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Evaluation metrics not requiring reference segmentation 

Coverage Metrics 

The general assumption of coverage metrics is that a tissue image should be mostly occupied by 

cells except for readily detectable areas corresponding to ducts, blood vessels, or tissue borders. 

Therefore, we assume that a good segmentation should generate a mask that covers most areas of 

the tissue in an image.  

 

Number of cells per 100 square microns (NC) 

The principle is that cell density is a measure of the quality of both the image and the 

segmentation method.  The pixel size in square microns varies in different image modalities. To 

calculate the density, pixel sizes in the X and Y dimensions are directly obtained from OME-

TIFF metadata.  The metric is defined as  

NC =
𝑛!

𝑠" × 𝑛"
× 100 



where 𝑛! is the number of cells in the cell mask, 𝑠" is the size of one pixel in squared microns, 

𝑛" is the total number of pixels in the corresponding image. 

 

Given the binary foreground-background separation (see Foreground-background separation) 

of a tissue image, we designed the following three coverage metrics with the general assumption 

that an accurate segmentation mask will cover most tissue areas (i.e., the foreground) but few 

background areas.  

 

Fraction of image foreground occupied by cells (FFC).  

FCF =
𝑎!#
𝑎#

 

where 𝑎!# is the area of a cell mask in the foreground and 𝑎# is the area of the foreground. 

 

Fraction of image background occupied by cells (FBC) 

FBC =
𝑎!$
𝑎$

 

where 𝑎!$ is the area of a cell mask in the background and 𝑎# is the area of the background.  

 

1 minus FBC is used as the metric, so that larger values indicate better segmentation. 

 

Fraction of cell mask in foreground (FCF) 

FCF =
𝑎!#
𝑎!

 

where 𝑎!# is the area of a cell mask in the foreground and 𝑎! is the area of the cell mask. 

 

After matching the cell and nuclear masks (see Mask processing), we calculated the fraction of 

matched cells and nuclei, assuming that segmented cells and nuclei should have a one-to-one 

correspondence relationship. 



 

Fraction of match between cells and nuclei (FMCN) 

FMCN =
𝑛%

𝑛!%& + 𝑛'%& + 𝑛%
 

where 𝑛% is the number of matched cells and nuclei, 𝑛!%& is the number of mismatched cells, 

𝑛'%& is the number of mismatched nuclei. 

 

Homogeneity Metrics 

To measure the homogeneities of pixel intensities and integrated cell intensities from a 

segmentation method, we developed another category called homogeneity metrics. At the pixel 

level, the principle is that the pixels outside of the cells but still within the image foreground 

should be similar in protein composition (i.e., should consist of extracellular matrix of similar 

composition).  The coefficient of variation (CV) of the foreground pixels outside the cells 

(Supplementary Figure 16a) for each channel was calculated and then the average CV across all 

channels was taken. 

 

Average CV of foreground pixels outside the cells (ACVF). 

ACVF =
1
𝑛(
)

𝜎&#
𝜇&

'!

&)*

 

where 𝑛( is the total number of image channels, 𝜎&# is the standard deviation of pixel 

intensities of the 𝑖+( channel in the foreground outside the cells, 𝜇& is the mean of all pixel 

intensities in the 𝑖+(channel.   

 

The reciprocal of ACVF+1 is used as the metric, so that higher values indicate better 

segmentation and its upper bound is 1. 

 



We applied the Principal Component Analysis (PCA) on the matrix of all foreground outside-

the-cell pixel intensities across all channels after z-score standardization on each channel was 

applied and the fraction of variance explained by the first principal component was calculated. A 

higher value of the fraction stands for a more conserved relationship across channels in the 

foreground outside the cell areas (Supplementary Figure 16a). 

 

Fraction of first PC of foreground pixels outside the cells (FPCF). 

FPCF =
λ#*

𝑡𝑟0Σ#2
 

where λ#* is the variance explained by the first principle component (PC) across channels for 

the foreground pixels outside the cells, Σ# is the covariance matrices from PCA analysis on the 

foreground pixels outside the cells across all channels, 𝑡𝑟( ) is trace calculation on a matrix. 

 

At the cell level, the principles are that (a) cell types should be roughly similar in composition 

across all channels, (b) cell types can be approximated by cell clusters, (c) the average CV across 

all clusters for a given number of clusters is a proxy for similarity in composition within cell 

types, and (d) averaging the average CV across all clusters across different numbers of the 

cluster is also a proxy for similarity in composition within cell types. Cell types were defined 

using KMeans clustering performed on the mean cell intensities across all channels after 

applying z-score standardization for each channel. Since the number of cell types in an arbitrary 

image is unknown, K, the number of clusters, was varied from 1 to 10. Note that the KMeans 

clustering was applied on the cell mask to define the cell type, which generated cell type labels 

of each number of clusters used in the following metric calculation for each cellular component 

mask (Supplementary Figure 16b).  

 



For the clusters from each K value, the average CV for each cluster across channels was 

calculated followed by an average weighted by the cluster size. The final metric was calculated 

as the average of the weighted average coefficient of variation across all clusters over 1 to 10 

clusters.  

 

Average of weighted average CV of cell type intensities over 1-10 clusters (ACVC) 

ACVC =
1

𝐾%,- − 𝐾%&' + 1
) 7

1
𝑛!
)(𝐶𝑉).

/

.)*

⋅ 𝑛.;
/"#$

/)/"%&
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*
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&)*  

where 𝐾%&' is the smallest number of clusters, 𝐾%,- is the largest number of clusters, 𝐾 is the 

current number of clusters, 𝑛!is the total number of cells, 𝐶𝑉. is the coefficient of variation of 

mean cell intensities in 𝑘+( cluster, σ.& and µ.& is the standard deviation and the mean of mean 

cell intensities of 𝑘+( cluster in 𝑖+( channel respectively, 𝑛. is the number of cells in 𝑘+( 

cluster, 𝑛( is the total number of image channels.  

 

The reciprocal of ACVC+1 is used as the metric, so that higher values indicate better 

segmentation and its upper bound is 1. 

 

A similar measure was derived using principal component analysis.  The first two principles are 

the same as above but (c) the fraction of variance accounted for by the first principal component 

of the cells in each cluster is a proxy for similarity in composition of each cell type, and (d) 

averaging this fraction over different numbers of clusters is also a proxy for similarity of each 

cell type. We, therefore, applied PCA on the mean cell intensities across z-score standardized 

channels of each number of cluster and calculated the average fraction of variance accounted for 

by the first principal component across all numbers of clusters. The output vector was averaged 

over different K values to get the final metric.  



 

Average of weighted average fraction of the first PC of cell type intensities over 1-10 clusters 

FPCC =
1

𝐾%,- − 𝐾%&' + 1
) 7

1
𝑛!
)

λ.*
𝑡𝑟(Σ.)

/

.)*

⋅ 𝑛.;
/"#$

/)/"%&

 

where 𝐾%&' is the smallest number of clusters, 𝐾%,- is the largest number of clusters, 𝐾 is the 

current number of clusters of choice, 𝑛! is the total number of cells, λ.* is the variance 

explained by the first principle component in 𝑘+( cluster, Σ. the covariance matrices from PCA 

on mean cell intensities across all channels in 𝑘+( cluster, 𝑛. is the number of cells in the 

current cluster. 

 

We also incorporated the Silhouette score as a metric to indicate the similarity of composition 

across cell types. Since the Silhouette score equals 1 when there is only one cluster, we started 

with two clusters to calculate this metric. 

 

Average of Silhouette score of clustering over 2-10 clusters (AS) 

AS =
1

𝐾%,- − 𝐾%&' + 1
) @

1
𝑛!
)

𝑏(𝑖) − 𝑎(𝑖)
max	(𝑎(𝑖), 𝑏(𝑖))
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a(𝑖) =
1

|𝐾&| − 1
) 𝑑(𝑖, 𝑗)

2∈/%,&52

 

b(𝑖) = min
65&

1
|𝐾6|

) 𝑑(𝑖, 𝑗)
2∈/)

 

where 𝐾%&' is the smallest number of clusters, 𝐾%,- is the largest number of clusters, 𝐾 is the 

current number of clusters of choice, 𝑎(𝑖) is the average distance between cell 𝑖 and all the 

other cells 𝑗 in the cluster 𝐾& to which cell 𝑖 belongs, 𝑏(𝑖) is the minimum average distance 

from cell 𝑖 to all cells 𝑗 in all clusters 𝐾6 to which 𝑖 does not belong, 𝑛! is the total number of 

cells. 



 

In addition, we assumed that properly segmented images should have similarly sized cells. 

 

Standard Deviation of cell size (CSSD) 

CSSD = N
∑ (𝑠& − 𝜇7)8
'(
&)*

𝑛!
 

where 𝑠& is the size of 𝑖+( cell, µ7 is the mean size of all cells, 𝑛! is the total number of cells. 

 

The reciprocal of ln(CSSD)+1 is used as the metric, so that higher values indicate better 

segmentation and its upper bound is 1. The natural logarithm is taken to close the large 

difference of CSSD between methods. 

Foreground-background separation 

To assess the coverage of the segmentation mask, each image was separated into regions 

consisting primarily of foreground and background. To do this, mean thresholding was applied to 

the nuclear, cytoplasmic, and cell membrane channels respectively, followed by performing two 

rounds of morphological closing with disk kernel of radius 1 and 10, respectively, on the union 

of three thresholded binary images. Each round consists of a foreground closing to bridge the 

small (first round) or large (second round) gaps between cells within the tissue and a background 

closing on the inverted image to reunite the overly scattered background. An area closing was 

subsequently applied and considered those areas with 0 values as the extra-cellular matrices in 

the foreground (and assign 1) if they are less than 5000 pixels, which can be tuned according to 

the image resolution. To further correct the resulting rounded boundaries, a morphological 

geodesic active contour was applied on the inverted image with current background areas as 

seeds, followed by an area closing to remove the small dots in the background. The final output 

is a binary mask with 1 as foreground and 0 as background (Supplementary Figure 17). 



Evaluation metrics for the similarity between two segmentation methods 

Difference between the evaluation metrics of two masks 

We assumed that the values of evaluation metrics for a single segmentation should be close for 

two similar segmentation methods. We took the absolute difference of each pair of metrics 

between two masks as the first set of metrics to evaluate the similarity between the two methods. 

 

Pairwise metrics 

We designed and adopted metrics for comparing two segmentation methods. Some of the 

following pairwise metrics were summarized by (Taha & Hanbury, 2015). 

 

Number of Matched Cells (NMC) 

We hypothesized that a large number of segmented cells should be overlapped for similar 

segmentation methods. We defined the metrics as the number of cell pairs from two 

segmentations that have an overlap fraction greater than a fraction of the larger cell in each pair. 

When one cell in a mask overlaps with multiple cells in another mask, only the one with the 

largest overlap is considered matched.  

NMC(𝑆*, 𝑆8) =))I9-%∩;*9<"=>?@|-%|,9;*9B
2&

 

where 𝑆*, 𝑆8 are two segmentation masks, I is the indicator function, 𝑥& and 𝑦2 is 𝑖+( and 𝑗+( 

cell in 𝑆* and 𝑆8 respectively, overlap fraction threshold 𝑝 is a free parameter. We took 𝑝 =

0.5. 

 

Threshold AUC (TAUC) 

We assumed that similar segmentation methods should have masks with an overall good overlap 

of cells for varying overlap fraction thresholds. We calculated the area under the curve of the 

percentage of overlapping cells vs overlap fraction threshold while the threshold ranged from 0 



to 1. The percentage of overlapping cells is the number of cell pairs that have an overlap fraction 

greater than the threshold, normalized by the smaller cell numbers of two masks. 

 

Average Jaccard index (AJI) 

We assumed that the overall similarity between matched cells should be high for similar 

segmentation methods. An average Jaccard index (Jaccard, 1912; Tanimoto, 1958) over all pairs 

of matched cells is thus calculated as a metric. 

𝐴𝐽𝐼(𝑆*, 𝑆8) =
1
𝑛%

)
|𝑥& ∩ 𝑦&|
|𝑥& ∪ 𝑦&|&

 

where 𝑆*, 𝑆8 are two segmentation masks, 𝑥& and 𝑦& is 𝑖+( pair of matched cells, 𝑥& ∈ 𝑆*, 𝑦& ∈

𝑆8, 𝑛% is the total number of matched pairs. 

 

Average Dice Coefficient (ADC) 

With the same assumption as for the Jaccard index, we also calculated an average Dice 

coefficient (Dice, 1945; Sorensen, 1948) over all pairs of matched cells.  

𝐴𝐷𝐶(𝑆*, 𝑆8) =
1
𝑛%

)
2|𝑥& ∩ 𝑦&|
|𝑥&| + |𝑦&|&

 

where 𝑆*, 𝑆8 are two segmentation masks, 𝑥& and 𝑦& is 𝑖+( pair of matched cells, 𝑥& ∈ 𝑆*, 𝑦& ∈

𝑆8, 𝑛% is the total number of matched pairs. 

 

Average Hausdorff Distance (AHD) 

We assumed that each pair of matched cells should have a close spatial distance for similar 

segmentation methods. We selected Hausdorff distance (Birsan & Tiba, 2005; Rockafellar & 

Wets, 2009) as the metric to measure the spatial distance between cells.  

𝐴𝐻𝐷(𝑆*, 𝑆8) =
1
𝑛%

)max7sup
,∈-%

inf
$∈;%

𝑑 (𝑎, 𝑏), sup
$∈;%

inf
,∈-%

𝑑 (𝑎, 𝑏);
&

 



where 𝑆*, 𝑆8 are two segmentation masks, 𝑥& and 𝑦& is 𝑖+( pair of matched cells, 𝑥& ∈ 𝑆*, 𝑦& ∈

𝑆8, 𝑎, 𝑏	are the pixels in 𝑥& and 𝑦& cells respectively, d is the distance between two pixels, and 

𝑛% is the total number of matched pairs. 

 

Bidirectional Consistency Error (BCE) 

We assumed two similar segmentation methods should be consistent with the regions of each 

pixel that belongs. Bidirectional Consistency Error (Martin, 2002) measures the error between 

two segmentation methods in terms of the regions over all pixels. 

𝐵𝐶𝐸(𝑆*, 𝑆8) =
1
𝑛"
max7)𝐸(𝑆*, 𝑆8, 𝑝&)

&

,)𝐸(𝑆8, 𝑆*, 𝑝&)
&

; 

𝐸(𝑆*, 𝑆8, 𝑝&) =
|𝑅(𝑆*, 𝑝&) − 𝑅(𝑆8, 𝑝&)|

𝑅(𝑆*, 𝑝&)
 

where 𝑆*, 𝑆8 are two segmentation masks, 𝑝& is 𝑖+( pixel in the image, 𝑅0𝑆2 , 𝑝&2 is the area of 

the region in segmentation 𝑆2 that contains pixel 𝑝&, 𝑛" is the total number of pixels in the 

image. 

 

Error Matrix 

Considering one mask as the reference and the other as the query, we have: 

● True Positive (TP): Total number of overlapping pixels in matched cells 

● False Positive (FP): Total number of pixels that are in query mask but not in reference 

mask 

● True Negative (TN): Total number of all pixels outside both masks 

● False Negative (FN): Total number of pixels that are in reference mask but not in query 

mask 

The following metrics using the error matrix to calculate are symmetric no matter which mask is 

considered as the reference. 

 



Cohen’s Kappa (CK) 

Cohen’s Kappa (McHugh, 2012) measures the agreement between raters. In this study, each 

segmentation method is a rater to the image. We assumed that two segmentation methods should 

agree with each other in terms of Cohen’s Kappa if they are similar.  

𝐶𝐾(𝑆*, 𝑆8) =
𝑓, − 𝑓!
𝑛" − 𝑓!

 

𝑓, = 𝑇𝑃 + 𝑇𝑁 

𝑓! =
(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑃)(𝐹𝑁 + 𝑇𝑃)

𝑛"
 

where 𝑆*, 𝑆8 are two segmentation masks, 𝑛" is the total number of pixels in the image. 

 

Mutual Information (MI) 

We assumed that one segmentation should provide most of the information for the other when 

they are similar. We applied mutual information (Shannon, 1948) to measure the reduction in 

uncertainty of one segmentation to another. 

𝑀𝐼(𝑆*, 𝑆8) = 𝐻(𝑆*) + 𝐻(𝑆8) − 𝐻(𝑆*, 𝑆8) 

𝐻(𝑆) = −)𝑝0𝑆&2 log 𝑝 0𝑆&2
&

 

𝐻(𝑆*, 𝑆8) = −)𝑝0𝑆*& , 𝑆8
22

&2

log 𝑝 0𝑆*& , 𝑆8
22 

𝑝(𝑆**, 𝑆8*) = 𝑇𝑃/𝑛"						𝑝(𝑆**) = (𝑇𝑃 + 𝐹𝑁)/𝑛" 

𝑝(𝑆**, 𝑆88) = 𝐹𝑁/𝑛"						𝑝(𝑆*8) = (𝑇𝑁 + 𝐹𝑁)/𝑛" 

𝑝(𝑆8*, 𝑆*8) = 𝐹𝑃/𝑛"						𝑝(𝑆8*) = (𝑇𝑃 + 𝐹𝑃)/𝑛" 

𝑝(𝑆*8, 𝑆88) = 𝑇𝑁/𝑛"						𝑝(𝑆88) = (𝑇𝑁 + 𝐹𝑃)/𝑛" 

where 𝑆*, 𝑆8 are two segmentation masks, 𝑛" is the total number of pixels in the image; 

superscript = 1 means segmented cell region in the mask, 2 means segmented background region 

in the mask. 

 



Variation of Information (VOI) 

We assumed that similar segmentation methods should provide nearly amount of information. 

We applied the variation of information (Arabie & Boorman, 1973; Meilă, 2003; Unruh & 

Zurek, 1989) to measure the amount of information lost (or gained) when changing from one 

segmentation to another.  

𝑉𝑂𝐼(𝑆*, 𝑆8) = 𝐻(𝑆*) + 𝐻(𝑆8) − 2𝑀𝐼(𝑆*, 𝑆8) 

where 𝑆*, 𝑆8 are two segmentation masks, 𝑀𝐼 is the mutual information metric. 

Volumetric Similarity (VS) 

We assumed that similar segmentation methods should generate segmentation masks with 

similar area. While Average Hausdorff Distance is majorly considering the similarity of 

boundaries and shapes between two cell masks, we also applied volumetric similarity (Taha & 

Hanbury, 2015) to measure the similarity in terms of segmented area. 	

𝑉𝑆(𝑆*, 𝑆8) = 1 −
|𝐹𝑁 − 𝐹𝑃|

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁	

where 𝑆*, 𝑆8 are two segmentation masks. 

 

  



Supplementary Tables 

Supplementary Table 1 Summary of nuclear, cytoplasmic, and cell membrane channels for each 
imaging modality 

 Number of 

images (tiles) 

Nuclei Cytoplasm Cell 

Membrane 

CODEX-Standford 96 Hoechst1 Cytokeratin CD45 

CODEX-Univ. of Florida 297 DAPI CD107a E-cadherin 

MIBI 10 HH3 PanKeratin E-cadherin 

Cell DIVE 221 DAPI Cytokeratin P-cadherin 

IMC 13 lr191/Histone SMA HLA-ABC 

 

 

 

 

 

 

 

 

 
 

 



Supplementary Table 2 Summary of markers as cell segmentation input 

 

 
 

  

Marker Target 
Subcellular 
Localization 

Source 

DAPI DNA Nucleus (Kapuscinski, 1995) 

Hoechst DNA Nucleus (Latt & Stetten, 1976; Latt et al., 1975) 

Ir191 DNA Nucleus (Sumatoh et al., 2017) 

Histone/HH3 histone Nucleus https://www.uniprot.org/uniprotkb/B4E380/entry#subcellular_location 

E-cadherin CDH1 
Cell 
membrane 

https://www.uniprot.org/uniprotkb/P12830/entry#subcellular_location 

HLA-ABC 
MHC class 
I antigen 

Cell 
membrane 

https://www.uniprot.org/uniprotkb/O19689/entry#subcellular_location 

P-cadherin CDH3 
Cell 
membrane 

https://www.uniprot.org/uniprotkb/P22223/entry#subcellular_location 

CD45 

Receptor-
type 
tyrosine-
protein  

Cell 
membrane 

https://www.uniprot.org/uniprotkb/P08575/entry#subcellular_location 

SMA 
Smooth 
muscle 
actin 

Cytoplasm https://www.uniprot.org/uniprotkb/P63267/entry#subcellular_location 

CD107a LAMP1 Cytoplasm https://www.uniprot.org/uniprotkb/P11279/entry#subcellular_location 

PanKeratin/ 
Cytokeratin 

intermediate 
filament 

Cytoplasm https://www.uniprot.org/uniprotkb/Q16195/entry#subcellular_location 



Supplementary Figures 

 
Supplementary Figure 1 To select grided tiles with dense cells, we calculated three image quality 
metrics for every channel of each tile of Cell DIVE grided images: 1. Signal To Noise Otsu: The 
Otsu method is used to choose an intensity threshold for each channel and the ratio of the average 
intensities above and below the threshold is calculated for each channel. 2. Signal to Noise Z-
Score: The ratio of the mean intensity to the standard deviation of intensity is calculated for each 
channel. 3. Total Intensity: The sum of intensities is calculated for each channel. With three metrics 
of every channel, we constructed a matrix with each row as a tile and each column as a metric of 
a channel of this tile. We applied KMeans clustering on this matrix with number of cluster=3. To 
better illustrate the clustering result, we applied PCA on the same matrix. Each dot on the figure 
above is a tile. The tiles in blue cluster are nearly empty. The red tiles have few cells or extra-
cellular matrix. The green cluster contains 221 tiles with abundant cells and tissue areas, which we 
eventually used as Cell DIVE data in our segmentation-evaluation pipeline. 
  



 
Supplementary Figure 2 The illustration of the postprocessing mask repair step. The red pixels are 
the cell boundaries from the cell segmentation. The blue pixels are the nuclear boundaries from 
the nuclear segmentation. Both segmentations are from the same method (DeepCell 0.9.0 cell 
membrane). The yellow pixels are the overlap between cell and nuclear boundaries before repair. 
In the repair step, we trimmed the nuclear boundaries outside and on the cell boundaries to make 
sure the nuclei are completely within the cells (no yellow pixels remain). Cell without matching 
nucleus and nucleus without matching cells were removed.     



 

Supplementary Figure 4 Top 2 Principal components of previous versions of DeepCell and 
Cellpose on images from all modalities. Each method is represented by a unique color. All other 
methods are shown in gray. (a) Results from images with Gaussian noise perturbation. (b) Result 
from images with downsampling.   



 
Supplementary Figure 4 Factor loadings of PCA model trained by all segmentation masks across 
all modalities from all methods. (a) Loadings of PC1 (b) Loadings of PC2 



 
Supplementary Figure 5 Ranking of segmentation quality scores of all methods on CODEX 
images 
  



 

 
Supplementary Figure 6 Ranking of segmentation quality scores of all methods on Cell DIVE 
images 
 

  



 
 
Supplementary Figure 7 Ranking of segmentation quality scores of all methods on IMC images 
 
  



 
Supplementary Figure 8 Ranking of segmentation quality scores of all methods on MIBI images 
 
  



 

 

 
Supplementary Figure 9 Ranking of segmentation quality scores of all methods on Small 
Intestine images in CODEX datasets. 
  



 

 
Supplementary Figure 10 Ranking of segmentation quality scores of all methods on Large 
Intestine images in CODEX datasets. 
 
 



 
 
Supplementary Figure 11 Ranking of segmentation quality scores of all methods on Spleen 
images in CODEX and IMC datasets. 
 
  



 
Supplementary Figure 12 Ranking of segmentation quality scores of all methods on Thymus 
images in CODEX and IMC datasets. 
 
  



 

 
Supplementary Figure 13 Ranking of segmentation quality scores of all methods on Lymph 
Node images in CODEX and IMC datasets. 
  



 
Supplementary Figure 14 Merging nuclei in simulating under-segmentation error. After merging 
contacting cells, we merged two separated nuclei (left panel) by operating morphological opening 
with a disk kernel (with tunable diameter) on the binary inverted mask of left panel to connect the 
gap between nuclei. The right panel shows final merged nuclei. 



 
 
Supplementary Figure 15 The breakdown of metrics of simulated under-segmented masks. The 
density metric (NC) decreases with more severe under-segmentation. Cell shape uniformity metric 
is also monotonically decrease from original to the merged masks that have 60% of original cell 
number. Cell uniformity metrics (ACVC, FPCC, AS) have little change because new cell types 
that were introduced by merging contacting cells have high cell uniformity. 
  



 

Supplementary Figure 16. Illustration of evaluation metrics. (a). This image comes from the sum 
of intensities of nucleus (DAPI) and cell membrane (E-cadherin) channels of tile 
R001_X001_Y001 of CODEX image HBM337.FSXL.564 which is of spleen tissue. The red 
contours are from the segmentation result of DeepCell 0.9.0 with cell membrane input on this 
image. (b). Clustered by the mean intensities per cell. We calculated the cell uniformity metrics 
within each cluster and averaged them across clusters.  

  



 
Supplementary Figure 17. Foreground-background segmentation. Mean thresholding was applied 
on the cell membrane (red, E-cadherin), cytoplasm (green, CD107a), and nuclear channels (blue, 
DAPI) images to draw the approximate outlines of tissue (a). The union of these binary images 
was obtained (b) and iterative morphological closing was applied to close the small and large gaps 
within the tissue (c). Lastly, a geodesic active contour was applied with background areas as seeds 
to correct the overly rounded boundaries between foreground and background (d).   
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