
Supplementary material

Title: Seg2Link: an efficient and versatile solution for semi-
automatic cell segmentation in 3D image stacks

Authors:

Chentao Wen1, 2*, Mami Matsumoto3,4, Masato Sawada3,4, Kazunobu Sawamoto3,4, Koutarou D
Kimura1

1. Graduate School of Science, Nagoya City University, Nagoya, Japan

2. RIKEN Center for Biosystems Dynamics Research, Kobe, Japan

3. Department of Developmental and Regenerative Neurobiology, Institute of Brain Science,
Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

4. Division of Neural Development and Regeneration, National Institute for Physiological
Sciences, Okazaki, Japan

* chentao.wen@riken.jp

Supplementary Figure S1. The illustrations of the challenges encountered in automatic instance
segmentation. (A) The challenges in discerning cell boundaries in real images, indicated by red arrows,

which can result in incorrect segmentation results. These two example images are identical to those in
Fig. 5. (B) An illustration of how displacement across neighboring slices can cause incorrect cell linking.
(C) An illustration of the local mistakes (arrow) propagated to multiple slices.

Supplementary Figure S2. The underlying data structure of the Seg2D+Link module. (A) The workflow in
the Seg2D+Link module. (B) A diagram of the underlying data structure, as well as the overlap linking
process based on the data structure.

Supplementary Figure S3. Corrections made in a previous slice can improve automatic segmentation in
subsequent slices. (Top) Manually corrected segmentation in slice #1. (Bottom left) Automatic
segmentation in slice #2 using watershed 2D but no link. (Bottom right) Automatic segmentation in slice
#2 using watershed 2D + link. The arrows point to the same regions that were split incorrectly by
watershed 2D and correctly merged by watershed 2D + link. Colors were automatically assigned by
napari.

Supplementary Figure S4. The underlying data structure of the 3D correction module. (A) The workflow
in the 3D correction module. (B) A diagram of the underlying data structure, as well as the merge
process based on the data structure.

Supplementary Figure S5. Comparison of the boundary mistakes found in the segmentation results of
two slices in the EM demo dataset, obtained by watershed 2D + Link method and watershed 3D method.
The Ground Truth is also shown as a reference. The arrows indicated the boundary mistakes identified
by visual inspection. It is worth noting that only mistakes resulting from the watershed 2D /3D were
considered, while those caused by incorrect deep learning predictions were disregarded. We did not
find such boundary mistake in the watershed 2D + Link results.

Supplementary Figure S6. The caching/saving methods used in the Seg2D+Link and 3D correction
modules. The data to be cached/saved in the two modules after performing each user command. Note
that in reality, our 3D correction module only caches a subregion of the entire 3D array to reduce the
memory utilization.

Supplementary Table S1. Operations that alter elements of the data structure of the Seg2D+Link
module. c.w.s: current working slice.

Operations Elements affected by the operation

Next slice (segment, segment + link) 2D segmentation (c.w.s) + Label lists

Division/Division-Relink 2D segmentation (c.w.s) + Label lists

Cache/Save intermediate state 2D segmentation (c.w.s) + Label lists

Merge Label lists

Delete Label lists

Supplementary Table S2. A comparison of the two modules' efficiency in saving a real data (EM demo
dataset). Our software saves each 2D array in npz format (compressed), label lists in pickle format, and
3D arrays in npy format (without compression since it's time-consuming for large data). The time is
estimated assuming the write speed of the hard disk is 100 MB/sec. c.w.s: current working slice.

Module Data to be saved Data size Time for saving

Seg2D+Link 2D array (c.w.s)
+ label lists (1 – c.w.s)

Total: 82 KB ~ 2.0 MB
- 2D array: 80 KB / slice
- Label list: 1.61 KB / slice

0.8 ~ 20 ms

3D correction 3D array Total: 2.46 GB 25 sec

