
nature mental health

https://doi.org/10.1038/s44220-023-00057-5Review article

Precision behavioral phenotyping as a 
strategy for uncovering the biological 
correlates of psychopathology

https://doi.org/10.1038/s44220-023-00057-5


Running title: Precision phenotyping for psychopathology_Supplementary information 1 
 

Precision behavioral phenotyping as a strategy for uncovering the biological correlates 

of psychopathology 

Supplementary Information 

62 pages 

9 Tables 

27 Figures 

Words: 4,151 

 

Table of contents 

List of tables p.2 

List of figures p.3 

Example 1 p.5 

Example 2 p.11 

Example 3 p.26 

Example 4 p.31 

Example 5 p.33 

Example 6 p.42 

 

 

 

 

 

 

 



Running title: Precision phenotyping for psychopathology_Supplementary information 2 

List of Tables 

Supplementary Table 1 

Reliability of the Child Behavior Checklist Scales Across the Latent Trait 

Continuum Estimated Using Unidimensional Item Response Theory Analysis  

p.13 

Supplementary Table 2 

Proportion of the Sample from the Two-Year Follow-Up Wave of Data Collection 

from the ABCD Study Cohort that Did Not Meet Minimal Acceptable Standards of 

Measurement Reliability on Each of the Eleven Child Behavior Checklist Scales 

p.25 

Supplementary Table 3 

Levels of Measurement Invariance and their Interpretation within a Factor Analytic 

Framework 

p.29 

Supplementary Table 4 

Summary of Fit Statistics for Competing Bayesian Confirmatory Factor Analysis 

Models for the ASRS-5 in the Adult ADHD Cohort 

p.36 

Supplementary Table 5 

Standardized Residual Covariances Between CBCL Attention Problems Items in the 

Best-Fitting Bayesian One-Factor Model 

p.38 

Supplementary Table 6 

Results of Exploratory Latent Class Analysis of the CBCL Attention Problems 

Empirical Syndrome Scale in the Two-Year Follow-Up Wave of Data from the 

ABCD Study 

p.39 

Supplementary Table 7 

Results of Exploratory Factor Mixture Modeling of CBCL Attention Problems in the 

Two-Year Follow-Up Wave of Data from the ABCD Study 

p.40 

Supplementary Table 8 

Standardized Parameter Estimates, Standard Errors, and Probability Values of 

Model Parameter Estimates from the T(M-1) Model of Attention Problems for the 

Reference Method Variables and the Attention Problems Item Factor Loadings 

p.47 

Supplementary Table 9 

Standardized Parameter Estimates, Standard Errors, and Probability Values of 

Model Parameter Estimates from the T(M-1) Model of Attention Problems for the 

Method Factor Item Loadings 

p.48 

 

 

 



Running title: Precision phenotyping for psychopathology_Supplementary information 3 

List of Figures 

Supplementary Figure 1. Bifactor model of the CBCL data obtained from the two-

year follow-up data collection wave of the ABCD study cohort. 

p.8 

Supplementary Figure 2. Proportion of variance in the CBCL Scales in 5,820 

participants from the two-year follow-up wave of the ABCD study cohort that is 

unique to the eight syndrome scales versus what is general factor variance (i.e., 

overarching p-factor), and what is specific to each of the two group factors 

(internalizing or externalizing). 

p.10 

Supplementary Figure 3. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Anxious/Depressed syndrome scale.  B) Histogram of sum 

scale scores on the Anxious/Depressed syndrome scale.  

p.14 

Supplementary Figure 4. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Withdrawn/Depressed syndrome scale. B) Histogram of 

sum scale scores on the Withdrawn/Depressed syndrome scale.  

p.15 

Supplementary Figure 5. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Somatic Complaints syndrome scale.  B) Histogram of sum 

scale scores on the Somatic Complaints syndrome scale.  

p.16 

Supplementary Figure 6. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Social Problems syndrome scale.  B) Histogram of sum 

scale scores on the Social Problems syndrome scale. 

p.17 

Supplementary Figure 7. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Thought Problems syndrome scale.  B) Histogram of sum 

scale scores on the Thought Problems syndrome scale. 

p.18 

Supplementary Figure 8. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Attention Problems syndrome scale.  B) Histogram of sum 

scale scores on the Attention Problems syndrome scale.  

p.19 

Supplementary Figure 9. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Rule-Breaking Behavior syndrome scale.  B) Histogram of 

sum scale scores on the Rule-Breaking Behavior syndrome scale.  

p.20 

Supplementary Figure 10. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Aggressive Behavior syndrome scale. B)  Histogram of sum 

scale scores on the Aggressive Behavior syndrome scale. 

p.21 

Supplementary Figure 11. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Internalizing Problems scale.  B) Histogram of sum scale 

scores on the Internalizing Problems scale.  

p.22 

Supplementary Figure 12. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Externalizing Problems scale.  B) Histogram of sum scale 

scores on the Externalizing Problems scale.  

p.23 



Running title: Precision phenotyping for psychopathology_Supplementary information 4 

Supplementary Figure 13. A) Total information function / curve (TIF/TIC) for the 

child behavior checklist Total Problems scale.  B) Histogram of sum scale scores on 

the Total Problems scale.  

p.24 

Supplementary Figure 14. Test characteristic curves showing the relationship of 

expected raw score (y axis) as a function of a participants’ standing on the CBCL 

Total Problems latent trait continuum (x axis) for males (n = 3,025) and females (n = 

2,795).   

p.30 

Supplementary Figure 15. Total information curve for the Attention Problems 

syndrome scale incorporating Effortful Control items from Early Temperament 

Questionnaire – Revised in 5,823 

p.32 

Supplementary Figure 16. One-factor model of CBCL attention problems 

empirical syndrome scale in the two-year follow-up wave of data collection of the 

ABCD study (N = 5,820). 

p.37 

Supplementary Figure 17. Item Probability Plot for CBCL Item 1 “Acts Young” 

for the Two-Class FMM-3 Model. 

p.41 

Supplementary Figure 18. Item Probability Plot for CBCL Item 4 “Fails to Finish” 

for the Two-Class FMM-3 Model. 

p.41 

Supplementary Figure 19. Item Probability Plot for CBCL Item 8 “Concentrate” 

for the Two-Class FMM-3 Model. 

p.41 

Supplementary Figure 20. Item Probability Plot for CBCL Item 10 “Sit Still” for 

the Two-Class FMM-3 Model. 

p.42 

Supplementary Figure 21. Item Probability Plot for CBCL Item 13 “Confused” for 

the Two-Class FMM-3 Model. 

p.42 

Supplementary Figure 22. Item Probability Plot for CBCL Item 17 “Daydream” 

for the Two-Class FMM-3 Model. 

p.42 

Supplementary Figure 23. Item Probability Plot for CBCL Item 41 “Impulsive” 

for the Two-Class FMM-3 Model. 

p.43 

Supplementary Figure 24. Item Probability Plot for CBCL Item 61 “Poor School” 

for the Two-Class FMM-3 Model. 

p.43 

Supplementary Figure 25. Item Probability Plot for CBCL Item 78 “Inattentive” 

for the Two-Class FMM-3 Model. 

p.43 

Supplementary Figure 26. Item Probability Plot for CBCL Item 80 “Stares” for the 

Two-Class FMM-3 Model. 

p.44 

Supplementary Figure 27.  Trait Method Minus One [T(M-1] model of CBCL 

attention problems empirical syndrome scale augmented with the EATQ-R effortful 

control items in the two-year follow-up data wave of the ABCD 

p.47 

 



Running title: Precision phenotyping for psychopathology_Supplementary information 5 

Example 1 – Phenotypic complexity 

To demonstrate the problem of phenotypic complexity, we modeled the CBCL data 

from the two-year follow-up wave of the ABCD study cohort using a bifactor model, which 

enables variance to be partitioned into common and scale-specific components1. To evaluate 

model-data consistency we report the chi-square (χ2) test statistic with associated model 

degrees of freedom and probability values (p); p > .05 indicates that the null hypothesis of 

exact fit of the model to the data cannot be rejected2. We also report the root mean square 

error of approximation (RMSEA), standardized root mean squared residual (SRMR) and 

comparative fit index (CFI), where lower values of the RMSEA and SRMR and higher values 

of the CFI indicate a better-fitting model2. We considered freely estimating residual 

covariances where indicated by modification indices, theoretically plausible, and when 

statistically significant after controlling for Type I error using the Benjamini-Hochberg 

procedure3. 

The model is displayed in Supplementary Figure 1. The proportions of phenotypic 

variance for the eight syndrome and three composite scales attributable to different levels of 

the psychopathology hierarchy are shown in Supplementary Figure 2. As can be seen from 

Supplementary Figure 2, almost half (48.8%) of the variance in the eight syndrome scales is 

common and attributable to the overarching p-factor. Common variance will substantially 

attenuate correlations with external variables, under the assumption that common variance 

limits our ability to identify associations with specific psychopathology phenotypes. Variance 

unique to each of the scales ranged from as little as 23.2% for Withdrawn/Depressed to 

72.1% for Somatic Complaints, but averaged less than half (42.3%) across the eight scales. 

Conversely, less than 49% of the sample variance in the Total Problems scale is attributable 

to the general p-factor, with approximately 42% unique to the eight syndrome scales, and 

around 9% attributable to the Internalizing and Externalizing Problems group factors. 
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Variance unique to each subscale and the Internalizing and Externalizing factors contained in 

the Total Problems scale will attenuate relationships between the common variance 

component (i.e., p-factor) and criterion variables (e.g., genetic markers and imaging-derived 

phenotypes). 

By way of example, a recent landmark study by Marek et al. (2022)4 reported a 

median effect size of r = 0.06 across all possible brain-wide associations between various 

MRI-derived measures of brain structure and function, and different metrics of cognitive 

ability as measured by the National Institute of Health (NIH) Toolbox5, and personality and 

psychopathology12, as measured by the CBCL6; short form7,8 of the Urgency, (Lack of) 

Premeditation, (Lack of) Perseverance, Sensation Seeking, Positive Urgency (sUPPS-P) 

Behavioral Impulsivity scale9-11;  the child version12 of the Behavioral Inhibition / Behavioral 

Activation (BIS/BAS) scales13; and the Pediatric Psychosis Questionnaire − Brief 

Version14,15. However, using equation 1 from the main text, we can see that the unreliability 

of the CBCL syndrome scales due to contamination by general variance (i.e., p-factor) may 

have resulted in attenuation bias in these observed brain-behavior associations. Conversely, 

we can correct for attenuation of the correlation coefficient using the formula, 

𝑟𝑡𝑥,𝑡𝑦 =  
𝑟𝑜𝑥, 𝑜𝑦

√𝑟𝑦𝑦𝑟𝑥𝑥
 ,                 (1) 

which indicates that, even if we assume zero error in the imaging-derived phenotypes, by 

taking into account the other sources of variance in each subscale, the true correlations could 

be considerably higher than those observed and reported (e.g., for an observed effect of r = 

0.10, the true effects would be Anxious/Depressed r = .208; Withdrawn/Depressed r = .143; 

Somatic Complaints r = .117; Social Problems r = .160; Thought Problems r = .138; 

Attention Problems r = .164; Rule-Breaking Behavior r = .177; Aggressive Behavior r = 

.175; Internalizing r = .310; Externalizing r = .223; Total Problems r = .143). Considering 
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that res = .10, .2, and .30 correspond with small, medium and large effects sizes 

respectively16, the true effect sizes are meaningfully higher than those observed and reported 

when phenotypic complexity has not been taken into account. These disattenuated 

correlations also have major implications for statistical power and sample size planning. For 

example, a sample size of 614 would be required to achieve 80% power to detect an 

attenuated effect of r = .10 for the Internalizing scale, but this requirement would decrease to 

60 for a disattenuated effect of r = .31017. We further note that while Marek et al. (2022)4 

address the notion of attenuation bias and disattenuation correction by arguing that the 

reliability of the behavioral phenotypes, including the CBCL scales, is at - or near -ceiling, 

these calculations rely on taking the alpha reliability estimates of the CBCL scales on face 

value (acceptable to high). Furthermore, as we demonstrate below in example 2, the 

reliability of a given psychopathology measure varies along the latent trait continuum and 

usually drops below acceptable levels below the mean. In combination, our results 

demonstrate that attenuation of biology-behavior associations can be substantial when high 

phenotypic complexity (and low phenotypic resolution) is not considered.  
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Supplementary Figure 1. Bifactor model of the CBCL data obtained from the two-year 

follow-up data collection wave of the ABCD study cohort. 

Note. Model fit statistics were χ2 (7) = 8.351, p = .303, RMSEA = .006, [95%CI = .000, .018], 

CFI = 1.000, SRMR = .003. All θε < 0.01. 

All eight error covariances were statistically significant (p < .05) after correction for multiple 

post hoc comparisons using the Benjamini-Hochberg procedure (Benjamini-Hochberg p = 

.003). 
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Model figure is displayed using symbols from the McArdle-McDonald reticular 

action model18. Observed (also measured or manifest) variables are represented as rectangles. 

Factors (latent variables or constructs) are represented as large ellipses. Error variances for 

observed variables, are symbolised with small double-headed arrows pointing to the 

rectangles. Double-headed, curved arrows pointing to factors are the latent variable variances. 

Straight, single-headed arrows from large ellipses to observed variables reflect factor 

loadings. Curved, double-headed arrows between large ellipses are factor (i.e., latent) 

intercorrelations. Curved, double-headed arrows between error variances (small double-

headed arrows pointing to the rectangles) are error covariances. 
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Supplementary Figure 2. Proportion of variance in the CBCL Scales in 5,820 participants 

from the two-year follow-up wave of the ABCD study cohort that is unique to the eight 

syndrome scales versus what is general factor variance (i.e., overarching p-factor), and what 

is specific to each of the two group factors (internalizing or externalizing). 

Image taken from Tiego and Fornito (2022)19. Reprinted with permission. 
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Example 2 - Low phenotypic resolution 

To illustrate the problem of low phenotypic resolution in psychiatric phenotypes, we 

first calculated the internal consistency reliability using Cronbach’s alpha (α) for each of the 

eight syndrome scales and three composite scales of the CBCL. We then plotted the total 

information functions (TIFs) within an item response theory (IRT) framework for each of the 

eight CBCL empirical syndrome scales and the three CBCL composite scales (i.e., 

Internalizing, Externalizing, and Total Problems). A TIF represents the additive measurement 

precision (i.e., information) contributed by items on a questionnaire scale/subscale or other 

performance measure20. IRT is distinct from classical test theory in that it does not assume 

reliability is uniform across the latent-trait continuum. Rather than standard measures of 

reliability from classical test theory (e.g., Cronbach’s α), a TIF plots the total information 

(i.e., measurement precision) contributed by the retained questionnaire items, which varies 

across different points of the latent trait continuum.  We can then calculate the corresponding 

reliability in the population (where zero is the population mean and one the population 

standard deviation) 21,22 associated with each point of the latent trait continuum for each 

phenotype using the formula: 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ )23.  

Although the classic metric of internal consistency reliability indexed using 

Cronbach’s α demonstrated acceptable levels of reliability for all eleven scales (α = .68 - .95), 

IRT analysis revealed unacceptably low reliability even for basic research purposes (𝑟𝑥𝑥  < 

.6)24 at or below one standard deviation below the mean for all scales accept the Total 

Problems scale (Table S1). This low reliability is non-trivial when considering that scores on 

the CBCL are strongly positively skewed25,26 with most children scoring at the lower end of 

the scale (Supplementary Figures 3 – 13). We therefore calculated the proportion of the 

sample with unreliable scores (rxx < 0.60) for each of the CBCL scales (Supplementary Table 

2). On average, 37.2% of the sample would have unreliable scores. More than half of the 
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sample had unreliable scores for 3 of the 11 scales. In short, a substantial proportion of 

ABCD participants have scores with unacceptably low reliability, which will necessarily 

attenuate observed biology-psychopathology associations. This analysis demonstrates the 

problems posed by taking scale reliability estimates at face value.  
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Supplementary Table 1 

Reliability of the Child Behavior Checklist Scales Across the Latent Trait Continuum Estimated Using Unidimensional Item Response Theory Analysis 

   Reliability rxx (I) Across Latent Trait Continuum (θ) 

CBCL Scale Number of 

Items 

α -3.0 SD -2.5 SD -2.0 SD -1.5 SD 

 

-1.0 SD 

 

-0.5 SD M +0.5 SD +1.0 SD +1.5 SD +2.0 SD +2.5 SD +3.0 SD 

Anxious/Depressed 13 .813 .030 

(1.0304) 

.061 

(1.0654) 

.125 

(1.1431) 

.241 

(1.3178) 

.417 

(1.7141) 

.616 

(2.6040) 

.775 

(4.4470) 

.863 

(7.3177) 

.900 

(10.0273) 

.911 

(11.2038) 

.922 

(12.7643) 

.922 

(12.7768) 

.909 

(11.0446) 

Withdrawn/Depressed 8 .765 .010 

(1.0097) 

.021 

(1.0218) 

.048 

(1.0500) 

.104 

(1.1162) 

.214 

(1.2721) 

.389 

(1.6359) 

.592 

(2.4489) 

.755 

(4.0826) 

.853 

(6.7991) 

.895 

(9.5497) 

.889 

(8.9773) 

.887 

(8.8811) 

.897 

(9.7193) 

Somatic Complaints 11 .677 .031 

(1.0321) 

.053 

(1.0561) 

.091 

(1.0997) 

.153 

(1.1805) 

.251 

(1.3353) 

.394 

(1.6497) 

.575 

(2.3517) 

.749 

(3.9830) 

.853 

(6.8158) 

.872 

(7.8103) 

.863 

(7.3099) 

.890 

(9.1264) 

.884 

(8.6198) 

Social Problems 11 .746 .020 

(1.0199) 

.036 

(1.0371) 

.066 

(1.0703) 

.775 

(1.1356) 

.211 

(1.2675) 

.354 

(1.5470) 

.541 

(2.1805) 

.732 

(3.7244) 

.862 

(7.2407) 

.909 

(10.9852) 

.901 

(10.0993) 

.906 

(10.6863) 

.911 

11.1783 

Thought Problems 15 .677 .027 

(1.0275) 

.045 

(1.0475) 

.079 

(1.0862) 

.140 

(1.1634) 

.243 

(1.3207) 

.391 

(1.6412) 

.558 

(2.2647) 

.700 

(3.3360) 

.798 

(4.9490) 

.867 

(7.4909) 

.904 

(10.4228) 

.909 

11.0323 

.916 

(11.9506) 

Attention Problems 10 .852 .018 

(1.0182) 

.040 

(1.0419) 

.091 

(1.1004) 

.201 

(1.2522) 

.405 

(1.6793) 

.683 

(3.1581) 

.897 

(9.7237) 

.938 

(16.1762) 

.913 

(11.4510) 

.947 

(18.8380) 

.917 

(12.0549) 

.875 

(8.0111) 

.839 

(6.2087) 

Rule-Breaking 

Behavior 

17 .715 .010 

(1.0103) 

.018 

(1.0179) 

.032 

(1.0333) 

.064 

(1.0688) 

.141 

(1.1635) 

.311 

(1.4516) 

.579 

(2.3757) 

.793 

(4.8371) 

.868 

(7.5997) 

.878 

(8.1925) 

.913 

(11.5183) 

.940 

(16.5493) 

.944 

(17.9945) 

Aggressive Behavior 18 .876 .012 

(1.0117) 

.243 

(1.321) 

.084 

(1.0920) 

.214 

(1.2727) 

.451 

(1.8199) 

.298 

(3.3513) 

.848 

(6.5684) 

.903 

(10.3334) 

.926 

(13.4458) 

.944 

(17.7986) 

.955 

(22.3005) 

.954 

(21.7362) 

.947 

(18.8987) 

Internalizing Problems 32 .874 .096 

(1.1062) 

.162 

(1.1938) 

.268 

(1.3657) 

.416 

(1.7123) 

.586 

(2.4164) 

.737 

(3.8028) 

.841 

(6.3015) 

.902 

(10.2012) 

.933 

(14.9264) 

.946 

(18.4754) 

.951 

(20.2725) 

.952 

(20.9856) 

.951 

(20.3838) 

Externalizing 

Problems 

35 .897 .025 

(1.0254) 

.055 

(1.0586) 

.126 

(1.1443) 

.274 

(1.3770) 

.506 

(2.0256) 

.735 

(3.7776) 

.871 

(7.7467) 

.925 

(13.388)5 

.945 

(18.3015) 

.958 

(23.9771) 

.968 

(30.9540) 

.970 

(33.8423) 

.970 

(33.4850) 

Total Problems1 103 .949 .192 

(1.2382) 

.314 

(1.4585) 

 .478 

(1.9144) 

.652 

(2.8772) 

 .800 

(4.9036) 

 .888 

(8.9608) 

 .938 

(16.1290) 

 .962 

(26.6085) 

 .975 

(39.3269) 

.981  

(52.3180) 

 .984 

(62.3948) 

.985  

(66.4372) 

.985  

(67.7770) 

N = 5,820. CBCL = child behavior checklist. α = Cronbach’s alpha internal consistency reliability. rxx = internal consistency reliability. I = Information (rxx = 1 – 1/I). Red color font type indicates unacceptably low 

reliability for basic research (rxx < .60). 1n = 5,81
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A)       

 

B) 

 

Supplementary Figure 3. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Anxious/Depressed syndrome scale.  B) Histogram of sum scale scores on the Anxious/Depressed syndrome 

scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)       

 

 B) 

 

Supplementary Figure 4. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Withdrawn/Depressed syndrome scale. Taken from Tiego and Fornito (2022)19. Reprinted with permission.      

B) Histogram of sum scale scores on the Withdrawn/Depressed syndrome scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)          

     

B) 

 

Supplementary Figure 5. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Somatic Complaints syndrome scale.  B) Histogram of sum scale scores on the Somatic Complaints syndrome 

scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 6. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Social Problems syndrome scale.  B) Histogram of sum scale scores on the Social Problems syndrome scale. 

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)       

    

B) 

 

Supplementary Figure 7. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Thought Problems syndrome scale.  B) Histogram of sum scale scores on the Thought Problems syndrome 

scale. 

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ). Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 8. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Attention Problems syndrome scale.  B) Histogram of sum scale scores on the Attention Problems syndrome 

scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)       

   

B) 

 

Supplementary Figure 9. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Rule-Breaking Behavior syndrome scale.  B) Histogram of sum scale scores on the Rule-Breaking Behavior 

syndrome scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

 

B) 

 

Supplementary Figure 10. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Aggressive Behavior syndrome scale. B)  Histogram of sum scale scores on the Aggressive Behavior syndrome 

scale. 

Note. N = 5,819. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 11. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Internalizing Problems scale.  B) Histogram of sum scale scores on the Internalizing Problems scale.  

Note. N = 5,820.   𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 12. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Externalizing Problems scale.  B) Histogram of sum scale scores on the Externalizing Problems scale.  

Note. N = 5,819. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

    

B) 

 

Supplementary Figure 13. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Total Problems scale.  B) Histogram of sum scale scores on the Total Problems scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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Supplementary Table 2 

Proportion of the Sample from the Two-Year Follow-Up Wave of Data Collection from the ABCD Study Cohort 

that Did Not Meet Minimal Acceptable Standards of Measurement Reliability on Each of the Eleven Child 

Behavior Checklist Scales 

 

Note. N = 5,820. CBCL = Child behavior checklist.  θ = latent trait continuum in standardized metric (i.e., M = 

0, SD = 1). I = Information. n = size of subsample. rxx = internal consistency reliability.  

 

 

 

 

 

 

 

 

 

 

CBCL Scale θ I < 2.5 Raw Score at I < 2.5 n rxx < .60 %N rxx < .60 

Anxious/Depressed -0.600 0.5329 1,985 34.1 

Withdrawn/Depressed 0.000 0.5207 3,103  53.3 

Somatic Complaints 0.000 0.8081 2,539  43.6 

Social Problems 0.100 0.7009 2,983 51.3 

Thought Problems 0.100 0.9287 2,563 44.0 

Attention Problems -0.700 0.3498 2,074 35.6 

Rule-Breaking Behavior 0.000 0.3885  3,336  57.3 

Aggressive Behavior -0.800 0.2757 2,115 36.3 

Internalizing Problems -1.000 0.9160 1,071 18.4 

Externalizing Problems -0.900 0.3649 1,788 30.7 

Total Problems -1.700 0.9401 453 7.78 
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Example 3 - Measurement non-invariance. 

Measurement invariance for questionnaires can also be evaluated within an IRT 

framework (Box 5 main text), where it is called differential item functioning (DIF)27,28. DIF 

refers to the property of a measurement instrument in which the item parameters estimated 

within an IRT framework differ as a function of group membership, such that there is bias in 

interpreting and comparing the raw scores between groups. When DIF is of sufficient 

magnitude across many items it can result in differential test functioning (DTF), by which 

scores cannot be meaningfully compared between groups because they correspond to 

different levels of the latent trait being measured27-29. This has serious implications for 

biology-psychopathology association studies, because psychometric and substantive group 

differences in observed scores may obscure meaningful associations with psychiatric 

biomarkers. It is worth mentioning that DIF can also be associated with latent classes or 

mixtures (see example 5), which represent unobserved groups that vary in their slope and 

threshold parameters (Box 5 main text). These differences can be detected using IRT mixture 

modeling30-32. 

DIF assessment is an essential, but often overlooked, part of the validation process for 

psychiatric phenotypes33. DIF is a more powerful approach for detecting non-invariance than 

traditional factor analysis approaches, but requires larger sample sizes and more restrictive 

assumptions34. There are multiple approaches to DIF testing, but the preferred method when 

equivalence between any items has not yet been established is to use an iterative two-step 

procedure35. Here, all items are anchored to a common metric (i.e., all items scaled to the 

same latent trait distribution) and their slope and threshold parameters freely estimated one at 

a time. The difference in model fit is tested for statistical significance using the Wald χ2 test35. 

Each item is tested for statistically significant group differences in slope and threshold 

parameters, as well as overall DIF (slope and threshold parameters) using the χ2 test statistic 
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with corresponding degrees of freedom (df).  Differences in the threshold (severity/location) 

parameters indicate that item response categories are differentially sensitive to different 

levels of the latent trait between groups29.  Statistically significant differences in slope 

parameters indicate that questionnaire items provide different degrees of information and 

precision of measurement across groups29.   

By way of example, we tested for DIF in the Total Problems scale of the CBCL for 

male and female ABCD participants using the two-year follow-up data. We focused on the 

Total Problems scale because it has the highest reliability of all the CBCL scales as indexed 

by Cronbach’s α and information values across the latent trait continuum (Supplementary 

Table 1). We evaluated item-level performance prior to overall model fit23,36. The 

monotonicity assumption was assessed by inspecting the option response functions and 

ensuring that the probability of endorsement of each successive response category on CBCL 

items increased monotonically as a function of increasing severity on the CBCL total 

problems latent trait continuum23. We removed three items (72, 105, 106) with substantially 

elevated standard errors for their threshold parameters in males and females, suggesting poor 

fit of the model. The fit of the graded response (GR) model to each item was assessed with a 

generalization of the S-χ2 item-fit statistic37 at a lower significance threshold to account for 

the very large sample [p < .001]. No items demonstrated poor fit to the GR model based on 

this probability threshold. Many items demonstrated local dependence (LD) based on 

exceeding the recommended threshold for the standardized LD χ2 statistics [i.e.,  > 10]38. 

However, there was good reason to believe that these inflated LD statistics and apparent local 

dependencies between items were attributable to the large number of zero-frequency cells in 

the bivariate contingency tables39 for the CBCL data, which is common for clinical scales 

with low endorsement rates resulting in sparseness of the observed data23.  For this reason, 

we retained all remaining items regardless of whether they had elevated LD (χ2 > 10). 
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We determined substantial DIF between the sexes, such that there was evidence of 

DTF as can be seen in the test characteristic curves displayed in Supplementary Figure 14. 

Test characteristic curves plot the expected raw score for a group (y axis) as a function of 

their values on the underlying latent trait continuum (x axis)22,29,40. As can be seen in 

Supplementary Figure 14, the test characteristic curves were not coincident at any point along 

the latent trait continuum, indicating DTF. In other words, raw scores on the CBCL Total 

Problems scale cannot be directly compared between male and female children, because they 

correspond to different levels of the underlying Total Problems latent trait. For example, a 

raw score of 10 in males (equivalent to the mean of the latent trait) does not index the same 

level of severity in the underlying latent trait construct as it does in females (roughly 

equivalent to two standard deviations below the mean of the latent trait). These differences 

will confound any analysis that pools scores for males and females. The differences observed 

here are substantial and would confound any attempts to correlate this measure with 

biological variables that are pooled for male and female children. 
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Supplementary Table 3 

Levels of Measurement Invariance and their Interpretation within a Factor Analytic Framework 

Level of 

invariance 

Definition Interpretation of 

Invariance 

Interpretation of Non-invariance 

1. Weak 

(configural) 

equality of 

factor loadings 

across the same 

number of 

factors 

factors have the same 

substantive interpretation 

across groups, enabling 

meaningful comparison of 

factor variances and 

covariances 

scale items (indicators) are differentially 

weighted to determine the factors, which 

are a linear combination of the 

indicators, meaning that the factors and 

corresponding raw scores have different 

substantive interpretations between 

groups 

2. Strong 

(metric) 

equality of 

factor loadings 

and intercepts 

enables direct comparison 

of factor means between 

groups 

different response styles operating 

within each group affect endorsement of 

item response categories independently 

of individuals’ standing on the 

underlying factor; sum scale and 

subscale scores will reflect both true 

individual/group differences in the 

underlying construct being measured, 

but also systematic differences in 

response styles unrelated to the factor, 

rendering direct comparisons of raw 

scores meaningless 

3. Strict 

(scalar) 

equality of 

factor loadings, 

observed 

variable 

intercepts, and 

error variances 

enables meaningful 

comparison of 

observed/raw scores 

between groups 

latent variables are not being measured 

with equivalent precision across groups, 

with different levels of error variance 

aggregation, which invalidates 

comparison of variances and 

covariances of observed scores 
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Supplementary Figure 14. Test characteristic curves showing the relationship of expected 

raw score (y axis) as a function of a participants’ standing on the CBCL Total Problems latent 

trait continuum (x axis) for males (n = 3,025) and females (n = 2,795).   

Image taken from Tiego and Fornito (2022)19. Reprinted with permission. 
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Example 4 – Increasing phenotypic resolution 

Although attention deficit hyperactivity (ADHD)-related problems are dimensionally 

distributed in the developmental population41, the Attention Problems scale, along with many 

other CBCL scales, are strongly positive skewed6,25. This is due to the fact that the CBCL 

was developed for maximal criterion-validity in differentiating referred from non-referred 

youth (i.e., using empirical criterion-keying)25. Thus, subscale items index symptoms that are 

only relevant for a small proportion of children with clinically-significant attention problems. 

As a result, there will be high precision of measurement at the upper end of the Attention 

Problems latent trait continuum where there is adequate item coverage, but very poor 

precision at the adaptive end of the continuum where attentional functioning is normal or 

even better than normal (Supplementary Table 1 & Supplementary Figure 8)42.  

Along with the CBCL, parents/guardians of child study participants in the ABCD 

study also completed the Early Adolescent Temperament Questionnaire – Revised (EATQ-

R).43 The EATQ-R measures the three higher-order dimensions of temperament: negative 

affectivity, positive affectivity, and effortful control (i.e., constraint). Effortful control is the 

self-regulatory domain of temperament (i.e., the developmental precursor of 

conscientiousness) and constitutes a protective factor against developmental 

psychopathology, especially disinhibited externalizing problems such as ADHD 44-47. Thus, it 

stands to reason that high effortful control (i.e., high attentional control) represents the 

adaptive end of the attention problems continuum. We reran the latent trait model with IRT 

on the CBCL Attention Problems syndrome scale items incorporating the Effortful Control 

subscale items of the EATQ-R. The total information function is displayed in Supplementary 

Figure 15 and shows that measurement precision was markedly increased, with marginal 

reliability at rxx = .94 and reliability not dropping below rxx = .75 even at three standard 

deviations below the mean. However, inclusion of additional items must meet the 
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assumptions of unidimensional IRT, including unidimensionality and fit of item data to the 

(two parameter logistic or graded response) IRT model.23 

 

 

Supplementary Figure 15. Total information curve for the Attention Problems syndrome 

scale incorporating Effortful Control items from Early Temperament Questionnaire – Revised 

in 5,823 participants from the ABCD study. Marginal reliability estimate is rxx = 0.94 and 

reliability does not decrease below rxx = 0.75 even at -3SD.  
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Example 5 – Investigating sample heterogeneity with mixture modeling 

One area of psychiatric research in which biological and etiological heterogeneity has 

been increasingly recognized and accommodated is in the study of attention deficit 

hyperactivity disorder (ADHD)48-51. Attempting to explicitly account for heterogenous 

subtypes has led to the discovery of unique neuroimaging biomarkers52,53. In line with these 

findings and by way of example, we conducted a factor mixture modeling (FMM) analysis of 

the attention problems syndrome scale of the CBCL in the two-year follow-up wave of data 

of the ABCD study cohort. FMM is a type of latent variable analysis that combines latent 

class analysis (LCA) with the common factor modeling (CFM) approach54-56, and can be used 

for identifying discrete, or even probabilistic, classes (also “mixtures” or clinical 

subtypes/subgroups) that are latent (i.e., not directly observed) and embedded within 

multivariate dimensional data.  FMM is particularly useful for analyzing zero-inflated data, 

which is characteristic of clinical phenomena measured in non-clinical samples57. Zero-

inflated distributions can compromise correlational studies by violating distributional 

assumptions and attenuating linear relationships57,58. In these cases, FMM identifies 

individuals with little-to-no symptoms (i.e., a zero-inflated class) and distinguishes them from 

the rest of the distribution, resulting in differentiation into distinct sub-groups.  

We first confirmed that the attention problems construct was unidimensional (i.e., 

absence of variable-centred heterogeneity) and identified the best-fitting model in the ABCD 

sample using Bayesian structural equation modelling (SEM). We conducted a thorough 

sensitivity analysis by varying the priors for the factor loadings and residual covariances 

(Supplementary Figure 16 & Supplementary Table 4)59,60. We then conduced LCA to 

determine the upper bound on the number of potential classes that could be embedded within 

the data54. We determined that five classes based on item response patterns could be 

discerned as the best fitting categorical latent class model (see Supplementary Table 6) and 
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the upper bound for the number of FMM subtypes that would best account for the data (i.e., 

because FMM takes into account the factor structure and dimensionality of the data, as well 

as the categorical structure of person-centred subtypes, the number of classes best accounting 

for the data is less than that determined by LCA).   

We then began testing FMMs, beginning with the simplest, a one-factor one-class 

model54, before moving to one-factor two-class models using the most restrictive and 

parsimonious FMM  (i.e., FMM-1, different latent means only) before progressively relaxing 

equality constraints on the factor variance-covariance matrix (i.e., FMM-2); the item 

thresholds (i.e., FMM-3), and the factor loadings (i.e., FMM-4), as well as specifying zero-

inflated FMM models for the > two-class models, to determine the best fitting model as 

indicated by the log likelihoods (lower is better), entropy (ranges between 0.000 – 1.000, with 

higher values indicating better class separation), and the Bayesian information criterion (BIC; 

lower values denoting the preferred model)54. We found that a two-class, one-factor model 

FMM-3 provided the best fit to the data as revealed by the BIC and better class separation 

than the three-class one-factor zero-inflated FMM-3, which was little better than chance class 

assignment (see Supplementary Table 7). Although class separation was poor for the two-

class, one-factor FMM-3 model as shown by the low entropy, these two classes demonstrated 

distinct item response profiles (Supplementary Figures 17 – 26) with the smaller class 2 (n = 

853, 14.66%) endorsing more severe symptoms on seven of the ten items (1 “acts young”; 4 

“fails to finish”; 8 “concentrate”; 10 “sit still”; 41 “impulsive”; 61 “poor school”; 78 

“inattentive”) than the bigger class 1 (n = 4,967, 85.34%). Thus, whilst the latent variable 

variables have a similar interpretation across classes due to the same pattern of factor 

loadings, they have different variances, and neither latent means nor raw scores can be 

directly and meaningfully compared due to class varying thresholds (i.e., systematic 

differences in item response category endorsement unrelated to the latent variable)54. Failure 
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to check for and identify these mixtures may confound subsequent biology-psychopathology 

associations studies. As class separation was poor based on the entropy (E = .614), covariates 

(e.g. biological variables) would need to be compared across classes by including them as 

auxiliary variables and using the DCAT or BCH procedures as implemented in Mplus61 for 

categorial and continuous variables, respectively62,63. This method avoids biased estimates in 

class comparisons, whilst preserving uncertainty in class membership without causing shifts 

in latent classes64. 
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Supplementary Table 4 

Summary of Fit Statistics for Competing Bayesian Confirmatory Factor Analysis Models for the ASRS-5 in the 

Adult ADHD Cohort 

 
Model* 

95%CI Δχ2 
PPP 

Prior  

PPP LL UL 

1 One-factor model factor loading priors N(0.90,.100), residual covariances priors IW(5,10) -30.183 32.444 .483 .990 

2 One-factor model factor loading priors N(0.90,.050), residual covariances priors IW(5,10) -30.104 32.330 .478 .989 

3 One-factor model factor loading priors N(0.80,.100), residual covariances priors IW(5,10) -29.989 32.313 .477 .989 

4 One-factor model factor loading priors N(0.80,.050), residual covariances priors IW(5,10) -29.893 32.549 .484 .986 

5 One-factor model factor loading priors N(0.70,.100), residual covariances priors IW(5,10) -30.070 32.948 .482 .990 

6 One-factor model factor loading priors N(0.70,.050), residual covariances priors IW(5,10) -29.712 32.955 .474 .988 

7 One-factor model factor loading priors N(0.60,.100), residual covariances priors IW(5,10) -29.774 32.790 .477 .994 

8 One-factor model factor loading priors N(0.60,.050), residual covariances priors IW(5,10) -29.912 32.102 .482 .989 

9 One-factor model factor loading priors N(0.50,.100), residual covariances priors IW(5,10) -28.719 32.727 .473 .994 

10 One-factor model factor loading priors N(0.50,.050), residual covariances priors IW(5,10) -29.422 32.366 .482 .991 

11 One-factor model factor loading priors N(0.90,.100), residual covariances priors IW(3,10) -30.927 31.909 .483 .991 

12 One-factor model factor loading priors N(0.90,.050), residual covariances priors IW(3,10)  -30.085    32.495 .482 .988 

13 One-factor model factor loading priors N(0.80,.100), residual covariances priors IW(3,10) -29.545 32.141 .487 .988 

14 One-factor model factor loading priors N(0.80,.050), residual covariances priors IW(3,10) -30.203 31.916 .484 .986 

15 One-factor model factor loading priors N(0.70,.100), residual covariances priors IW(3,10) -30.080 33.170 .489 .990 

16 One-factor model factor loading priors N(0.70,.050), residual covariances priors IW(3,10) -30.008             32.398 .479 .989 

17 One-factor model factor loading priors N(0.60,.100), residual covariances priors IW(3,10) -30.238             33.001 .474 .994 

18 One-factor model factor loading priors N(0.60,.050), residual covariances priors IW(3,10) -29.078             32.726 .472 .989 

19 One-factor model factor loading priors N(0.90,.100), residual covariances priors IW(1,10) -30.516             32.576 .483 .990 

20 One-factor model factor loading priors N(0.90,.050), residual covariances priors IW(1,10) -30.583             32.058 .481 .988 

21 One-factor model factor loading priors N(0.80,.100), residual covariances priors IW(1,10) -30.639             32.554 .484 .988 

22 One-factor model factor loading priors N(0.80,.050), residual covariances priors IW(1,10) - 30.344 32.701 .479 .986 

23 One-factor model factor loading priors N(0.70,.100), residual covariances priors IW(1,10) -30.133             32.877 .482 .991 

24 One-factor model factor loading priors N(0.70,.050), residual covariances priors IW(1,10) -29.524 32.921 .472 .987 

25 One-factor model factor loading priors N(0.60,.100), residual covariances priors IW(1,10) -29.819   32.227 .479 .994 

26 One-factor model factor loading priors N(0.60,.050), residual covariances priors IW(1,10) -29.154             33.052 .471 .989 

Note. number of free parameters = 75; Δχ2 = 95% confidence interval for the difference between the observed 

and replicated chi-square values. PPP = posterior predictive probability value. Prior PPP = prior posterior 

predictive probability value. *All models used default normal priors for the item thresholds ~N(0.00,5.00). Base 

model with no priors for the factor loadings or error covariances failed to converge. Bold typeface denotes best 

fitting model. (N = 5,820). 
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Supplementary Figure 16. One-factor model of CBCL attention problems empirical syndrome scale in the 

two-year follow-up wave of data collection of the ABCD study (N = 5,820). 

Note. Model fit statistics were q = 75; 95%CI Δχ2 = -30.080, 33.170; PPP = 0.489; Prior PPP = 0.990. Freely 

estimated residual covariances omitted for clarity (see Table S5). 
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Supplementary Table 5 

Standardized Residual Covariances Between CBCL Attention Problems Items in the Best-Fitting Bayesian One-Factor Model 

 

 

Note.  95% credibility intervals in brackets. *** one-tailed p < .001; ** one-tailed p < .01; *one-tailed p < .025.

Variables 1. 2. 3. 4. 5. 6. 7. 8. 9. 

 

1. CBCL 1 

    

      

2. CBCL 4 0.209** 

(0.04, 0.375)    

      

3. CBCL 8 0.223 

(-0.022, 0.495) 

0.388*** 

(0.156, 0.596)   

     

4. CBCL 10 0.200* 

(0.012, 0.367) 

0.142 

(-0.100, 0.331) 

0.470*** 

(0.244, 0.635)   

    

5. CBCL 13 0.219 

(-0.007, 0.374) 

0.217 

(-0.077, 0.474) 

0.286 

(-0.231, 0.631) 

0.101 

(-0.172, 0.357)   

   

6. CBCL 17 0.158 

(-0.002, 0.301) 

0.276** 

(0.052, 0.489) 

0.261 

(-0.099, 0.575) 

0.088 

(-0.168, 0.312) 

0.458*** 

(0.253, 0.600)   

  

7. CBCL 41 0.263** 

(0.094, 0.396) 

0.277** 

(0.095, 0.419) 

0.310*** 

(0.126, 0.491) 

0.416*** 

(0.243, 0.534) 

0.138 

(-0.063, 0.346) 

0.165 

(-0.044, 0.346)   

 

8. CBCL 61 0.170* 

(0.006, 0.310) 

0.388*** 

(0.186, 0.521) 

0.361* 

(0.022, 0.539) 

0.095 

(-0.103, 0.248) 

0.211 

(-0.074, 0.415) 

0.114 

(-0.063, 0.318) 

0.225** 

(0.070, 0.352)   

9. CBCL 78 0.196 

(-0.031, 0.442) 

0.370*** 

(0.171, 0.575) 

0.648*** 

(0.504, 0.741) 

0.369** 

(0.107, 0.529) 

0.263 

(-0.148, 0.596) 

0.347** 

(0.029, 0.627) 

0.421*** 

(0.239, 0.574) 

0.356** 

(0.102, 0.526)  

10. CBCL 80 0.177 

(-0.002, 0.332) 

0.228 

(-0.021, 0.482) 

0.226 

(-0.171, 0.599) 

0.098 

(-0.158, 0.363) 

0.543*** 

(0.351, 0.681) 

0.493*** 

(0.305, 0.628) 

0.187 

(-0.004, 0.394) 

0.190 

(-0.035, 0.398) 

.320 

(0.039, .651) 
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Supplementary Table 6 

Results of Exploratory Latent Class Analysis of the CBCL Attention Problems Empirical Syndrome Scale in the 

Two-Year Follow-Up Wave of Data from the ABCD Study 

Note. C = number of classes; q = number of free parameters; LL = log likelihood; LR Δ2 df = degrees of freedom for the likelihood ratio chi-

square test. LR Δ2 = Likelihood ratio chi-square test of the difference between the observed versus expected frequency tables for the 

categorical latent class indicators. LR Δ2 p = probability value for the likelihood ratio chi-square test; E = entropy; LMR = Lo-Mendell-

Rubin adjusted Likelihood Ratio Test when comparing the k to k – 1 class model; LMR p = probability value for the Lo-Mendell-Rubin 

adjusted Likelihood Ratio Test. 2*ΔLL = Two times the log likelihood difference between k and k – 1 models for the bootstrapped likelihood 

ratio test. BLRT p = probability value for the bootstrapped likelihood ratio test.  BIC = Bayesian Information Criterion; N = 646. 

1 Best loglikelihood values initially obtained using 80 and 16, then replicated using 160 and 32, random starting value perturbations and final 

stage optimizations. 2 Best loglikelihood values initially obtained using 320 and 64, then replicated using 640 and 128 random starting value 

perturbations and final stage optimizations.  

3 Number of initial stage random starts for the k-1 class analysis model = 20; Number of final stage optimizations for the  k-1 class analysis 

model = 4 

4 Difference in the number of estimated parameters for k versus k – 1 models for the BLRT was 21. 

Bold typeface indicates preferred model based on converging evidence across fit statistics. 

 

 

   
Likelihood Ratio Δ2 

 Lo-Mendell-Rubin          

Likelihood Ratio Test 3 

Bootstrapped              

Likelihood Ratio Test 3,4 

 

C q LL LR Δ2 df LR Δ2 LR Δ2 p E LMR LMR p 2 *ΔLL BLRT p BIC 

1 1 20 -34,859.934 58,621 10919.886 1.000      69893.249 

2 1 41 -27,822.391 58,848 5169.178 1.000 .893 12028.061 <.001 12094.131 <.001 57981.168 

3 1 62 -26,456.642 58,910 4311.943 1.000 .885 2534.377 <.001 2548.298 <.001 55614.920 

4 1 83 -23,888.045 58,889 3989.107 1.000 .814 338.514 .011 340.373 <.001 55456.597 

5 1 104 -23,756.006 58,888 3965.017 1.000 .864 248.922 .046 250.289 <.001 55388.358 

6 1 125 -24,418.128 58,869 3794.840 1.000 .763 213.869 .007 15.044 <.001 55355.365 

7 2 146 -24,614.995 58,851 3698.435 1.000 .816 122.991 .035 123.666 <.001 55413.748 

8 2 167 -24,453.058 58,830 3590.495 1.000 .762 128.755 .038 129.462 <.001 55484.101 

9 2 188 -23,000.892 58,812 3539.246 1.000 .761 -999 -999 -999 -999 55571.474 

10 2 209 -23,954.556 58,786 3421.109 1.000 .768 175.272 .736 -999 -999 55671.257 
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Supplementary Table 7 

Results of Exploratory Factor Mixture Modeling of CBCL Attention Problems in the Two-Year Follow-Up Wave of Data from the ABCD 

Study 

Classes Model LL LR Δ2 df LR Δ2 LR Δ2 p Entropy BIC 

1  -27,271.773 58,932 4,007.773 1.0000  55,245.420 

2 
FMM-1 1 -27,729.425 58,853 5,191.192 1.0000 .895 58,051.317 

 FMM-2 2 -28,039.115 58,932 4,031.630 1.0000 .564 55,253.961 

 FMM-3 2 -24,616.476 58,920 3,660.710 1.0000 .614 54,902.574 

3 
FMM-11 -26,465.635 58,923 4,342.573 1.0000 .882 55,673.358 

 FMM-2 4 -27,728.688 58,928 4001.844 1.0000 .472 55,270.346 

 ZI FMM-11 -26,613.997 58,919 4,363.670 1.0000 .881 55,730.333 

 ZI FMM-3 3 -23,511.314 58,907 3627.279 1.0000 .516 54,892.252 

4 FMM-1 1 -25,554.856 58,926 4,169.173 1.0000 .850 55,435.462 

 FMM-2 1 -29,625.937 58,925 4,000.532 1.0000 .348 55,294.206 

 ZI FMM-11 -25,896.665  58,929 4,191.474 1.0000 .851 55,428.748 

 ZI FMM-2 4 -28,842.051 58,925 3,990.111 1.0000 .409 55,285.069 

Note. LL = log likelihood; LR Δ2 df = degrees of freedom for the likelihood ratio chi-square test. LR Δ2 = 

Likelihood ratio chi-square test of the difference between the observed versus expected frequency tables for the 

categorical latent class indicators. LR Δ2 p = probability value for the likelihood ratio chi-square test. BIC = 

Bayesian Information Criterion; FMM = factor mixture modeling; ZI = zero-inflated model; N = 5,820. 

1 Estimated using the robust maximum likelihood estimator (MLR) divided by the scaling correction factor for 

non-normality of ordinal data. Best loglikelihood values initially obtained using 80 and 16, then replicated using 

160 and 32 random starting value perturbations and final stage optimizations.  

2 Best loglikelihood values initially obtained using 160 and 32, then replicated using 320 and 64 random starting 

value perturbations and final stage optimizations. 

3 Best loglikelihood values initially obtained using 320 and 64, then replicated using 640 and 128 random 

starting value perturbations and final stage optimizations. 

4 The best log likelihood was not replicated across runs. 

Bold typeface indicates preferred model based on fit statistics.  

The following models were misspecified and did not converge on trustworthy estimates and therefore the results 

were not reported for these models: 2C FMM-4; 2C ZI (converged, but had zero cases in the zero-inflated class); 

3C FMM-3; 3C FMM-4; 3C ZI FMM-2; 3C ZI FMM-4; 4C FMM-3; 4C FMM-4; 4C ZI FMM-3; 4C ZI FMM-

4.  
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Supplementary Figure 17. Item Probability Plot for CBCL Item 1 “Acts Young” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

 

Supplementary Figure 18. Item Probability Plot for CBCL Item 4 “Fails to Finish” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

 

Supplementary Figure 19. Item Probability Plot for CBCL Item 8 “Concentrate” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 



Running title: Precision phenotyping for psychopathology_Supplementary information 42 

 

Supplementary Figure 20. Item Probability Plot for CBCL Item 10 “Sit Still” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

 
Supplementary Figure 21. Item Probability Plot for CBCL Item 13 “Confused” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

 
Supplementary Figure 22. Item Probability Plot for CBCL Item 17 “Daydream” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
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Supplementary Figure 23. Item Probability Plot for CBCL Item 41 “Impulsive” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

Supplementary Figure 24. Item Probability Plot for CBCL Item 61 “Poor School” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

Supplementary Figure 25. Item Probability Plot for CBCL Item 78 “Inattentive” for the Two-Class FMM-3 

Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
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Supplementary Figure 26. Item Probability Plot for CBCL Item 80 “Stares” for the Two-Class FMM-3 Model. 

Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

 

 

Example 6 – Controlling for Method Variance 

To specify a T(M-1) model, one method is chosen as the reference method, which is 

indistinguishable from the target trait. An important property of this model is that because 

there is a reference method, there must always be one less method factor than the number of 

methods used to measure the target psychological attribute (hence the M-1 specification)65,66 . 

In other words, it is now understood that method effects are a fundamental element of 

psychological measurement that cannot be completely excluded from the psychological 

attribute being measured65,66. For this reason, even in multimethod approaches to 

psychological measurement, one of the methods must be considered the ‘reference method’ 

and incorporated into the construct as part of the assessment process65,66. The advantage of 

the T(M-1) approach is that the method factor represents the residual variances of the 

indicators not shared with the trait as measured by the reference method. Thus, the method 

effect(s) is/are represented as a latent variable(s)65,66. 
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As a first step, we sought to increase phenotypic resolution by combining the CBCL 

attention problems empirical syndrome scale items with the EATQ-R effortful control 

subscale items, that latter of which represents the adaptive end of the latent trait continuum 

for ADHD-related problems (example 4). We then incorporated cognitive variables known to 

be sensitive indicators of ADHD-related problems, response inhihinition67 and working 

memory68-70. We used stop-signal reaction time as measured on the stop signal task71 and 

estimated using the integration method72 and d-prime73 as a measure of working memory on 

four different conditions of a working memory 2-back task: 1) neutral faces; 2) positive faces; 

3) negative faces; and 4) places, obtained from the 2-year follow-up wave of data collection 

of the ABCD study74. The stop signal task has been well-described, including in the ABCD 

cohort75,76. For the n-back task, participants had to indicate whether a picture presented on a 

screen on each trial was a “Match” or “No Match” to stimuli presented two trials prior74. 

Working memory performance was defined as the response accuracy from the two-back 

condition for each of the four stimulus conditions. We also incorporated polygenic risk scores 

for ADHD from saliva samples obtained at baseline, at a p value threshold (PT) of .145 

(ADHD PRS), which was identified as the optimal threshold for explaining variance in the 

CBCL attention problems scale in PRSice77.  ADHD PRS quantifies the cumulative genetic 

risk for a disorder as a weighted sum of disorder-associated single nucleotide polymorphisms 

(SNPs) as identified in genome-wide association studies78-80. Participants of European 

ancestry were selected for all further analyses in order to match the genetic ancestry of the 

discovery genome wide association study (GWAS) for ADHD used to calculate PRSs (n = 

2,848)81,82. 

For the purposes of specifying the T(M-1) model, cognitive assessment was selected 

as the reference method, such that method bias associated with parent-report symptoms and 

temperament on the CBCL and EATQ-R could be excluded as a method factor from the 
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model65,66.  We used a listwise approach to case selection to ensure only participants with 

ADHD PRS and cognitive performance data were included in the analysis. The final T(M-1) 

model is displayed in Supplementary Figure 27. The attention problems construct was 

characterized by weak loadings from the cognitive variables (λ = .112 - .176) and modest (λ = 

.247, p < .001) to very strong (λ = .916, p < .001) loadings from the parent-report items on 

the CBCL Attentional Problems and EATQ-R Effortful Control items (Supplementary Table 

8). This factor represented the attention problems construct uncontaminated by method 

variance from parent-report, which was captured by a residual method factor. The residual 

item loadings on this method factor ranged from very weak (λ = .005, p = .897) to moderately 

strong (λ = .721, p < .001) (Supplementary Table 9) and this factor did not have statistically 

significant variance (φ = .016, p = .829), further confirming its status as a junk factor (i.e., 

representing residual variance related to parent-report not of substantive interest).  

We regressed the attention problems factor onto ADHD PRS and found that ADHD 

PRS explained 1.0% of the variance in the attention problems latent trait factor with 

cognition as the reference method. In contrast, the method factor was not meaningfully 

related to ADHD PRS (φ = -.043, SE = .026, p = .101). Thus, we constrained their association 

to zero (Supplementary Figure 27). Furthermore, we were unable to get a model without 

cognition as the reference method and a method factor for the CBCL and EATQ-R items to 

converge. These results provide evidence that incorporation of multi-method approaches, 

specified as a T(M-1) model, can yield meaningful results in biology-psychopathology 

association studies.  
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Supplementary Figure 27.  Trait Method Minus One [T(M-1] model of CBCL attention problems empirical syndrome scale augmented with the EATQ-R effortful control items in the two-year follow-up data wave of 

the ABCD study (N = 2,166). Cognition was the reference method, with parent-report items forming the method factor and its variance excluded from the attention problems latent variable. Note that polygenic risk for 

ADHD explained variance in the attention problems factor (1.3%), but was unrelated to the parent-report method factor.
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Supplementary Table 8 

Standardized Parameter Estimates, Standard Errors, and Probability Values of Model Parameter Estimates 

from the T(M-1) Model of Attention Problems for the Reference Method Variables and the Attention Problems 

Item Factor Loadings 

Parameter Standardized Estimate 

(λ) 

Standard Error (SE) Probability value (p) 

λRM1 -0.156 0.030 <.001 

λRM2 0.129 0.030 <.001 

λRM3 0.156 0.030 <.001 

λRM4 0.124 0.031 <.001 

λRM5 0.192 0.029 <.001 

θεRM1 0.976 0.009 <.001 

θεRM2 0.983 0.008 <.001 

θεRM3 0.976 0.009 <.001 

θεRM4 0.985 0.005 <.001 

θεRM5 0.963 0.011 <.001 

λAP1 -0.596 0.024 <.001 

λAP2 -0.791 0.025 <.001 

λAP3 -0.923 0.013 <.001 

λAP4 -0.765 0.019 <.001 

λAP5 -0.683 0.033 <.001 

λAP6 -0.579 0.025 <.001 

λAP7 -0.733 0.021 <.001 

λAP8 -0.679 0.042 <.001 

λAP9 -0.913 0.015 <.001 

λAP10 -0.676 0.032 <.001 

λAP11 0.724 0.043 <.001 

λAP12 0.281 0.029 <.001 

λAP13 0.507 0.020 <.001 

λAP14 0.414 0.027 <.001 

λAP15 0.439 0.049 <.001 

λAP16 0.611 0.033 <.001 

λAP17 0.462 0.041 <.001 

λAP18 0.579 0.019 <.001 

λAP19 0.496 0.026 <.001 

λAP20 0.664 0.028 <.001 

λAP21 0.530 0.062 <.001 

λAP22 0.527 0.072 <.001 

λAP23 0.614 0.044 <.001 

λAP24 0.538 0.067 <.001 

λAP25 0.243 0.027 <.001 

λAP26 0.693 0.026 <.001 

λAP27 0.600 0.038 <.001 

λAP28 0.633 0.031 <.001 

Note. λ = factor loading; θε = error/residual variance; RM = reference method; AP = attention problems. 

 

 

 

 



Running title: Precision phenotyping for psychopathology_Supplementary information 49 

Supplementary Table 9 

Standardized Parameter Estimates, Standard Errors, and Probability Values of Model Parameter Estimates 

from the T(M-1) Model of Attention Problems for the Method Factor Item Loadings 

Parameter Standardized Estimate 

(λ) 

Standard Error (SE) Probability value (p) 

λMF1 0.031 0.020 0.120 

λMF2 -0.211 0.078 0.007 

λMF3 -0.082 0.092 0.374 

λMF4 0.050 0.080 0.529 

λMF5 -0.083 0.084 0.322 

λMF6 0.008 0.062 0.895 

λMF7 -0.007 0.076 0.922 

λMF8 -0.409 0.065 <.001 

λMF9 -0.088 0.093 0.344 

λMF10 0.007 0.077 0.927 

λMF11 0.414 0.073 <.001 

λMF12 0.190 0.036 <.001 

λMF13 -0.038 0.060 0.531 

λMF14 0.057 0.049 0.247 

λMF15 0.440 0.051 <.001 

λMF16 0.295 0.061 <.001 

λMF17 0.356 0.052 <.001 

λMF18 0.020 0.062 0.749 

λMF19 0.095 0.056 0.089 

λMF20 0.230 0.069 0.001 

λMF21 0.635 0.052 <.001 

λMF22 0.744 0.051 <.001 

λMF23 0.449 0.058 <.001 

λMF24 0.689 0.054 <.001 

λMF25 0.064 0.035 0.066 

λMF26 0.209 0.072 0.003 

λMF27 0.375 0.057 <.001 

λMF28 0.266 0.062 <.001 

Note. λ = factor loading; MF = method factor. 
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The Distinction Between the Child Behavior Checklist and the Hierarchical Taxonomy 

of Psychopathology 

The Child Behavior Checklist (CBCL) is dimensional and hierarchical like the 

Hierarchical Taxonomy of Psychopathology (HiTOP) model and is used widely around the 

world including in large, consortia-sized datasets (e.g., Adolescent Brain and Cognitive 

Development study)83, but has failed to yield robust findings of the neural and genetic 

correlates of developmental psychopathology (e.g., Marek et al., 2022)4. It is also a HiTOP-

conformant measure. The use of HiTOP-conformant measures enables broadband 

dimensional and hierarchical measurement of psychopathology, circumventing issues of 

arbitrary clinical cut-offs and loss of power, as well as the comorbidity problem. However, 

the problems of phenotypic complexity and variable-centred heterogeneity can only be 

resolved when these dimensions are explicitly modelled hierarchically. Common usages of 

the CBCL rely on subscale raw scores4,6,25, which do not address the issues of phenotypic 

complexity and variable-centred heterogeneity. The other limitation of the CBCL is that its 

development was based on optimising the differentiation of clinically-referred versus non-

referred children (i.e., criterion keying)6,25. Thus, the CBCL provides high levels of 

information (i.e., reliability) at the clinical and subclinical end of the psychopathology 

spectrum, but very low information at the normative end of the continuum (example 2)19. 

Thus, the CBCL has poor phenotypic resolution as we have demonstrated in example 2 and 

cannot reliably rank-order individuals in the normative range, limiting its utility in biology-

psychopathology association studies. In contrast, the broader HiTOP model combines both 

clinical components and maladaptive traits, the latter of which characterize trait levels across 

the full spectrum of individual differences84,85. Furthermore, some HiTOP conformant 

measures, including the Computerized Adaptive Assessment of Personality Disorder (CAT-

PD) and Externalizing Spectrum Inventory – Brief Form (ESI-BF) have been optimised using 
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techniques such as item response theory to measure individual differences with high precision 

across the latent trait continuum84,86.  For these reasons, measures of the HiTOP model are 

expected to yield more robust findings than the CBCL. 
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