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General Methods 

NMR spectra were recorded on Bruker spectrometer (300 or 600 MHz) and CD2Cl2 (δ(1H) = 

5.33 ppm, δ(13C) = 53.7 ppm) was used as solvent, lock and internal standard. The mass 

spectrometry analysis was performed on a Bruker Autoflex Speed MALDI TOF MS (Bruker 

Daltonics, Bremen, Germany) using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile as matrix. Relative molar masses were determined by gel 

permeation chromatography (GPC) with an Aligent Technologies 1260 Infinity LC system 

equipped with two Resipore columns and RI and UV-vis detection. Chloroform was used as 

eluent with a flow rate of 1 mL min-1. The measurements were carried out at 40 ºC and the 

molar masses were calculated relative to polystyrene standards with low dispersity. Recycling 

gel permeation chromatography (rGPC) was performed on JAI HPLC LC 9110 II NEXT with 

fraction collector FC-3310 and GPC columns 2H and 1H (connected in series), the rGPC was 

used with HPLC-grade chloroform at room temperature. Raman spectra were recorded at 

ambient temperature using a Bruker Vertex 70 instrument equipped with a RAM II module 

(Nd-YAG laser, 1064 nm). Thermal gravimetric analyses (TGA) were carried out on Waters 

TGA Q500 by heating the samples from 25 to 1000 oC under Argon atmosphere at a heating 

rate of 10 oC min-1. Fourier transform infrared (FT-IR) spectra were recorded on a Bruker 

Optics ALPHA-E spectrometer with a universal Zn-Se ATR (attenuated total reflection) 

accessory in the 600~4000 cm–1. 

Synthesis 
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Figure S1: Synthetic route to 2a. 

 

The starting materials S1, S2, S5 were synthesized adapting published protocols.1,2 

1,3-Bis(4-(anthracen-9-yl)phenyl)propan-2-one (S3). In a 100 mL Schleck flask, 

compound S1 (1.00 g, 2.72 mmol), 9-anthraceneboronic acid (1.81 g, 8.15 mmol) and K2CO3 
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(1.87 g, 13.60 mmol) were dissolved in 30 mL of toluene, 7 mL ethanol, and 7 mL water, then 

degassed by Ar bubbling for 1h. Pd(PPh3)4 (314 mg, 0.27 mmol) was added into the solution. 

Then the reaction was stirred at 80 °C for 12 h. Afterwards, the reaction mixture was diluted 

with DCM (50 mL) and filtered. The mixture was washed three times with water, dried over 

sodium sulfate, and evaporated. The solid was purified by silica column chromatography 

(eluent: hexane/DCM = 4/1) to give S3 as a yellow solid (1.27 g, 83% yield). 1H NMR (300 

MHz, CD2Cl2) δ 8.52 (s, 2H), 8.06 (d, 8.4 Hz, 4H), 7.70 (d, 8.7 Hz, 4H), 7.55-7.40 (m, 12H), 

7.39-7.29 (m, 4H), 4.05 (s, 4H) (Fig.S2). 13C NMR (75 MHz, CD2Cl2) δ 205.96, 137.97, 

137.16, 134.20, 132.07, 131.96, 130.76, 130.30, 128.86, 127.22, 127.10, 125.97, 125.70, 49.74 

(Fig.S3). HRMS (MALDI-TOF) m/z: [M]+ Calcd for C43H30O 562.2297; found, 562.2297. 

 

Figure S2: 1H-NMR (300 MHz, CD2Cl2) spectrum of S3. 
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Figure S3: 13C-NMR (75 MHz, CD2Cl2) spectrum of S3. 

 

2,5-Bis(4-(anthracen-9-yl)phenyl)-3-phenyl-4-(3((triisopropylsilyl)ethynyl)phenyl) 

cyclopenta-2,4-dien-1-one (S4). To a solution of S2 (387 mg, 0.97 mmol) and S3 (546 mg, 

0.97 mmol) in t-butanol (30 mL) was added a solution of tetrabutylammonium hydroxide (1 M 

in methanol, 0.49 mL). After stirring at 95 °C for 1 h, the reaction was quenched by the addition 

of 1 N HCl (20 mL), and the reaction mixture was extracted three times with dichloromethane. 

The combined organic layers were washed twice with water, dried over sodium sulfate, and 

evaporated to give a purple crude product. Purification by silica gel column chromatography 

(eluent: hexane/DCM = 3/1) gave S4 as a purple solid (756 mg, 85% yield). 1H NMR (600 

MHz, CD2Cl2) δ 8.52 (s, 2H), 8.07 (d, 8.5 Hz, 4H), 7.71 (d, 8.4 Hz, 4H), 7.58-7.52 (m, 4H), 

7.50-7.47 (m, 4H), 7.43-7.30 (m, 12H), 7.27 (t, 7.7 Hz, 1H), 7.21-7.14 (m, 4H), 1.11-1.07 (m, 

21H) (Fig.S4). 13C NMR (150 MHz, CD2Cl2) δ 201.09, 155.87, 154.62, 138.70, 138.54, 137.19, 

137.14, 134.02, 133.70, 133.52, 132.41, 131.96, 131.67, 131.56, 130.77, 130.69, 130.67, 

130.65, 130.56, 130.02, 129.92, 129.40, 128.86, 128.76, 127.24, 127.23, 127.16, 127.14, 

126.12, 126.04, 126.00, 125.78, 125.72, 125.71, 123.97, 106.92, 91.92, 78.11, 18.98, 11.85 

(Fig.S5). HRMS (MALDI-TOF) m/z: [M]+ Calcd for C68H56OSi 916.4100; found, 916.4092. 
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Figure S4: 1H-NMR spectrum (600 MHz, CD2Cl2) of S4. 

 

 

 

Figure S5: 13C-NMR spectrum (150 MHz, CD2Cl2) of S4. 

 

2,5-Bis(4-(anthracen-9-yl)phenyl)-3-(3-ethynylphenyl)-4-phenylcyclopenta-2,4-dien-

1-one (2a). To a solution of S4 (0.90 g, 0.98 mmol) in anhydrous THF (100 mL) was added a 

solution of tetra-n-butylammonium fluoride (1 M in THF, 1 mL) dropwise over 5 min. After 

stirring at room temperature for 1 h, methanol was added to the reaction mixture and solvent 
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was removed in vacuo at 40 °C. Purification by silica gel column chromatography (eluent: 

hexane/DCM = 3/1) yielded compound 2a as a purple solid (597 mg, 80% yield). 1H NMR 

(600 MHz, CD2Cl2) δ 8.53 (s, 2H), 8.07 (d, 8.5 Hz, 4H), 7.73 (dd, 9.0, 4.7 Hz, 4H), 7.59-7.47 

(m, 8H), 7.46 (d, 7.7 Hz, 1H), 7.44 -7.30 (m, 12H), 7.26 (t, 7.8 Hz, 1H), 7.18-7.15 (m, 2H), 

7.07 (dt, 7.8, 1.2 Hz, 1H), 3.15 (s, 1H) (Fig.S6). 13C NMR (150 MHz, CD2Cl2) δ 200.91, 

155.43, 154.59, 138.78, 138.59, 137.17, 137.12, 134.14, 133.62, 133.58, 132.76, 131.96, 

131.67, 131.58, 130.71, 130.68, 130.66, 130.53, 130.51, 129.95, 129.40, 128.87, 128.86, 

128.79, 127.25, 127.24, 127.17, 127.16, 126.66, 126.05, 126.02, 125.89, 125.73, 122.68, 83.39, 

78.14 (Fig.S7). HRMS (MALDI-TOF) m/z: [M]+ Calcd for C59H36O 760.2766; found, 

760.2748. 

 

 

Figure S6: 1H-NMR spectrum (600 MHz, CD2Cl2) of 2a. 

 

 



7 
 

 

Figure S7: 13C-NMR spectrum (150 MHz, CD2Cl2) of 2a. 

 

 

Figure S8: (a) MALDI-TOF MS characterization and (b) GPC curve of 2b. The length of the 

resultant MGNR 2 was calculated to be 371 nm according to the Mw value of 2b. 
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Figure S9: (a) The FTIR spectra of 2b and 2c. (b) UV-vis spectra (solid lines) and fluorescence 

spectra (dashed lines) spectra of 2b and 2c.  

 

 

Figure S10: Representative FTIR spectral regions of 2c (red lines) and pleio-soluble MGNR 

2 (blue lines) show disappearance of the bands derived from mono- and disubstituted benzene 

rings on graphitization. 

 



9 
 

 

Figure S11: Raman spectrum of pleio-soluble MGNR 2 measured at 532 nm. The inset 

displays the RBLM peak at 252 cm-1. 

 

The grafting ratio (GP) of the bulky side-groups in MGNR 2 can be calculated according to 

thermal gravimetric analyses (TGA): 

𝑤𝑤maleimide = 1 − 𝑤𝑤residue �1 +
2𝑚𝑚anthracene

𝑚𝑚backbone
� 

= 1 − 0.29 �1 +
177 ⋅ 2

364 � = 0.43. 

GP =
𝑤𝑤maleimide 𝑚𝑚maleimide⁄
2𝑤𝑤residue 𝑚𝑚backbone⁄ =

0.43 349⁄
2 ⋅ 0.29 364⁄ = 77%, 

where ѡresidue is the weight fraction of the GNR rigid backbone, which still retained after 

thermal treatment over 500 oC according to the TGA curve; 364, 177 and 349 represent the 

molar mass, 𝑚𝑚, of GNR backbone, anthracene and maleimide, respectively. 
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Figure S12: TGA curve of pleio-soluble MGNR 2.  

 

 

Fabrication Procedure of 1b 

Each device is made of doped Si (nominal sheet resistance of 0.001 Ω/cm2) as back-gate and 

300 nm of SiO2 thermally growth on top of it as insulating material. A single chip (1 x 1 cm2) 

hosts 540 pairs of Cr (10 nm) / Au (70 nm) patterned by EBL lithography and metal 

evaporation. CVD graphene was prepared by using a 1% CH4:Ar gas mixture on liquid copper 

at atmospheric pressure and a temperature of 1090 °C. After transferring CVD 

graphene/PMMA stack on top with wet transferring method, 200 nm wide notched ribbon were 

printed on each device followed by an oxygen plasma etching to remove unexposed graphene. 

Before the electroburning, the chips were annealed at 350 °C in an argon atmosphere for one 

hour to further clean the graphene surface.  

 

Transport Properties of 1b 

Room Temperature. The device using 1b was fabricated on a chip of patterned graphene 

electroburnt to open a nanogap separating the graphene leads. The I–VSD characteristics of the 

junction before and after deposition of 1b are shown in Figure S13a. Pre-deposition the 
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transport is dominated by electrode-electrode tunnelling. The sharp increase in conductivity 

after deposition indicates that the nanogap is bridged by MGNRs. 

 

 
Figure S13: (a) I–VSD characteristics of the junction before (blue dots; bottom horizontal axis 

and left vertical axis) and after (red line; top horizontal axis and right vertical axis) deposition 

of MGNRs (1b). A Simmon’s fit (see text) of the empty junction is plotted in a dotted blue 

line. (b) 𝑉𝑉𝑔𝑔 current traces at 𝑉𝑉𝑠𝑠𝑠𝑠=0.1 V for a graphene device before electroburning (yellow 

line) and for the MGNR-carpet junction (blue and red lines) at T = 7 K. (c) 𝑉𝑉𝑠𝑠𝑠𝑠 current traces 

at various 𝑉𝑉𝑔𝑔 at T=7 K.  

 

Low Temperature. Transport spectroscopy at T = 7 K was performed and revealed strong 

current asymmetry both in 𝑉𝑉𝑔𝑔 traces (Fig.S13b) and 𝑉𝑉𝑠𝑠𝑠𝑠 traces (Fig.S13c). Figure S13b shows 

𝑉𝑉𝑔𝑔 traces of a graphene device (before nanogap creation) and a device where several MGNRs 

bridges the gap. The resistance-limited current through the graphene device reaches a minimum 

around 𝑉𝑉𝑔𝑔 = 60 V, which likely corresponds to the Dirac point. The current through the MGNR 

device is considerably higher and depends on the position of the Fermi level. Significant 

hysteresis is present in both devices and can be attributed to trapped charges nearby, e.g. in the 

substrate. Figure S13c shows 𝑉𝑉𝑠𝑠𝑠𝑠  traces with clear current-steps as is typical for sequential 

electron tunnelling. 

Stability diagrams of the device showed Coulomb diamonds of many different sizes, which 

indicate the presence of multiple transport channels with different addition energies (from 

different MGNR lengths) and electrode coupling strengths (Figs.S15a,b,d). The red and the 

black diamond patterns in Figures S15a and S15b highlight Coulomb diamonds originating 

from two different MGNRs (among many) that bridges the nanogap. The gate lever arm, 𝛼𝛼, for 

these two sets were estimated from the slopes of the diamonds as 𝛼𝛼=0.015 and 𝛼𝛼=0.007 for the 
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red and the black sets, respectively. Their respective addition energies, 𝐸𝐸add=150 meV and 

𝐸𝐸add=70 meV were extracted from the height of the diamonds. Figure S15c highlights the 

evolution of the I–VSD characteristics as a function of VG close to a degeneracy point. 

 

 
Figure S14: Stability diagrams of device with 1b acquired at T=7 K after sweeping 𝑉𝑉𝑔𝑔 from 

(a) negative to positive and from (b) positive to negative. Overlays of black and red diamond 

patterns indicate signatures of conduction channels from multiple MGNRs. (c) 𝑉𝑉𝑠𝑠𝑠𝑠  current 

traces acquired at 𝑉𝑉𝑔𝑔 from 50 to 60 V. (d) A section of (b), in the same 𝑉𝑉𝑔𝑔 range as in (c), with 

overlays indicating different Coulomb diamond edges.  

 

Fabrication Procedure of 2 

Each device is made of doped Si (nominal sheet resistance of 0.001 Ω/cm2) as back-gate and 

an insulating layer of 300 nm of SiO2 thermally grown on top of it. A single chip (1 x 1 cm2) 

hosts 874 pairs of Cr (10 nm)/Au (70 nm) patterned by EBL lithography and metal evaporation. 

The whole wafer was then sent to Graphenea for wafer-scale transferring of CVD monolayer 

graphene, with 600 nm of PMMA stacked on top of it. PMMA was then removed by leaving 
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the chip in warm acetone overnight. Negative resist ARN-7500 was spun at 4000 rpm for 60 s, 

baked at 85 °C and exposed in EBL at 300 µC/cm2. 200 nm-wide graphene notches were then 

developed in MF-CD-26 for 60 s, immersed in deionised water for 60 s (no agitation), and 

blow-dried with N2. 

Unwanted graphene features were removed by etching with a Henniker Oxygen Plasma (25 

scmm, 50 % of power for 90 s). Afterwards, chips were immersed in REM-660 for one hour to 

remove cross-linked resist (agitation is not needed). The chips were rinsed in acetone for 1 min, 

followed by 1 min in IPA, and gently blow-dried with N2. Finally, nanogaps were formed using 

an electro-burning protocol and ~8 µL of a 1 mg/mL solution of 2 was drop casted onto the 

chip immediately after the formation of the junction. 

 

 
Figure S15: Room-temperature transport properties of a device with 2 acquired in air before 

and after drop casting. (a) Stability diagram of a device after drop casting. The vertical orange 

line identifies the gate voltage where we extracted the bias trace plotted in (b). (b) I–VSD traces 

after electro-burning of a nanogap (blue filled dots) and after the deposition of 2 on the device 

(orange solid line). The tunnelling current yielded by the electro-burning protocol has been fit 

with the Simmons model (blue line). 

 

Room-temperature Transport Properties of 2 

Figure S16a shows the stability diagram for a device where 2 has been successfully deposited 

through drop casting, taken at room temperature in air. Figure S16b shows the tunnelling 

current of the break–junction after the electro-burning, the Simmons fit3 (fitting paramaters: 

ϕavg = 0.47 eV, pre-factor = 0.62 nA, gap-size = 1.28 nm), and the current level after solution 

containing 2 has been deposited on top of the device. The observed increase in conductance by 

several orders of magnitude after deposition indicates that drop casting has resulted in one 
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MGNR randomly bridging the nanogap. In the main text we discuss that there is only one 

MGNR because there is only one set of Coulomb diamonds in the stability diagrams at low T. 

 

Low-temperature Transport Properties of 2 

Identifying Conductance Peaks of Vibrational Origin. Sequential electron tunnelling 

(SET) events may be assisted or suppressed by molecular vibrational states in accordance with 

the Franck-Condon principle4. An analysis of such phenomenon first requires the identification 

of the vibrational states of the MGNR. Resonant SET manifests as conductance peaks in 𝑉𝑉𝑠𝑠𝑠𝑠 

traces and as conductance ridges in the stability diagram(e.g. as in Fig. 4a in the main text). 

The chemical potential, 𝜇𝜇 = |𝑒𝑒|𝑉𝑉𝑠𝑠𝑠𝑠, of states in resonance with the leads can be read off the 

𝑉𝑉𝑠𝑠𝑠𝑠 axis. 

The conducting regions of the stability diagrams may contain resonant ground- and excited 

states of several origins: electronic, vibrational, spin, and lead. A prerequisite for Franck-

Condon analysis is to isolate the vibrational states. By following the harmonic oscillator model, 

vibrational states are typically evenly spaced in energy, a spacing that does not change 

significantly for different charge states, does not depend on a magnetic field, and run parallel 

to the diamond edges. Electronic states often change significantly for different charge states 

and depends on magnetic fields. Conductance peaks originating from density-of-states 

fluctuations of the graphene leads are often characterised by running non-parallel to the 

diamond edges and exhibiting a periodical pattern of positive and negative differential 

conductance. Therefore, looking for evenly spaced conductance peaks that run parallel to the 

diamond edge, and do not shift or split in a magnetic field, is one method of isolating vibrational 

states from the others. Caution is advised when using this method because not all electronic 

states (e.g. singlets) will split in a magnetic field and may be mistaken for a vibrational state. 

Ab-initio calculations of the vibrational states should be used in combination to verify or 

suggest vibrational modes.  

Visual inspection of the stability diagram in Figure 3d in the main text revealed conductance 

ridges evenly spaced by ~7.5 meV in all conducting regions that did not split with magnetic 

field. To differentiate between slanted conductance ridges from the leads, a script was made to 

average the conductance along lines running parallel to the diamond edges. In this way, only 

conductance ridges running approximately parallel to the diamond edges remained while 

slanted ridges were eliminated. The assumption is thus that the average conductance as a 

function of |𝑒𝑒|𝑉𝑉𝑠𝑠𝑠𝑠 excludes the contribution of the lead transitions. The second assumption is 
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that only peaks separated by ~7.5 meV represent the vibrational states of interest (thereby 

excluding electronic states). Figure S13a shows this procedure. 

 

 

Figure S16: (a) Conductance values along the magenta dashed lines were extracted from the 

SD and averaged to suppress contributions from conductance ridges that are not parallel to the 

diamond edge. (b) The averaged conductance values, 𝐺𝐺𝑎𝑎𝑎𝑎𝑔𝑔, from (a) are plotted as a function 

of 𝜇𝜇 = |𝑒𝑒|𝑉𝑉𝑠𝑠𝑠𝑠  after subtraction of the linear part of 𝐺𝐺𝑎𝑎𝑎𝑎𝑔𝑔. Curves of 𝐺𝐺𝑛𝑛,0
𝑚𝑚𝑎𝑎𝑚𝑚 (see Eq.S1) with 

peak spacing 𝐸𝐸𝑉𝑉 = 7 meV are plotted for different values of 𝛾𝛾. 𝛾𝛾 = 1.4 yields a good fit of our 

data. (c) Visualisation of the following quantities: 𝐸𝐸𝑎𝑎𝑠𝑠𝑠𝑠 , |𝑒𝑒|𝐶𝐶𝑔𝑔 𝐶𝐶𝑠𝑠⁄ = 𝛼𝛼+  and 

−|𝑒𝑒|𝐶𝐶𝑔𝑔 (𝐶𝐶 − 𝐶𝐶𝑠𝑠)⁄ = 𝛼𝛼−  on a stability diagram showing the Coulomb diamond of the N-4 

charge state. (d) Plot showing the dependency of the level arm, 𝛼𝛼 , on 𝑉𝑉𝑔𝑔  for the different 

Coulomb diamonds in Figure 3d (main text). The value of 𝛼𝛼 is highest around 𝑉𝑉𝑔𝑔 = 0 and 

decreases nonlinearly on either side. 

 

Ab–initio Calculations. Ab-initio density functional theory calculations of MGNR were 

implemented with Siesta using PBE GGA functional.5 Sufficient vacuum distance is added 

along the non-periodic directions to avoid unwanted interactions. Numerical atomic 
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pseudopotential was used together with an energy cut-off of 400 Ry. Monkhorst Pack k-point-

grid was chosen to be 20 × 1 × 1along the three Cartesian directions. The structure is optimized 

until the maximum force on the atoms is less than 0.01 eV/Å. 

For the phonon calculations, a k mesh grid was chosen to be 20 × 1 × 1 and energy cut-off 400 

Ry. The dispersion relation is calculated with a supercell size of (3, 1, 1), where 3 represents 3 

unit cells along the periodic direction. Atomic displacement of the Gamma phonon mode is 

visualized with XCrySDen software (Fig.4e in the main text). We need to point out that the 

side groups in our calculation are simplified. Since we have to compromise with the 

computational capability of DFT program, we kept only anthracene structure in the side group. 

 

Figure S17: Phonon dispersion relations of MGNR (a) without and (b) with side groups. The 

phonon modes around 7.5 meV are marked as green in both (a) and (b). (c) and (d) display the 

displacement vectors of the phonon mode at Γ point for molecule without/with side groups 

(showing three repetitive unit cells). (e) and (f) are viewed from the longitudinal direction, 

corresponding to (c) and (d) respectively. 

Figure S14 compares the phonon calculation for MGNR without and with side groups. There 

are many new phonon modes after introducing the side group. Most of the new phonon modes 
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are localized at the side group, while a small proportion of them are the vibration of MGNR 

backbone induced by side group. Nevertheless, from the dispersion relation we can find that 

the phonon mode around 7.5 meV  does not change significantly. The energy at Γ point is 

reduced from 7.86 meV to 7.48 meV. The latter is even closer to the experimental value. This 

vibrational displacement of this phonon mode is the bending of MGNR backbone. With the 

side group working like an anchor for the cove edge, the bending amplitude of backbone is 

suppressed. The displacement of central backbone atoms doesn’t change remains similar but 

the displacement of cove edge atoms is greatly shortened. From this qualitative observation we 

can estimate that the bending will be mostly confined at the backbone centre if we include the 

full side group structure into consideration. 

Fitting the Conductance Peaks of Vibrational Origin. As explained in the main text, 

Franck–Condon theory predicts that conductance peak intensities 𝐺𝐺𝑛𝑛,0
𝑚𝑚𝑎𝑎𝑚𝑚  associated with a 

single vibron in equilibrium follow the progression given by Equation S1: 

𝐺𝐺𝑛𝑛,0
𝑚𝑚𝑎𝑎𝑚𝑚 =

𝛾𝛾𝑛𝑛

𝑛𝑛!
𝑒𝑒−𝛾𝛾, (S1) 

where 𝑛𝑛  is the vibron quantum number and 𝛾𝛾  is the electron–vibron coupling. The 

conductance, averaged along the diamond edge, as explained above, was plotted as a function 

of chemical potential, 𝜇𝜇 = |𝑒𝑒|Δ𝑉𝑉𝑠𝑠𝑠𝑠. The linear background of 𝐺𝐺 was subtracted eliminate other 

contributions than that of the single vibron, such as electronic excited states, density-of-states 

fluctuations and transport assisted by the environment-associated phonon bath. 

𝐺𝐺𝑛𝑛,0
𝑚𝑚𝑎𝑎𝑚𝑚 was fitted using Equation S1 assuming 𝑛𝑛 = 1, 2, 3, … 6, 𝛾𝛾 as fitting parameter and a peak 

energy spacing of 𝜇𝜇 = 7 meV. Figure S13b shows these fits for different 𝛾𝛾 in the range of 0.9 

to 1.5. 𝛾𝛾 = 1.4 yield the best fit. 𝛾𝛾 > 1 implies strong electron–vibron coupling in the MGNR 

and is manifested by the first peak being lower than the second, i.e. 𝐺𝐺1,0
𝑚𝑚𝑎𝑎𝑚𝑚 < 𝐺𝐺2,0

𝑚𝑚𝑎𝑎𝑚𝑚 . This 

observation implies Franck–Condon suppression of SET though the ground state. We 

performed such Franck–Condon analyses on different charge states and similar values for 𝛾𝛾 

were found, except for the transition 𝑁𝑁 − 3 ↔ 𝑁𝑁 − 2 where 𝛾𝛾 was slightly less than unity (𝛾𝛾 ≈

0.8). 

Fitting of Conductance Traces. The conductance peaks in the 𝑉𝑉𝑠𝑠𝑠𝑠 traces were fitted using 

a Gaussian function. Lorentzian line shapes are characteristic of transport limited by life-time 

broadening as frequently observed in other single-electron transistors at low temperature6. 

However, our conductance peaks are best fitted with a Gaussian line shape, which is 
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characteristic for transport limited by temperature-broadening. We note that the small number 

of measured conductance values for each peak makes it difficult to conclude whether the line 

shape is of Gaussian or Lorentzian type. 

Line Width of Diamond Edge at Different Temperatures. The left edge of the N-3 

diamond with a small positive bias (𝑉𝑉𝑔𝑔 ≈ −12.8 V) was analysed at different temperatures to 

investigate the effect of temperature on Franck–Condon suppression. The linewidth of the 

conduction peak at the diamond edge was estimated for the same diamond at three different 

temperatures, 𝑇𝑇 = 25  mK, 0.5 K and 1 K. A number of adjacent 𝑉𝑉𝑠𝑠𝑠𝑠  traces close to the 

degeneracy point were averaged and then fitted using the functions in Equations S2 and S3 

(Fig.S14). Equation S2 is a Lorentzian that is proportional to lifetime-broadened conductance 

peaks:7 

𝐺𝐺(𝜇𝜇) ∝
𝑤𝑤 2𝜋𝜋⁄

(𝜇𝜇 − 𝜇𝜇0)2 + (𝑤𝑤 2⁄ )2  , (S2) 

where w is the FWHM of the conductance peak. 

Equation S3 shows the squared hyperbolic cosine function that is proportional to thermally 

broadened conductance peaks:6 

𝐺𝐺(𝜇𝜇) ∝
1

4𝑘𝑘𝐵𝐵𝑇𝑇 cosh2(𝜇𝜇 2𝑘𝑘𝐵𝐵𝑇𝑇⁄ ) . (S3) 

Figure S15a shows that Equation S2 fits the data well at all temperatures and that w increases 

linearly with T from w=0.63 meV at 25 mK to w=0.98 meV at 1 K. Figure S15b shows that 

the data also fits well to Equation 3 but with an extracted T that is too high, in particular at 25 

mK where the electron temperature and the extracted value of T differs by two orders of 

magnitude. Therefore, we conclude that transport is dominated by lifetime broadening of the 

MGNR energy levels at low temperature where w is the coupling energy to the leads. We expect 

thermal broadening to become dominant at around 3 K. 
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Figure S18: The conductance at a Coulomb diamond edge as a function of 𝜇𝜇 = |𝑒𝑒|𝑉𝑉𝑠𝑠𝑠𝑠 at 

different temperatures fitted with (a) Eq.S2 and (b) with Eq.S3. (a) Lorentzian line shapes fit 

the data well for all values of T and yield values of w ranging from 0.63 to 0.98 meV. The 

inset shows that w increases linearly with T up to 1 K. (b) The thermal broadening function 

fits the data well at all temperatures but the extracted values of T are much larger than the 

electron temperature in the experiment.  

 

𝑽𝑽𝒈𝒈-deviation of Conductance Peak Intensities. We observed some 𝑉𝑉𝑔𝑔 dependency on 

the diamond-edge conductance-peak intensities. Figure S16 shows that 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚 of the first two 

peaks of a 𝑉𝑉𝑠𝑠𝑠𝑠 trace (analogous to the two first peaks in Figure S13b) depend on 𝑉𝑉𝑔𝑔, 𝑉𝑉𝑠𝑠𝑠𝑠 or both. 

This phenomenon is particularly visible at T = 0.5 K where the two peaks are approximately 

equal at low 𝑉𝑉𝑠𝑠𝑠𝑠 but shows an increasing difference up to about 𝑉𝑉𝑠𝑠𝑠𝑠 = 10 mV where it reaches 

a saturation of around 4 ⋅ 10−5 𝐺𝐺/𝐺𝐺0. There also seem to be some 𝑉𝑉𝑔𝑔 dependence to 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚 but 

it is unclear from our results whether this effect influences the difference. Note that the larger 

the difference (i.e. 2nd peak larger than the 1st peak) the larger the 𝛾𝛾. Therefore, it is important 

to consider these observations when performing the Franck–Condon analysis. Thus, we chose 

to only analyse 𝑉𝑉𝑠𝑠𝑠𝑠 traces taken in the 𝑉𝑉𝑔𝑔 range where the difference between the peaks are 

approximately saturated. 

Moreover, these observations shed light on an obvious limitation of this study, i.e. that we have 

analysed 𝑉𝑉𝑠𝑠𝑠𝑠  traces with different 𝑉𝑉𝑔𝑔  lying adjacent on the stability diagram. Although we 

adjusted the traces with respect to chemical potential before averaging, our method fails to 

eliminate 𝑉𝑉𝑠𝑠𝑠𝑠  dependent contributions to conductance. Therefore, we suggest that future 

studies employ a more robust method where for each T: (i) multiple 𝑉𝑉𝑠𝑠𝑠𝑠 traces are taken at the 
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same 𝑉𝑉𝑔𝑔  before averaging and (ii) 𝑉𝑉𝑔𝑔  should be chosen so that the 1st peak (diamond edge) 

occurs at the same 𝑉𝑉𝑠𝑠𝑠𝑠 for all T. 

 

Figure S19: Analysis of conductance peak intensities in 𝑉𝑉𝑠𝑠𝑠𝑠 traces at different 𝑉𝑉𝑔𝑔 at different 

temperatures. The figures show 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚 of the 1st peak (diamond edge) (blue), the 2nd peak (red) 

and the difference between them (yellow) at temperatures (a) T = 25 mK,  (b) T = 0.5 K and 

(c) T = 1 K.  

 

Estimation of Addition Energies. The addition energy, 𝐸𝐸𝑎𝑎𝑠𝑠𝑠𝑠 = 𝐸𝐸(𝑁𝑁) − 𝐸𝐸(𝑁𝑁 − 1), is 

defined as the energy difference between two MGNR charge states. We estimate an average 

𝐸𝐸𝑎𝑎𝑠𝑠𝑠𝑠 = 156 meV from taking the energy from where the edges of the Coulomb diamonds meet 

and close, averaged over all the measured diamonds (Fig. S13c). Alternatively, the addition 

energy can be defined as the sum of the charging energy, 𝐸𝐸𝐶𝐶, and the molecular electronic 

energy level spacing, Δ𝐸𝐸. We observe 𝐸𝐸𝐶𝐶 ≫ Δ𝐸𝐸 and therefore 𝐸𝐸𝑎𝑎𝑠𝑠𝑠𝑠 = 𝐸𝐸𝐶𝐶 + Δ𝐸𝐸 ≈ 𝐸𝐸𝐶𝐶. 
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Estimation of MGNR Length. We assume that the MGNR is a rectangular quantum dot 

with width, 𝑤𝑤 = 1.12 nm, which length, 𝑙𝑙, can be estimated as follows:8 

𝑙𝑙 =
𝑒𝑒2 ln(4ℎ 𝑤𝑤⁄ )
4𝜋𝜋𝜖𝜖0𝜖𝜖𝑟𝑟𝐸𝐸𝑎𝑎𝑠𝑠𝑠𝑠

, (S4) 

where 𝑒𝑒 is the elementary charge, 𝜖𝜖0 is the permittivity of free space, 𝜖𝜖𝑟𝑟 = 3.9 is the relative 

permittivity of the SiO2 layer9 of thickness, ℎ = 300 nm is the distance between the gate 

electrode and the MGNR. Using Equation S4 we estimate 𝑙𝑙 = 33 nm for 2, and various lengths 

(𝑙𝑙 =28, 90, 40, 17, 108, 60, 50, 33) for the several MGNRs of 1. 

Estimation of Lever Arm. The lever arm, 𝛼𝛼, provides the relationship between 𝑉𝑉𝑔𝑔 and 

|𝑒𝑒|𝑉𝑉𝑠𝑠𝑠𝑠  and can thus be used to convert a change in 𝑉𝑉𝑔𝑔  to the chemical potential, 𝜇𝜇 . 𝛼𝛼  is 

associated with the slopes of the Coulomb diamonds which are functions of the capacitances, 

𝐶𝐶𝑔𝑔, 𝐶𝐶𝑠𝑠 and 𝐶𝐶𝑠𝑠, between the quantum dot (MGNR) and the gate, source and drain electrodes, 

respectively, and 𝐶𝐶 = 𝐶𝐶𝑔𝑔 + 𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑠𝑠 . For negative slopes 𝛼𝛼− = −|𝑒𝑒|𝐶𝐶𝑔𝑔 (𝐶𝐶 − 𝐶𝐶𝑠𝑠)⁄  and for 

positive slopes 𝛼𝛼+ = |𝑒𝑒|𝐶𝐶𝑔𝑔 𝐶𝐶𝑠𝑠⁄ . Our measurements show that the slopes of the diamond edges 

are approximately symmetric, i.e. 𝐶𝐶𝑠𝑠 ≈ 𝐶𝐶𝑠𝑠 . Therefore, 𝛼𝛼 = 𝛼𝛼−,𝛼𝛼+  can be approximated 

geometrically through 𝛼𝛼 = 𝐸𝐸𝑎𝑎𝑠𝑠𝑠𝑠 Δ𝑉𝑉𝑔𝑔⁄  where Δ𝑉𝑉𝑔𝑔 is the width of the Coulomb diamond in units 

of 𝑉𝑉𝑔𝑔 (i.e. volt). Using this method, we found that 𝛼𝛼 differs for different diamonds in a way that 

seems to depend on 𝑉𝑉𝑔𝑔  (Fig. S13d). 𝛼𝛼  is largest around small values of 𝑉𝑉𝑔𝑔  and declines 

symmetrically on either side of 𝑉𝑉𝑔𝑔 = 0. This feature indicates that either 𝐶𝐶𝑔𝑔 decreases or 𝐶𝐶𝑠𝑠 

increases with increasing |𝑉𝑉𝑔𝑔|. 

Calculation of Stability Diagram. To verify our conclusions, we used a quantum rate-

equation model to calculate a stability diagram following the procedure reported elsewhere5,10. 

The model assumes a single vibrational mode with energy 𝐸𝐸𝑉𝑉 = 7 meV and a superohmic 

phonon bath. We assume that the single mode originates from the MGNR and that the phonon 

bath originates from the environment (dominantly the substrate) to which the MGNR is 

coupled. The expression for the current through a weakly coupled molecular junction is 

𝐼𝐼 = |𝑒𝑒|
𝛾𝛾𝑜𝑜𝑚𝑚𝑆𝑆 𝛾𝛾𝑟𝑟𝑟𝑟𝑠𝑠𝐷𝐷 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑠𝑠𝑆𝑆 𝛾𝛾𝑜𝑜𝑚𝑚𝐷𝐷

𝛾𝛾𝑟𝑟𝑟𝑟𝑠𝑠𝑆𝑆 + 𝛾𝛾𝑟𝑟𝑟𝑟𝑠𝑠𝐷𝐷 + 𝛾𝛾𝑜𝑜𝑚𝑚𝑆𝑆 + 𝛾𝛾𝑜𝑜𝑚𝑚𝐷𝐷
, (S5) 

where 𝛾𝛾𝑟𝑟𝑟𝑟𝑠𝑠 𝑜𝑜𝑚𝑚⁄
𝑆𝑆 𝐷𝐷⁄  denotes the diabatic rates of electron transfers at each electrode (S: source; D: 

drain) corresponding to a reduction (red) or an oxidation (ox) of the MGNR. Furthermore, for 

N/N+1-type transitions, the rates are given as follows: 
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𝛾𝛾𝑟𝑟𝑟𝑟𝑠𝑠
𝑆𝑆,𝐷𝐷 = 2

Γ𝑆𝑆,𝐷𝐷

ℏ
�𝑓𝑓𝑆𝑆,𝐷𝐷(𝜖𝜖)𝑘𝑘𝑟𝑟𝑟𝑟𝑠𝑠(𝜖𝜖)𝑑𝑑𝜖𝜖 , (S6) 

𝛾𝛾𝑜𝑜𝑚𝑚
𝑆𝑆,𝐷𝐷 =

Γ𝑆𝑆,𝐷𝐷

ℏ
��1 − 𝑓𝑓𝑆𝑆,𝐷𝐷(𝜖𝜖)� 𝑘𝑘𝑜𝑜𝑚𝑚(𝜖𝜖)𝑑𝑑𝜖𝜖 , (S7) 

where Γ𝑆𝑆,𝐷𝐷  is the electronic coupling between the MGNR and the source and drain leads, 

respectively. 𝑓𝑓𝑆𝑆,𝐷𝐷(𝜖𝜖)  is the Fermi-Dirac distribution in the respective electrode, 𝜖𝜖  is the 

chemical potential and 𝑘𝑘𝑟𝑟𝑟𝑟𝑠𝑠 𝑜𝑜𝑚𝑚⁄ (𝜖𝜖) is the density of states of the MGNR written as: 

𝑘𝑘𝑟𝑟𝑟𝑟𝑠𝑠 𝑜𝑜𝑚𝑚⁄ (𝜖𝜖) =
1
𝜋𝜋

Re� 𝑒𝑒𝜎𝜎𝜎𝜎(𝜖𝜖−𝜇𝜇)𝑡𝑡 ℏ⁄ 𝑒𝑒−𝑡𝑡 𝜏𝜏⁄ 𝐵𝐵(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0
, (S8) 

where 𝜎𝜎 = 1 for reduction and 𝜎𝜎 = −1 for oxidation, 𝜇𝜇  is the molecular energy level, 𝑡𝑡  is 

time, 𝜏𝜏 = 2ℏ (ΓS + Γ𝐷𝐷)⁄  is the lifetime of the MGNR electronic state and 𝐵𝐵(𝑡𝑡) is the phononic 

correlation function: 

𝐵𝐵(𝑡𝑡) = 𝑒𝑒𝐷𝐷𝑞𝑞(𝑡𝑡) ⋅ 𝑒𝑒𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏ℎ(𝑡𝑡), (S9) 

𝐷𝐷𝑞𝑞(𝑡𝑡) = �
𝑔𝑔𝑞𝑞
𝜔𝜔𝑞𝑞
�
2

��cos�𝜔𝜔𝑞𝑞𝑡𝑡� − 1� ⋅ coth �
𝜔𝜔𝑞𝑞

2𝑘𝑘𝐵𝐵𝑇𝑇
� − 𝑖𝑖 sin�𝜔𝜔𝑞𝑞𝑡𝑡�� , (S10) 

𝐷𝐷𝑏𝑏𝑎𝑎𝑡𝑡ℎ(𝑡𝑡) =  �
𝐽𝐽(𝜔𝜔)
𝜔𝜔2 �(cos(𝜔𝜔𝑡𝑡) − 1) ⋅ coth �

𝜔𝜔
2𝑘𝑘𝐵𝐵𝑇𝑇

� − 𝑖𝑖 sin(𝜔𝜔𝑡𝑡)� 𝑑𝑑𝑡𝑡, (S11) 

where 𝐷𝐷𝑞𝑞 is the single-mode contribution and 𝐷𝐷𝑏𝑏𝑎𝑎𝑡𝑡ℎ is the contribution from the superohmic 

bath. 𝑔𝑔𝑞𝑞  is the electron-vibration coupling strength, 𝜔𝜔  is the vibron frequency, 𝑘𝑘𝐵𝐵  is the 

Boltzmann constant and the spectral density, 𝐽𝐽(𝜔𝜔), for the superohmic phonon bath with 

reorganisation energy, 𝜆𝜆, and cut-off frequency, 𝜔𝜔𝑐𝑐: 

𝐽𝐽(𝜔𝜔) =
𝜆𝜆
2 �

𝜔𝜔
𝜔𝜔𝑐𝑐
�
3
𝑒𝑒−𝜔𝜔 𝜔𝜔𝑐𝑐⁄ . (S12) 

 

Using this model we reproduced our experimental data by using the following parameters: 

Table S1: Parameters used with Eq. S5-S12 to calculate the stability diagram shown in Figure 

S17b. 

𝑇𝑇 (mK) 𝜔𝜔𝑞𝑞 (meV) 𝑔𝑔𝑞𝑞 (meV) 𝜔𝜔𝑐𝑐 (meV) 𝜆𝜆 (meV) 𝐶𝐶𝑆𝑆 𝐶𝐶𝑔𝑔 Γ𝑆𝑆 Γ𝐷𝐷 

25 7 8.5 20 150 0.54 0.025 1.2·10-6 5·10-4 
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We assume that the molecular energy level, 𝜇𝜇 = 𝐶𝐶𝑆𝑆𝑉𝑉𝑠𝑠𝑠𝑠 − 𝐶𝐶𝑔𝑔𝑉𝑉𝑔𝑔 , shifts with bias and gate 

voltages. The calculated conductance 𝐺𝐺 = 𝑑𝑑𝐼𝐼 𝑑𝑑𝑉𝑉𝑠𝑠𝑠𝑠⁄  was plotted as a function of 𝑉𝑉𝑠𝑠𝑠𝑠 and 𝑉𝑉𝑔𝑔 and 

is displayed next to an experimental stability diagram in Figure S17. The calculated and 

experimental stability diagrams match each other well. Importantly, the calculated diagram 

shows that the ‘single-mode + environment’ model reproduces the main features of our 

experimental data, i.e. conductance lines equally spaced by 𝐸𝐸𝑉𝑉 ≈ 7  meV, a significant 

contribution from the phonon bath and conductance asymmetry with bias. The calculated 

stability diagram contains additional conductance sidebands in the blocked regions that are not 

present in the experimental diagram. 

 

Figure S20: Stability diagrams (conductance map as a function of 𝑉𝑉𝑠𝑠𝑠𝑠 and 𝑉𝑉𝑔𝑔 plotted using the 

same conductance colour scale. (a) The same experimental data as in Figure 4 (main text) 
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plotted in a larger 𝑉𝑉𝑔𝑔  window. (b) Stability diagram calculated using the method discussed 

above (Eq. S5-S12) with the parameters from Table S1. (c) Calculated spectral densities of the 

phonon bath (right axis) and the single MGNR mode (left axis). (d) Molecular density of states, 

𝑘𝑘𝑟𝑟𝑟𝑟𝑠𝑠, as a function of 𝜖𝜖 (from Eq. S8). 
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