

Supplementary Figure 1. Unbiased clustering of cocaine self-administration behavior is stable across response parameters. (a) Summary of *k*-means clustering distributions across response parameters. (b) Normalized response rates for individual nose-poking and lever-pressing responses across different clustering parameters. Animals clustered using last 8 sessions in main text (arrows). Animals included in follow-up experiments (dots; *see Fig.1e-h, Fig.2*). (c-e) *k*-means clustering results: average across all sessions (NP: $F_{1,43}$ =97.2, p<0.001; LP: $F_{1,43}$ =75.7, p<0.001), average across last 8 sessions (NP: $F_{1,43}$ =87.4, p<0.001; LP: $F_{1,43}$ =64.4, p<0.001), or maximum response session (NP: $F_{1,43}$ =128, p<0.001; LP: $F_{1,43}$ =88.3, p<0.001). Groups (stable *vs.* escalating) denote clustering results from main text (last 8). Animals included in follow-up experiments (solid points; *see Fig.1e-h, Fig.2*). Data presented as individual points.

Supplementary Figure 2. Estimates of oral cocaine doses earned per self-administration session. (a) Response sequencing during self-administration sessions. (b) Number of dipper access bouts (10-second, 100 µL) per session (session: $F_{15,960}$ =134, p<0.001, η^2 =0.67; session × group: $F_{30,960}$ =2.25, p<0.001, η^2 =0.07). Sessions terminated following 30 access bouts were earned. (c-d) Dipper bouts earned per session across all ($F_{2,64}$ =9.13, p<0.001, η^2 =0.22) or last 8 sessions ($F_{2,64}$ =7.04, p=0.002, η^2 =0.18). Percent difference for escalating vs. stable responders noted. (e) Body weights during final self-administration session ($F_{2,64}$ =1.00, p=0.372, η^2 =0.03). (f) Maximum oral cocaine dose achievable during final self-administration session (t_{43} =1.94, p=0.059, d=0.65). Percent difference for escalating vs. stable responders noted. (g) Normalized dipper access bouts per session (session: $F_{15,645}$ =4.31, p<0.001, η^2 =0.09). Data presented as individual points or mean ± S.E.M. *p<0.05 (post hoc).

Supplementary Figure 3. Schematic of experiments in this report. Adolescent manipulations are indicated by blue tags, while the peach color indicates events occurring in adulthood. The age at the start of events is indicated at left. "P" refers to postnatal day. The corresponding figures in the main text are indicated at bottom. Experiment 1 utilized cocaine self-administration, while subsequent experiments utilized experimenter-administered cocaine. Experiment 3.1 established an appropriate dose of CNO for use in experiment 3.2.

Supplementary Figure 4. Mice do not display preference for one nose-poke aperture during training. Response side bias (responses on aperture to be non-reinforced / total responses) during training sessions. (a) Following cocaine self-administration (session: $F_{13,312}$ =1.71, p=0.058, η^2 =0.07; session × group: $F_{13,312}$ <1). (b) Cocaine/ifenprodil co-administration (session: $F_{6,198}$ <1; session × cocaine: $F_{6,198}$ <1; session × cocaine: $F_{6,198}$ <1; session × cocaine: $F_{6,198}$ <1). (c) BLA→OFC inactivation: CNO dose (session: $F_{10,270}$ =1.48, p=0.145, η^2 =0.05; session × CNO: $F_{20,270}$ <1), or (d) cocaine/ifenprodil co-administration (session: $F_{10,290}$ <1; session × ifenprodil: $F_{10,290}$ =1.57, p=0.115, η^2 =0.05; session × CNO: $F_{10,290}$ <1; session × ifenprodil co-administration (session: $F_{10,290}$ <1; session × ifenprodil co-administration (session: $F_{10,290}$ <1; session × CNO: $F_{10,290}$ <1). Data presented as individual points (semi-transparent) and group means (solid). Correspondence to main figures noted.

Supplementary Figure 5. Responding during non-reinforced sessions did not differ between groups prior to choice tests. All non-reinforced sessions were performed drug- and manipulation-free. (a) Cocaine self-administration: test 1 (time: $F_{4,96}=21.8$, p<0.001, $\eta^2=0.48$; time × group: $F_{8,96}=1.44$, p=0.191, $\eta^2=0.11$) or test 2 (time: $F_{4,96}=26.1$, p<0.001, $\eta^2=0.52$; time × group: $F_{8,96}=1.62$, p=0.128, $\eta^2=0.12$). (b) Cocaine/ifenprodil co-administration (time: $F_{4,132}=43.3$, p<0.001, $\eta^2=0.57$; time × cocaine: $F_{4,132}<1$; time × ifenprodil: $F_{4,132}<1$; time × cocaine × ifenprodil: $F_{4,132}<1$; time × cocaine × ifenprodil: $F_{4,132}<1$; time × cocaine × ifenprodil: $F_{4,132}<1$; time × group: $F_{8,108}<1$) or test 2 (time: $F_{4,108}=17.9$, p<0.001, $\eta^2=0.40$; time × group: $F_{8,108}<1$) (d) OFC→BLA inactivation (cocaine/ifenprodil co-administration): test 1 (time: $F_{4,116}=13.2$, p<0.001, $\eta^2=0.31$; time × ifenprodil: $F_{4,108}<1$; time × CNO: $F_{4,108}<1$; time × ifenprodil × CNO: $F_{4,108}<1$; time × ifenprodil × CNO: $F_{4,108}<1$; time × CNO: $F_{4,10$

Supplementary Figure 6. Quantification of additional synaptic and plasticity-related protein levels in the OFC following cocaine self-administration. (a) Synaptic localization of additional quantified proteins in the OFC: (b) GABA_A α 1, (c) p110 β , (d) CAPS2, and (e) ROCK2 (all F_{2,24}<1) Values normalized to loading controls (HSP-70) and expressed as fold change from sucrose controls. Representative blots show target protein (black arrow) and HSP-70 loading controls (no arrow). Data presented as individual points.

Supplementary Figure 7. Additional OFC dendritic spine parameters. (a) Location of sampled dendrites by anterior-posterior (AP) distance from bregma. **(b)** Dendritic spine density across A-P extent of the OFC ($F_{1,158}$ <1). 95% confidence interval (shading). **(c)** Dendrite diameter (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ <1). **(d)** Dendritic spine length (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ =1.17, p=0.30). **(e)** Dendritic spine diameter (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1; ifenprodil: $F_{1,16}$ <1; cocaine × ifenprodil: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine: $F_{1,16}$ <1). **(f)** Head volume of mushroom-type spines (cocaine) (f) Head volume of mushroom-type spines (cocaine) (f) Head volume of mushroom-type spines (cocaine) (f) Head volume of mushro

Antibody	Manufacturer	Product	Dilution	Identifier
Rabbit anti-PSD-95	Cell Signaling Technology	#3450	1:1000	RRID AB_2292883
Rabbit anti-Synaptophysin	Abcam	#ab32127	1:10000	RRID AB_2286949
Mouse anti-GluN1	Millipore	#05-432	1:500	RRID AB_390129
Rabbit anti-GluN2A	Invitrogen	#PA5-35377	1:500	RRID AB_2552687
Mouse anti-GluN2B	Novus	#NB100-74475	1:500	RRID AB_1049238
Rabbit anti-GluA1	Abcam	#ab31232	1:1000	RRID AB_2113447
Rabbit anti-GABA _A a1	Millipore	#06-868	1:1000	RRID AB_310272
Rabbit anti-p110β	Millipore	#09-482	1:500	RRID AB_1977425
Rabbit anti-CAPS2	Abcam	#ab69894	1:1000	RRID AB_2068181
Rabbit anti-ROCK2	Abcam	#ab71598	1:500	RRID AB_1566688
Mouse anti-HSP-70	Santa Cruz Biotechnology	#sc-7298	1:1000	RRID AB_627761
Rabbit anti-HSP-70	Cell Signaling Technology	#4872	1:1000	RRID AB_2279841
Goat anti-mouse, peroxidase-conjugated	Jackson ImmunoResearch	#115-035-003	1:1000	RRID AB_10015289
Goat anti-rabbit, peroxidase conjugated	Vector Laboratories	#PI-1000	1:10000	RRID AB 2336198

Figure	Measure	Groups	Analysis	Comparison	Statistic	p-value	Effect size
116	response rate		k-means	nose poke	F _{1,43} =97.2	p<0.001	
10	(NP vs. LP)	vs. LP)	clustering	lever press	F _{1,43} =75.7	p<0.001	n/a
1b inset	seek:take		ANOVA	group	F _{2,64} =1.63	p=0.204	$\eta^2 = 0.05$
1 a la∯			DMANOVA	session	F _{15,960} =50.2	p<0.001	$\eta^2 = 0.44$
ic left			KIVI AINOVA ses	session × group	F _{30,960} =3.63	p<0.001	$\eta^2 = 0.10$
		sucrose $(n=22)$	ANOVA	group	F _{2,64} =51.4	p<0.001	$\eta^2 = 0.62$
1c right		cocaine (stab) $(n=33)$	post-hoc:	sucrose vs. stable	$\Delta = 0.09 \pm 0.08$	p=0.492	
		cocaine (esc) (n=12)	Dunnett	sucrose vs. escalating	$\Delta = 0.94 \pm 0.11$	p<0.001	n/a
1.11-0		DM	RM ANOVA sess	session	F _{15,960} =68.1	p<0.001	$\eta^2 = 0.52$
1d left				session × group	F _{30,960} =3.64	p<0.001	$\eta^2 = 0.10$
		response rate	ANOVA	group	F _{2,64} =32.4	p<0.01	$\eta^2 = 0.50$
1d right	1d right response rate		post-hoc:	sucrose vs. stable	Δ=0.16±0.08	p=0.072	
_			Dunnett	sucrose vs. escalating	$\Delta = 0.60 \pm 0.10$	p<0.001	n/a
1.6			DMANOVA	session	F _{13,312} =7.39	p<0.001	$\eta^2 = 0.24$
11			KM ANOVA	session × group	F _{26,312} =1.10	p=0.338	$\eta^2 = 0.08$
			DIANOVA	reinforcement	F _{1,24} =18.54	p<0.001	$\eta^2 = 0.44$
		sucrose $(n=9)$	KM ANOVA	reinforcement × group	F _{1,24} =3.47	p=0.048	$\eta^2 = 0.22$
1g		cocaine (stab) $(n=9)$ cocaine (esc) $(n=9)$	post-hoc: paired <i>t</i> -test	reinf vs. non-reinf (suc)	$t_8=3.11$	p=0.015	<i>d</i> =1.04
	_			reinf vs. non-reinf (stab)	$t_8 = 5.83$	p<0.001	<i>d</i> =1.94
				reinf vs. non-reinf (esc)	$t_8 = 0.29$	p=0.777	d=0.10
116			DMANOVA	reinforcement	F _{1,24} =3.56	p=0.078	$\eta^2 = 0.13$
In			RM AN	KWI ANOVA	reinforcement × group	$F_{1,24}=0.09$	p=0.913

Figure	Measure	Groups	Analysis	Comparison	Statistic	p-value	Effect size
			ANOVA	group	F _{2,24} =8.31	p=0.002	$\eta^2 = 0.41$
21-			post-hoc:	sucrose vs. stable	$\Delta = 0.01 \pm 0.04$	p=0.969	
20				sucrose vs. escalating	∆=0.13±0.04	p=0.034	n/a
			Tukey 115D	stable vs. escalating	∆=0.13±0.04	p=0.004	
2c		sucrose $(n=9)$ cocaine (stab) $(n=9)$ cocaine (esc) $(n=9)$	ANOVA	group	F _{2,24} =2.32	p=0.120	$\eta^2 = 0.16$
2d	fold shance		ANOVA	group	F _{2,24} =0.13	p=0.876	$\eta^2 = 0.01$
2e	foid change		ANOVA	group	F _{2,24} =0.59	p=0.564	$\eta^2 = 0.05$
			ANOVA	group	F _{2,24} =4.81	p=0.017	$\eta^2 = 0.29$
26			post-hoc: Tukey HSD	sucrose vs. stable	$\Delta = 0.14 \pm 0.06$	p=0.045	n/a
21				sucrose vs. escalating	∆=0.01±0.06	p=0.962	
				stable vs. escalating	$\Delta = 0.16 \pm 0.06$	p=0.025	
2g			ANOVA	group	F _{2,24} =0.52	p=0.603	$\eta^2 = 0.04$
			-i1- 1i	cocaine (total)	F _{1,16} =11.7	p=0.004	R ² =0.42
2h			regression	cocaine (stable)	F _{1,7} =6.76	p=0.035	R ² =0.49
choice vs. protein leve	choice vs.	vs. cocaine (stab) $(n=9)$ evel cocaine (esc) $(n=9)$		cocaine (escalating)	F _{1,7} =0.83	p=0.392	R ² =0.11
	protein level		simple linear regression	cocaine (total)	F _{1,16} =12.0	p=0.003	R ² =0.43
2i				cocaine (stable)	F _{1,7} =4.42	p=0.074	R ² =0.39
				cocaine (escalating)	F _{1.7} =2.01	p=0.199	R ² =0.22

Figure	Measure	Groups	Analysis	Comparison	Statistic	p-value	Effect size
3b			RM ANOVA	session	F _{6,198} =74.1	p<0.001	$\eta^2 = 0.69$
				session × cocaine	F _{6,198} =0.73	p=0.626	$\eta^2 = 0.02$
				session × ifenprodil	F _{6,198} =1.69	p=0.124	$\eta^2 = 0.05$
				session $\times \cos \times$ ifen	F _{6,198} =1.68	p=0.127	$\eta^2 = 0.05$
			RM ANOVA	reinforcement	F _{1,33} =44.7	p<0.001	$\eta^2 = 0.58$
	response			reinforcement × cocaine	F _{1,33} =11.7	p=0.002	$\eta^2 = 0.26$
	rate			reinforcement × ifenprodil	F _{1,33} =3.56	p=0.068	$\eta^2 = 0.10$
30				reinforcement $\times \cos \times$ ifen	F _{1,33} =5.85	p=0.021	$\eta^2 = 0.15$
50				reinf vs. non-reinf (sal/veh)	t ₈ =4.68	p=0.002	<i>d</i> =1.56
			post-hoc:	reinf vs. non-reinf (coc/veh)	t ₈ =1.33	p=0.219	<i>d</i> =0.44
			paired <i>t</i> -test	reinf vs. non-reinf (sal/ifen)	t ₉ =4.16	p=0.002	<i>d</i> =1.32
				reinf vs. non-reinf (coc/ifen)	t ₈ =4.56	p=0.007	<i>d</i> =1.19
		saline/vehicle (<i>n</i> =9) cocaine/vehicle (<i>n</i> =9)	RM ANOVA	session	$F_{3,99}=76.4$	p<0.001	$\eta^2 = 0.70$
				session × cocaine	$F_{3,99}=2.55$	p=0.060	$\eta^2 = 0.07$
				session × ifenprodil	$F_{3,99}=1.52$	p=0.214	$\eta^2 = 0.04$
3.4	reversal			session $\times \cos \times$ ifen	F _{3,99} =3.71	p=0.014	$\eta^2 = 0.10$
30	rate	saline/ifenprodil (n=10)		$\cos \times$ ifen (session 1)	F _{1,33} =6.14	p=0.019	$\eta^2 = 0.16$
		cocaine/ifenprodil (n=9)	post-hoc: ANOVA	$\cos \times$ ifen (session 2)	F _{1,33} =15.1	p<0.001	$\eta^2 = 0.31$
				$\cos \times$ ifen (session 3)	F _{1,33} =2.76	p=0.106	$\eta^2 = 0.08$
		_		$\cos \times$ ifen (session 4)	F _{1,33} =1.13	p=0.295	$\eta^2 = 0.03$
			RM ANOVA	session	F _{3,99} =10.3	p<0.001	$\eta^2 = 0.24$
36				session × cocaine	F _{3,99} =1.03	p=0.381	$\eta^2 = 0.03$
50				session × ifenprodil	$F_{3,99}=0.55$	p=0.651	$\eta^2 = 0.02$
				session $\times \cos \times$ ifen	$F_{3,99}=0.06$	p=0.983	η ² <0.01
				session	$F_{3,99}=40.1$	p<0.001	$\eta^2 = 0.55$
	response		RM ANOVA	session × cocaine	F _{3,99} =1.39	p=0.251	$\eta^2 = 0.04$
3f	rate		RIVI AIVO VA	session × ifenprodil	F _{3,99} =0.69	p=0.560	$\eta^2 = 0.02$
				session $\times \cos \times$ ifen	$F_{3,99}=2.78$	p=0.045	$\eta^2 = 0.08$
				$\cos \times$ ifen (session 1)	$F_{1,33}=6.14$	p=0.019	$\eta^2 = 0.16$
			post-hoc: ANOVA	$\cos \times \text{ ifen (session 2)}$	$F_{1,33}=15.1$	p<0.001	$\eta^2 = 0.31$
				$\cos \times$ ifen (session 3)	$F_{1,33}=2.76$	p=0.106	$\eta^2 = 0.08$
				$\cos \times \text{ ifen (session 4)}$	F _{1,33} =1.13	p=0.295	$\eta^2 = 0.03$

Figure	Measure	Groups	Analysis	Comparison	Statistic	p-value	Effect size
			2-factor LMM	cocaine	$F_{1,16}=2.80$	p=0.114	-
				ifenprodil	F _{1,16} =0.35	p=0.560	
				cocaine × ifenprodil	F _{1,16} =7.35	p=0.015	
4c	spine density			sal/veh vs. coc/veh	F _{1,8} =9.86	p=0.014	n/a
			post-hoc:	sal/veh vs. sal/ifen	F _{1,8} =2.22	p=0.175	
			1-factor LMM	sal/ifen vs. coc/ifen	F _{1,8} =0.53	p=0.489	
				coc/veh vs. coc/ifen	F _{1,8} =5.52	p=0.047	
4d	choice vs. spine density		simple linear regression	all groups	F _{1,18} =4.68	p=0.044	R ² =0.21
				cocaine	F _{1,16} =5.10	p=0.038	
			2-factor LMM	ifenprodil	F _{1,16} =0.42	p=0.527	
		saline/vehicle (n=40 dendrites, 5 mice) cocaine/vehicle (n=40 dendrites, 5 mice) saline/ifenprodil (n=40 dendrites, 5 mice) cocaine/ifenprodil (n=40 dendrites, 5 mice)		cocaine × ifenprodil	F _{1,16} =6.96	p=0.009	
4e			post-hoc: 1-factor LMM	sal/veh vs. coc/veh	F _{1,8} =18.0	p=0.003	
				sal/veh vs. sal/ifen	F _{1,8} =3.92	p=0.083	n/a
				sal/ifen vs. coc/ifen	F _{1,8} =0.22	p=0.653	
	spine density			coc/veh vs. coc/ifen	F _{1,8} =5.11	p=0.045	
			2-factor LMM	cocaine	F _{1,16} =0.13	p=0.721	
4f				ifenprodil	F _{1,16} =0.03	p=0.873	
				cocaine × ifenprodil	F _{1,16} =1.12	p=0.306	
			2-factor LMM	cocaine	F _{1,16} =0.03	p=0.864	
4g				ifenprodil	F _{1,16} =0.83	p=0.376	
				cocaine × ifenprodil	F _{1,16} =0.01	p=0.949	
				cocaine	F _{1,16} =1.25	p=0.280	
4h			2-factor LMM	ifenprodil	F _{1,16} =1.08	p=0.315	-
	spine-type			cocaine × ifenprodil	$F_{1,16}=5.20$	p=0.033	
	ratio		post-hoc: 1-factor LMM	sal/veh vs. coc/veh	$F_{1,8}=5.10$	p=0.037	
	14410			sal/veh vs. sal/ifen	$F_{1,8}=0.13$	p=0.727	
				sal/ifen vs. coc/ifen	$F_{1,8}=0.10$	p=0.764	
				coc/veh vs. coc/ifen	$F_{1,8}=4.94$	p=0.042	

Figure	Measure	Groups	Analysis	Comparison	Statistic	p-value	Effect size
5.6			RM ANOVA	session	F _{10,270} =140	p<0.001	$\eta^2 = 0.84$
51	51			session × CNO	F _{20,270} =0.65	p=0.871	$\eta^2 = 0.05$
			DI ANOLA	reinforcement	F _{1,27} =32.4	p<0.001	$\eta^2 = 0.55$
			KM ANOVA	reinforcement × CNO	F _{2,27} =4.92	p=0.015	$\eta^2 = 0.27$
5g		1:1 (10)		reinf vs. non-reinf (veh)	t ₉ =4.92	p<0.001	<i>d</i> =1.56
_		vehicle $(n=10)$	post-noc:	reinf vs. non-reinf (CNO 0.1)	t ₉ =3.09	p=0.013	d=0.98
		CNO 0.1 mg/kg (n-10)	paired t-test	reinf vs. non-reinf (CNO 1.0)	t ₉ =1.40	p=0.194	<i>d</i> =0.44
		$CNO 1.0 \operatorname{Ing/Kg}(n-10)$	DM ANOVA	reinforcement	F _{1,27} =15.8	p<0.001	$\eta^2 = 0.37$
			KM ANOVA	reinforcement × CNO	F _{2,27} =2.39	p=0.111	$\eta^2 = 0.15$
5h			*	reinf vs. non-reinf (veh)	t ₉ =3.19	p=0.011	d=1.01
			*post-noc:	reinf vs. non-reinf (CNO 0.1)	t ₉ =1.69	p=0.126	<i>d</i> =0.53
	response		paired t-test	reinf vs. non-reinf (CNO 1.0)	t ₉ =1.73	p=0.118	<i>d</i> =0.55
	rate			session	F _{10,290} =189	p<0.001	$\eta^2 = 0.87$
5;			DM ANOVA	session × ifenprodil	F _{10,290} =1.10	p=0.365	$\eta^2 = 0.04$
5]			RM ANOVA	session × CNO	F _{10,290} =0.80	p=0.626	$\eta^2 = 0.03$
				session \times ifen \times CNO	F _{10,290} =0.13	p=0.999	$\eta^2 < 0.01$
		cocaine + vehicle/vehicle (n=9) vehicle/CNO (n=8) ifenprodil/vehicle (n=8) ifenprodil/CNO (n=8) ifenprodil/CNO (n=8)	RM ANOVA	reinforcement	F _{1,29} =3.75	p=0.063	$\eta^2 = 011$
				reinforcement × ifenprodil	F _{1,29} =5.39	p=0.027	$\eta^2 = 0.16$
				reinforcement × CNO	F _{1,29} =5.87	p=0.022	$\eta^2 = 0.17$
51				reinforcement \times ifen \times CNO	F _{1,29} =4.38	p=0.045	$\eta^2 = 0.13$
ЭК			post-hoc: paired t-test	reinf vs. non-reinf (veh/veh)	t ₈ =0.03	p=0.974	d=0.01
				reinf vs. non-reinf (veh/CNO)	t ₇ =3.18	p=0.016	<i>d</i> =1.12
				reinf vs. non-reinf (ifen/veh)	t ₇ =0.37	p=0.726	<i>d</i> =0.13
				reinf vs. non-reinf (ifen/CNO)	t ₇ =0.20	p=0.845	<i>d</i> =0.07
			ANOVA	ifenprodil	F _{1,29} =8.08	p=0.008	$\eta^2 = 0.22$
				CNO	F _{1,29} =4.92	p=0.035	$\eta^2 = 0.15$
	proforman			ifenprodil × CNO	F _{1,29} =4.79	p=0.037	$\eta^2 = 0.14$
51	ratio		. 1	veh/veh vs. ifen/veh	t ₁₅ =2.13	p=0.050	d=1.03
	Tatio		post-noc:	veh/veh vs. veh/CNO	t ₁₅ =0.06	p=0.950	<i>d</i> =0.03
			t test	veh/CNO vs. ifen/CNO	t ₁₄ =0.39	p=0.702	<i>d</i> =0.20
			<i>i</i> -test	ifen/veh vs. ifen/CNO	t14=2.20	p=0.045	d=1.10
				reinforcement	F _{1,29} =3.13	p=0.088	$\eta^2 = 0.10$
5	response		PM ANOVA	reinforcement × ifenprodil	F _{1,29} =0.10	p=0.761	$\eta^2 < 0.01$
5111	rate		RM ANOVA	reinforcement × CNO	F _{1,29} =0.33	p=0.138	$\eta^2 = 0.07$
				reinforcement × ifen × CNO	F _{1,29} =0.14	p=0.716	$\eta^2 = 0.01$
	proformas		ANOVA	ifenprodil	F _{1,29} =0.10	p=0.759	$\eta^2 < 0.01$
5n	ratio			CNO	F _{1,29} =4.37	p=0.046	$\eta^2 = 0.13$
		ratio		ifenprodil × CNO	$F_{1,29}=0.22$	p=0.641	$\eta^2 = 0.01$

*planned comparison