.05)

As shown in Table S7, when the pre-specified average log-odds ratio is log(1.19), the trial

only has 7.52% power for testing the null hypothesis of no average treatment effect with

a significance level of 0.05 when analyzed using Model 4. The power slightly increases to

7.77% when data are analyzed using Model 5. When the pre-specified average log-odds ratio

is log(3), the power to detect a significant treatment effect is about 78% based on Model 4

and 82% based on Model 5, both with significance level 0.05.

Table S7: Simulation-based power estimates based on Models 4 and 5.

Average Treatment Effect (∆) Model 4 Model 5
log(1.19) 7.52 7.77
log(3) 78.15 82.31
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Web Appendix G. Schematic illustration of different

modelling assumptions

Figure S5 shows a schematic comparison of the intervention effects in the three modelling

frameworks. Here, Model 5 focuses on horizontal treatment heterogeneity across exposure

time, the Hemming et al. (2018) model allows vertical treatment effect heterogeneity across

clusters, and Model 6 incorporates both horizontal and vertical treatment effect heterogene-

ity.
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Figure S5: Schematic illustrations of differing intervention effects in a stepped wedge design based
on three models with K = 4 clusters and T = 5 periods. Each cell with a zero entry indicates a
control cluster-period and each cell with a non-zero entry indicates an intervention cluster-period.
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