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Creation of Single-Cell Amplified Genomes (SAGs) from new subsurface sample collections
Lost City Hydrothermal Vent Field hydrothermal fluids

Lost City hydrothermal fluid was collected from the Calypso vent using the ROV Jason
dive J2-1108 in September 2018 during the AT42-01 expedition aboard the R/V Atlantis. Fluid
sampling is described in detail elsewhere [6]. Briefly, fluid from venting chimneys was collected
into sterile chambers and incubated with a 600 pM solution of '3C-formate and 2-3 mL of N,
gas for the duration of the dives which lasted ~14-24 hours. Once shipboard, subsamples were
collected from sample IDs LC00521 J2.1108.17Sept.2009.HOGBIO2 and
J.1108.17Sept. 1853.HOGCHEM 16 SCG1 and preserved for flow cytometric sorting of cells
based on SYTO-9 (plate AH-679) or RedoxSensor™ Green fluorescence (plate AH-958),
respectively, as previously described [1]. SAG generation was done through Bigelow's Single
Cell Genomic Center SAG Generation pipeline (S-201). Select wells were picked for deeper
sequencing through the PostLoCoS (S-203) pipeline. These SAGs were deposited to NCBI under
the BioProject ID PRINA779602 and are listed in Supplemental Table 1.
Supplemental Table 1: New Assemblies under NCBI BioProject PRINA779602, sampled from
the Lost City Hydrothermal Field. Assembly name is used in Supplemental Data File 1 for

further metadata on these assemblies. All assemblies were a part of the main dataset analyzed in
the paper

BioSample Accession Assembly Name GTDB Taxonomic Classification

d__ Bacteria;p__Nitrospirota;c__Thermodesulfovibrionia;o_
SAMN27740587 JALPWHO000000000 AH 679 105 Thermodesulfovibrionales;f UBA9935

d__ Bacteria;p__Nitrospirota;c__Thermodesulfovibrionia;o_
SAMN27740595 JALPWP000000000 AH 679 J10 Thermodesulfovibrionales;f UBA9935

d__ Bacteria;p__Nitrospinota;c__ Nitrospinia;o__Nitrospinales
SAMN27740604 JALPWY000000000 AH_679 007 ;f  Nitrospinaceae;g SCGCAAA288-L16

d__ Bacteria;p__Nitrospirota;c__Thermodesulfovibrionia;o_
SAMN27740611 JALPXF000000000 | AH 679 P17 Thermodesulfovibrionales;f UBA9935

d__ Bacteria;p__Nitrospirota;c__Thermodesulfovibrionia;o_
SAMN27740613 JALPXH000000000 AH 958 A08 Thermodesulfovibrionales;f UBA9935;c  GWB2-47-37

d__ Bacteria;p__Nitrospirota;c__ Thermodesulfovibrionia;o_
SAMN27740620 JALPXO0000000000 AH 958 D16 Thermodesulfovibrionales;f UBA9935

d__ Bacteria;p__Nitrospirota;c__Thermodesulfovibrionia;o_
SAMN27740643 JALPYL000000000 AH 958 K20 Thermodesulfovibrionales;f UBA9935

d__ Bacteria;p__Nitrospirota;c__Thermodesulfovibrionia;o_
SAMN27740644 JALPYMO000000000 AH 958 L11 Thermodesulfovibrionales;f UBA9935

d__ Bacteria;p__Nitrospirota;c__Thermodesulfovibrionia;o_
SAMN27740645 JALPYN000000000 AH 958 L16 Thermodesulfovibrionales;f UBA9935




BLM]1-Inyo 1 Terrestrial Subsurface

Terrestrial Subsurface Groundwater. Monitoring well Inyo-BLM 1 (36.4004N, -
116.4692W, 694 masl.) was drilled to 871 m in 2007 by The Hydrodynamics Group, LLC.
(Redmond, WA) for Inyo County, California and samples the discharge zone of the Death Valley
Regional Flow System (DVRFS) of the Basin and Range (B&R) physiographic province of the
western United States. The well is continuously cased in low-carbon steel to 750 mbls, bypassing
shallower aquifers associated with lake sediments, volcanic tuff, and valley fill alluvium and
produces hot (~60 °C), anoxic groundwater from a faulted zone in Paleozoic sedimentary rocks
that hosts the “Lower Carbonate Aquifer [LCA]”) of the DVRFS [7]. The LCA is recharged via
secondary fracture permeability and “interbasin flow” by groundwater derived from montane
zones 10 to >100 km to the North and East, ultimately discharging to the Death Valley salt pan,
at ~86 masl, the lowest point in North America [8,9]. Halford and Jackson (2020) posit that the
DVREFS is compartmentalized into a shallow, high-transmissivity zone within ~500 m of the
water table where nearly all flow occurs; and a deeper, low-transmissivity zone, which is the
source of water to Inyo-BLM 1 [10]. To assure pristine samples, groundwater was obtained from
a gas-tight manifold after 30 h of continuous high-volume pumping (200 gallon (757 L) per
minute and processed immediately onsite in a nitrogen-flushed glovebag. Samples for flow
cytometric sorting of cells based on SYTO-9 (plate AM-294) or RedoxSensor™ Green
fluorescence (plate AM-297), were preserved on dry ice in the field and held at -80°C prior to
SAG generation through Bigelow Lab's Single Cell Genomic Center SAG Generation pipeline

(S-211).



Supplemental Table 2: New SAG Assemblies from Inyo-BLM1 under NCBI BioProject
PRINAS853307. Assembly name column is used in Supplemental File 1 for further metadata on
these assemblies.

Assembly
BioSample | Accession | Name GTDB Taxonomic Classification

SAMN29377803 | SAMN29377803 | AM_294 NO6 | d_ Bacteria;p__ Nitrospirota;c_Thermodesulfovibrionia;o Thermodesulfovibrionales;f SM23-
35, JACAFFOI

SAMN29377717 | SAMN29377717 | AM_297 G21 | d_ Bacteria;p__ Nitrospirota;c_Thermodesulfovibrionia;o Thermodesulfovibrionales;f SM23-
35,2 JACAFFOI

Resequencing of SAGs from Atlantis Massif subsurface rock samples

Prior work describes the collection and original genomic sequencing and assembly of
SAGs from rock samples collected from the subsurface of the Atlantis Massif, an underwater
mountain that hosts the Lost Coty Hydrothermal Vent field [1]. Here, these SAGs were re-
sequenced to produce more complete assemblies using the S-203 workflow described by the
Single Cell Genomics Center (SCGC) at the Bigelow Laboratory for Ocean Sciences

(https://scge.bigelow.org/capabilities/service-description/), as published elsewhere [2]. These

SAGs were assigned taxonomy using the GTDB-tk classifier (version r202) and a pairwise
Average Nucleotide Identity (ANI) was performed on all SAGs [3, 4]. In order to produce a
more complete assembly representing the underlying population of cells, the reads that produced
SAGs that received the same taxonomic assignment by GTDB-tk and had >98% ANI were co-
assembled using spades (using the —sc flag) [5]. These SAGs were deposited to NCBI under the

BioProject ID PRINA825747 and are listed in Supplemental Table 3.



Supplemental Table 3: New SAG Assemblies from Atlantis Massif under NCBI BioProject
PRINAS&25747. Assembly name column is used in Supplemental File 1 for further metadata on
these assemblies. Bolded Assemblies were used in the main analysis in the paper. Each Letter-
Number code after AH 259 represents a single cell. Co-assemblies contain multiple codes equal
to the number cells included in assembly (two or three).

BioSample Accession Assembly Name GTDB Taxonomic Classification

SAMN27544102 | JALLOE000000000 | AH 259 D15 M11 P09 | d_ Bacteria;p__Nitrospirota;c _ Nitrospiria;o _ Nitrospirales;f Nitrospiraceae

SAMN27544101 | JALLOF000000000 AH 259 B05 G02 121 Bacteria;p__ Nitrospinota A;c  UBAS8248

d
SAMN27544098 | JALLOI0O00000000 AH-259-F20 d Bacteria;p  Nitrospinota A;c  UBA8248
SAMN27544096 | JALLOK000000000 | AH-259-D05 d

Bacteria;p _Acidobacteriota;c UBA6911;0 RPQKOI;f RPQKO1;g

)

Detailed Description of Phylogenomic Multiple Sequence Alignment (MSA) construction.
Diamond was used to search the assemblies for single copy marker genes from the
Bac120 database using the following parameters: blastp --quiet --threads 1 --outfmt 6 --more-
sensitive --id 50 --max-hsps 35 -k 0 [3, 14]. MAFFT was used to align the protein sequences for
each marker gene using the —auto flag [15]. The MSAs were trimmed using trimAL with the —
gappyout option [16]. Additionally, columns with more than 85% gaps or with >95% identical
amino acid composition were removed. Sequences with >75% gaps were also removed. Trident
was used to score the columns to identify the most phylogenetically informative positions [17].
The top 25 were used from each MSA. The resulting data from each MSA was then
concatenated into the final alignment used for phylogenomic tree inference. This alignment and
trimming procedure resulting in 1900 positions for the outgroup-rooted Nitrospirota alignment
(Figure 1, 5, 6) and 3958 for the MAD rooted alignment without the use of an outgroup (Figures
3, 8). The alignment for outgroup-rooted Nitrospinota contained 2425 positions and the M.A.D

tree alignment contained 2274 positions.
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Supplemental Data File Descriptions:

Supplemental Data 1: Assembly names, CheckM assembly statistics and GTDB classifications
for all assemblies used in the analysis, including sampling habitat used in ASR analysis and
coordinates of sampling site.

Supplemental Data 2: Consensus annotations for gene clusters enriched in the basal
Nitrospirota classes as delineated by the hierarchical clustering displayed in Supplemental
Figure 5. Annotation data from KOFAMSCAN and eggNOG are summarized

Supplemental Data 3: Consensus annotations for gene clusters enriched in the Nitrospirota
class Nitrospiria as delineated by the hierarchical clustering displayed in Supplemental Figure 5.
Annotation data from KOFAMSCAN and eggNOG are summarized

Supplemental Data 4: Consensus annotations for gene clusters identified to have >0.5 posterior
probability of being present in the Last Common Ancestor of Nitrospirota. Annotation data from
KOFAMSCAN and eggNOG are summarized

Supplemental Data 5: Consensus annotations for gene clusters enriched in the basal
Nitrospinota classes as delineated by the hierarchical clustering displayed in Supplemental
Figure 5. Annotation data from KOFAMSCAN and eggNOG are summarized

Supplemental Data 6: Consensus annotations for gene clusters enriched in the Nitrospinota
class Nitrospinia as delineated by the hierarchical clustering displayed in Supplemental Figure 5.
Annotation data from KOFAMSCAN and eggNOG are summarized

Supplemental Data 7: Consensus annotations for gene clusters identified to have >0.5 posterior
probability of being present in the Last Common Ancestor of Nitrospinota. Annotation data from

KOFAMSCAN and eggNOG are summarized



Supplemental Figures

Data Curation NCBI and IMﬁ data download
and Metadata
Production Remove duplicate assemblies submitted to both

databases

Quality filter assemblies:
CheckM ga pipeline, filter genomes based
on >50% Completion, <10% Contamination

Remove nearly identical assemblies from dataset Bennis Meteciein

using dRep
Annotate assemblies = Supplemental File 1
using GTDB-tk
Gene Clustering QC’ed Assemblies
and 1l
Annotations Diamond BlastP, MinBit Filtering,
MCL Clustering anvio__pan?enome__automation.py
split_anvio_gc_fasta.py
eggNOG Consensus Annotation
eggnong_consensus_annotation.py
Non-Phylogenetic Statistical Analysis
Subset sequences from individual phyla
(Nitrospirota and Nitrospinota)
filter_fasta.py
Make Genome X GC Count Table
create_gc_table.py
Heirarchical Clustering
Proportion GLM
Enriched Gene Clusters
Phylogenetic - based Statistical Analysis
ASR gene cluster analysis Gene-tree species-tree reconciliation
Filter GC count table Individual phyla gene clusters
present in >10% genomes present in >10% genomes
MrBayes ASR Align Gene Clusters

1 indiviackjgl phylogeny parra::e:_rafft'py
M R. Ititrait arrallel_trimal.
Filter Results o Make Gene Treeps o Py

>0.5 Posterior Probabilty at | gene_trees_parrallel.py
Roothode AL Reconcllllatlc‘)n‘ generax
LCA gene clusters speciation results individual phylogeny
LCA genome cartoons Filter speciation results
Speciation Figure
Supplemental Figure 1: Workflow diagram for the bioinformatic analyses performed for this

study. The resulting set of assemblies with metadata described in the top box is Supplemental

File 1. All scripts used to process the data can be found at: https://github.com/ts-

dangelo/bioinformatic_scripts_python
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phylogenomic trees are the consensus tree produced used the Bac120 marker set (min 12 genes)
using the PhyloPhlan pipeline to create the alignments and IqTree with ModelFinder and 1000
ultra-fast non-parametric bootstraps. The model LG+F+G4 was chosen via the Bayesian
Information Criterion (BIC) score by Model Finder. The outgroup rooted tree is rooted in the

branch separating the Desulfobacterota D from Desulfobacterota (class

i
§
&
@
S
g
g
)



Thermodesulfobacteria), and includes Nitrospirota A (collapsed pink clade). The midpoint
rooted tree is the consensus tree of 1000 ultra-fast non-parametric bootstrap trees. The MAD tree
is the same tree as the midpoint tree but rooted using Minimal Ancestor Deviation. The

outgroup rooted tree is used for Figures 1, 5, 6 and the MAD rooted tree was used for LCA and

reconciliation-based methods (Fig. 3, 8).
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Supplemental Figure 3: Phylogenomic comparisons of tree rooting methods for Nitrospinota. All
phylogenomic trees are the consensus tree produced used the Bac120 marker set (min 12 genes)
using the PhyloPhlan pipeline to create the alignments and IQ-TREE with ModelFinder and
1000 ultra-fast non-parametric bootstraps. The model LG+F+G4 was chosen via the Bayesian
Information Criterion (BIC) score by Model Finder. The outgroup rooted tree is rooted in the
branch separating the Desulfobacterota D from Desulfobacterota (class
Thermodesulfobacteria), and includes Nitrospinota_ A (collapsed pink clade). The midpoint
rooted tree is the consensus tree of 1000 ultra-fast non-parametric bootstrap trees. The MAD tree
is the same tree as the midpoint tree but rooted using Minimal Ancestor Deviation. The
outgroup rooted tree is used for Figures 1, 5, 6 and the MAD rooted tree was used for LCA and

reconciliation-based methods (Figures 3, 6).
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Supplementary Figure 9: A phylogeny for dsr4 gene cluster GC_00001108 with RefSeq-quality
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monophyletic clade, with one instance of a clade of Nitrospirota sequences existing within
Desulfobacterota. Presumed oxidative rDSR dsrA4 sequences from both Nitrospirota and
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Supplemental Figure 10: Presence/absence heatmap of gene clusters with consensus annotations
for oxygen-reducing terminal oxidases and oxygen-utilizing electron transport components from
KEGG map00190. The rows are ordered by hierarchical clustering of the present/absence

patterns in Nitrospirota.



