1	Supplementary Information
2	
3	Engineered bacterial outer membrane vesicles encapsulating oncolytic
4	adenoviruses enhance the efficacy of cancer virotherapy by augmenting tumor
5	cell autophagy
6	
7	
8	Ban et al.

9 Supplementary Figures

- 10
- 11 Supplementary Figure 1. Qualitative analysis of P₂O expression in OMVs, *E. coli@*P₂O and
- 12 OMVs@P₂O. This experiment was repeated three times independently with similar results.

- 14 Supplementary Figure 2. Qualitative analysis of P₂O expression in OMVs@P₂O-Ads. This
- 15 experiment was repeated three times independently with similar results.

17 Supplementary Figure 3. Qualitative analysis of different concentration P₂O expression in

18 OMVs@P₂O. This experiment was repeated three times independently with similar results.

19

Supplementary Figure 4. The function curve illustrated the relationship between the absorbance and P₂O with different concentrations. The red point revealed the relative P₂O concentration within the microbial nanocomposite. Source data are provided as a Source Data file. This experiment was repeated three times independently with similar results.

Supplementary Figure 5. Quantitation of mean fluorescence intensity of DCF in PBS, OMVs and OMVs@P₂O for ROS level assessment in cells. Data are presented as mean \pm SD (n = 3 independent experiments). *****P* < 0.0001 by two-tailed Student's t-test. Source data are provided as a Source Data file.

30 Supplementary Figure 6. Immunofluorescence images of ROS expression in tumor cells in vitro.

- 31 The cells were stained with DAPI (blue), and ROS were stained with DCF (green). Scale bars=100
- 32 µm. This experiment was repeated three times independently with similar results.

34 Supplementary Figure 7. The equal-scaling amplifying TEM images of autophagosomes, scale

35 bar=500 nm. This experiment was repeated three times independently with similar results.

- 37 Supplementary Figure 8. The LC3-II/LC3-I ratio in vitro. Data are presented as mean \pm SD (n = 3
- 38 independent experiments). **P < 0.01 by two-tailed Student's t-test. Source data are provided as a
- 39 Source Data file.

Supplementary Figure 9. Cytotoxicity of different formulations in TC-1 cells and HCT116 cells
by MTT assay. Data are presented as mean ± SD (n = 3 independent experiments). **P < 0.01 by
two-tailed Student's t-test. Source data are provided as a Source Data file. (G1: PBS, G2: Ads, G3:
OMVs, G4: OMVs@P₂O, G5: OMVs-Ads, G6: OMVs@P₂O-Ads).

Supplementary Figure 10. The statistical analysis result of live/dead cellular staining. Data are
presented as mean ± SD. Source data are provided as a Source Data file. (G1: PBS, G2: Ads, G3:
OMVs, G4: OMVs@P₂O, G5: OMVs-Ads, G6: OMVs@P₂O-Ads). This experiment was repeated
three times independently with similar results.

- 55 Supplementary Figure 11. In vivo DIR fluorescent imaging of the nanocomposite in TC-1-hCD46
- 56 xenograft tumor-bearing mice by IVIS (n = 4 mice).

57

58 Supplementary Figure 12. Individual tumor growth kinetics in different groups. (n = 6 mice).

59 Source data are provided as a Source Data file. (G1: PBS, G2: Ads, G3: OMVs, G4: OMVs@P2O,

 $60 \qquad G5: OMVs-Ads, G6: OMVs@P_2O-Ads).$

62 Supplementary Figure 13. Body weight changes of TC-1-bearing mice after intratumoral 63 administration of different formulations. Data are presented as mean \pm SD (n = 6 mice). N.S. (No

- 64 Significance) P > 0.05 by two-tailed Student's t-test. Source data are provided as a Source Data file.
- 65 (G1: PBS, G2: Ads, G3: OMVs, G4: OMVs@P₂O, G5: OMVs-Ads, G6: OMVs@P₂O-Ads).

67 **Supplementary Figure 14.** The infiltration of $CD8^+T$ cells in tumor of mice treated with different 68 agents on the 18th day. Data are presented as mean \pm SD (n = 3 mice). ***P* < 0.01 by two-tailed 69 Student's t-test. Source data are provided as a Source Data file. (G1: PBS, G2: Ads, G3: OMVs, G4:

70 $OMVs@P_2O, G5: OMVs-Ads, G6: OMVs@P_2O-Ads).$

72 Supplementary Figure 15. Zeta-potential of OMVs@P2O, Ads, OMVs@P2O-Ads and

- 73 CaP-OMVs@P₂O-Ads. Data are presented as mean \pm SD (n = 3 independent experiments). **P <
- 74 0.01 and ***P < 0.001 by two-tailed Student's t-test. Source data are provided as a Source Data file.

76 Supplementary Figure 16. Immunofluorescence images of ROS in tumor tissues. Blue represents

- 77 DAPI-stained tumor cells and red represents DHE. Scale bar=100 µm. This experiment was
- 78 repeated three mice with similar results.

81 Supplementary Figure 17. Immunofluorescence images of p62 autophagic proteins in tumor

82 tissues. Blue represents DAPI-stained tumor cells and the green represents FITC-stained p62

83 autophagic protein. Scale bar=50 µm. This experiment was repeated three mice with similar results.

85 Supplementary Figure 18. The LC3-II/LC3-I ratio in vivo. Data are presented as mean \pm SD (n =

86 3 mice). *P < 0.01 by two-tailed Student's t-test. Source data are provided as a Source Data file.

87

88 Supplementary Figure 19. The tumor of TC-1-bearing mice model volume change for TC-1 89 xenograft tumor model during different treatments. Data are presented as mean \pm SD (n = 6 mice).

- 90 N.S. (No Significance) P > 0.05, **P < 0.01 and ****P < 0.0001 by two-tailed Student's t-test.
- 91 Source data are provided as a Source Data file. (G1: PBS, G2: OMVs@P2O-Ads, G3:
- 92 CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P2O-Ads, G6: Intra-Ads high does).

Supplementary Figure 20. Body weight changes of TC-1-bearing mice after administration of
different formulations. Data are presented as mean ± SD (n = 6 mice). N.S. (No Significance) P >
0.05 by two-tailed Student's t-test. Source data are provided as a Source Data file. (G1: PBS, G2:
OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P₂O-Ads, G6: Intra-Ads
high does).

102 Supplementary Figure 21. Images of representative tumors after different treatments at 15 days
103 (n=6). (G1: PBS, G2: OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5:
104 CaP-OMVs@P₂O-Ads, G6: Intra-Ads high does).

106 **Supplementary Figure 22.** Hepatorenal function indexes including aspartate aminotransferase 107 (AST), alanine aminotransferase (ALT) levels, creatinine (CRE) and blood urea nitrogen (BUN) 108 were measured. Data are presented as mean \pm SD (n = 3 mice). N.S. (No Significance) P > 0.05 by 109 two-tailed Student's t-test. Source data are provided as a Source Data file. (G1: PBS, G2: 110 OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P₂O-Ads, G6: Intra-Ads 111 high does).

114 **Supplementary Figure 23.** H&E staining images for major organs slices after different treatments.

115 Scale bar=100 µm. This experiment was repeated three mice with similar results.

Tumor

117 Supplementary Figure 24. Representative flow cytometric evolution images of IFN- γ^+ CD8⁺ T

118 cells (CD45⁺CD3⁺CD8⁺IFN- γ^+) in tumor. (G1: PBS, G2: OMVs@P₂O-Ads, G3: CaP-OMVs-Ads,

119 G4: Intra-Ads, G5: CaP-OMVs@P₂O-Ads, G6: Intra-Ads high does)

122 25. Relative quantification of $IFN-\gamma^+CD8^+$ Supplementary Figure Т cells (CD45⁺CD3⁺CD8⁺IFN- γ^+) in tumor. Data are presented as mean \pm SD (n = 3 mice). ****P < 123 124 0.0001 by two-tailed Student's t-test. Source data are provided as a Source Data file. (G1: PBS, G2: 125 OMVs@P2O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P2O-Ads, G6: Intra-Ads high does) 126

127

Tumor

128 **Supplementary Figure 26.** Representative flow cytometric evolution images of M1-like 129 macrophages (CD45⁺F4/80⁺CD80⁺) in tumor (n=3). (G1: PBS, G2: OMVs@P₂O-Ads, G3:

130 CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P2O-Ads, G6: Intra-Ads high does)

132 **Supplementary Figure 27.** Relative quantification of M1-like macrophages (CD45⁺F4/80⁺CD80⁺) 133 in tumor. Data are presented as mean \pm SD (n = 3 mice). *****P* < 0.0001 by two-tailed Student's 134 t-test. Source data are provided as a Source Data file. (G1: PBS, G2: OMVs@P₂O-Ads, G3: 135 CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P₂O-Ads, G6: Intra-Ads high does)

136

Supplementary Figure 28. Representative flow cytometric evolution images of M2-like 137 macrophages (CD45⁺F4/80⁺CD206⁺) in tumor (n=3). (G1: PBS, G2: OMVs@P2O-Ads, G3: 138

139 CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P2O-Ads, G6: Intra-Ads high does)

Supplementary Figure 29. Relative quantification of M2-like macrophages (CD45⁺F4/80⁺CD206⁺)
in tumor. Data are presented as mean ± SD (n = 3 mice). ****P < 0.0001 by two-tailed Student's
t-test. Source data are provided as a Source Data file. (G1: PBS, G2: OMVs@P₂O-Ads, G3:
CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P₂O-Ads, G6: Intra-Ads high does)

147 Supplementary Figure 30. The gating strategy of effector memory T cells (CD3⁺ CD8⁺ CD62L⁻

148 $CD44^+$) in spleen. (G1: PBS, G2: OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5:

¹⁴⁹ CaP-OMVs@P2O-Ads, G6: Intra-Ads high does).

150

151 **Supplementary Figure 31.** Relative quantification of effector memory T cells 152 $(CD3^+CD8^+CD62L^-CD44^+)$ in spleen. Data are presented as mean \pm SD (n = 3 mice). ***P* < 0.01 by 153 two-tailed Student's t-test. Source data are provided as a Source Data file. (G1: PBS, G2: 154 OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P₂O-Ads, G6: Intra-Ads 155 high does)

157 **Supplementary Figure 32.** The experimental result of the co-culture assay. Data are presented as 158 mean \pm SD (n = 3 independent experiments). ***P* < 0.01, *****P* < 0.0001 by two-tailed Student's 159 t-test. Source data are provided as a Source Data file. (It's worth noting here that PBS represents T 160 cells extracted from mice in the PBS group, and other groups as above.)

162 **Supplementary Figure 33.** Images of representative tumors of different treated groups on the 12th

- 163 day. Data are presented as mean \pm SD (n = 5 mice). *P < 0.05, ***P < 0.001 by two-tailed Student's
- 164 t-test. Source data are provided as a Source Data file.

Supplementary Figure 34. Representative photos of primary tumor surgery and postoperative
recurrence. (G1: PBS, G2: OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5:
CaP-OMVs@P₂O-Ads).

169

170 Supplementary Figure 35. Body weight changes of TC-1-bearing mice after administration of

171 different formulations. Data are presented as mean \pm SD (n = 5 mice). N.S. (No Significance) P >

172 0.05 by two-tailed Student's t-test. Source data are provided as a Source Data file. (G1: PBS, G2:

173 OMVs@P2O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5: CaP-OMVs@P2O-Ads).

Supplementary Figure 36. Images of representative primary tumors after different treatments at 45
days (n=5). (G1: PBS, G2: OMVs@P2O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5:
CaP-OMVs@P2O-Ads).

Supplementary Figure 37. Images of representative distant tumors after different treatments at 45
days (n=5). (G1: PBS, G2: OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5:
CaP-OMVs@P₂O-Ads).

183 **Supplementary Figure 38.** Survival curves for treated bodies. Data are presented as mean \pm SD (n 184 = 5 mice). ****P < 0.001 by two-tailed Student's t-test. Source data are provided as a Source Data 185 file. (G1: PBS, G2: OMVs@P₂O-Ads, G3: CaP-OMVs-Ads, G4: Intra-Ads, G5: 186 CaP-OMVs@P₂O-Ad)

188 Supplementary Figure 39. The gating strategy of CD8⁺ T cells (CD45⁺CD3⁺CD8⁺) in the tumor.

189 (cf. Figure 5d and Supplementary Figures 14 and 24)

191 Supplementary Figure 40. The gating strategy of Treg cells (CD45⁺CD3⁺CD4⁺FOXP3⁺) in the

192 tumor. (cf. Figure 5e)

194 Supplementary Figure 41. The gating strategy of MHC-II⁺DC cells (CD45⁺CD11c⁺MHC-II⁺) in

195 the tumor. (cf. Figure 5f)

196

197 Supplementary Figure 42. The gating strategy of M1-like macrophages (CD45⁺F4/80⁺CD80⁺) in

¹⁹⁸ tumor. (cf. Supplementary Figure 26)

199

200 Supplementary Figure 43. The gating strategy of M2-like macrophages (CD45⁺F4/80⁺CD206⁺) in

²⁰¹ tumor. (cf. Supplementary Figure 28)

203 Supplementary Figure 44. The gating strategy of effector memory T cells (CD3⁺ CD8⁺ CD62L⁻

204 CD44⁺) in spleen. (cf. Supplementary Figure 30)

205 Supplementary Tables

Name	Dilution	Validation	Company name	catalog number	Clone number
LC3B pAb	1:1000	WB	ABCLONAL	A5601	No
SQSTM1/p62	1:100	IF	ABCLONAL	A11247	No
LC3B pAb	1:100	IF	ABCLONAL	A11282	No
CD8b Antibody	1:100	IF	Abmart Inc.	PK12778	No
CD45 Antibody	1:250	Flow	Biolegend	103130	30-F11
Fixable					
Viability	1:250	Flow	BD Biosciences	564406	No
Stain 510					
BV650 Rat		Flow BD Bioscienc		563854	XMG1.2
Anti-Mouse	1:250		BD Biosciences		
IFN-γ(XMG1					
.2)					
BV605 Rat	1:250	1:250 Flow B		563413	M5/114.15.2
Anti-Mouse			BD Biosciences		
I-A/I-E(M5/1					
14.15.2)					
CD3 Antibody	1:250	Flow	Biolegend	100204	17A2
CD8a	1:250	Flow	Biolegend	100712	53-6.7
Antibody					
FOXP3	1:250	Flow	Biolegend	126404	MF-14
Antibody					
CD69 Antibody	1:250	Flow	BD Biosciences	562920	H1.2F3

206 Supplementary Table 1. Information on antibodies used in this study

MHC-II	1.250	Flow	DD Diagoionaas	562412	M5/11/ 15 2
Antibody	1.250	Flow	BD Blosciences	505415	WI3/114.13.2
CD11c	1.250	Flow	Biolegend	117224	N418
Antibody	1.230			11/324	
F4/80	1:250	Flow	Biolegend	123118	BM8
Antibody					
CD62L	1.250	F 1	Biolegend	104428 103008	MEL-14 IM7
Antibody	1:250	Flow			
CD44	1.050				
Antibody	1:250	Flow			
CD80	1:250	Flow	Biolegend	104714	16-10A1
Antibody				104/14	
CD206	1.250	Flow	Biolegend	141706	C068C2
Antibody	1:250	ГIOW			
CD4	1.250	Flow	bw BD Biosciences	563232	GK1.5
Antibody	1.230	FIOW			
CD80	1.250	Flow	Biolegend	104706	16 10 4 1
Antibody	1.230			104/00	10-10A1
MOUSE	~	Injection	BIOXCELL	BP0061	No
CD8a	Jing				