
Appendix A. Mediation Bi-luster and Effect Estimation

Appendix A.1. Dense Bi-Cluster

We now formally define the dense bi-cluster. First of all, the bi-cluster

refers to the fact that we are clustering both the rows (mediators) and

columns (outcomes) of a matrix (weight matrix W). Using the notation

of bi-cluster, Uc ⊗ Vd, we give the definition of dense bi-cluster as:

Definition 1. A bi-cluster U ⊗ V is said to be dense if:∑
{i,j}∈U⊗V I[wij > r]

|U ||V |
≥ ζ,

where r is some predefined edge-wise threshold and ζ is bi-cluster density

threshold for U ⊗ V ⊂ G in a bipartite graph G = (U, V,E).

Here, the threshold r can be any value predefined, for example, the inte-

gration method described in Section 2.2.1. ζ represents a bi-cluster density

threshold, which ensures that U ⊗V ⊂ G cannot be a subgraph of a random

graph G = (U, V,E) and thus is a latent dense bi-cluster (Wu et al., 2021a).

In practice, ζ = 0.5–1 can effectively prohibit false positively selecting a

dense bi-cluster. We let ζ = 0.8 in our application. Figure A.1 illustrated

how a dense bi-cluster after extraction.

Appendix A.2. Proof of Theorem 1

Proof: We consider that the optimal solution is {Mc,Yd}, which leads to a

mixture distribution of δij:

P (δij) =

 Bern(π1) if {i, j} ∈ {Uc ⊗ Vd},

Bern(π0) otherwise.

1



(a) (b)

Figure A.1: Demonstration of a dense bi-cluster. The left figure is a − log(p)-matrix
(weight matrix) before extraction, while the right figure is a p-matrix with re-ordered
region indices to highlight the extracted dense bi-cluster. A dense pattern refers to that
within an extracted bi-cluster the proportion of edges with suprathreshold p-values is much
higher than the edges in the rest of the graph.

Let {M′
c,Y ′d} be a non-optimal distribution. Correspondingly, the distri-

bution of δij is

P ′(δij) =

 Bern(π′1) if {i, j} ∈ {U ′c ⊗ V ′d},

Bern(π′0) otherwise.

We first calculate the KL functions in 2.5 as D(P ||Q) and D(P ′||Q) based

on {Mc,Yd} and {M′
c,Y ′d} respectively. Define the probability µ to be the

probability of being in the {Uc⊗ Vd}, the estimate of µ can be calculated by

µ̂ = N1

N
, N1 is the size of {Uc ⊗ Vd} and N is the total size.

Define N1(1) =
∑

i,j∈{Uc⊗Vd} I[δij = 1], N1(0) =
∑

i,j∈{Uc⊗Vd} I[δij = 0] as

the number of δij = 1 and δij = 0 in the {Uc ⊗ Vd} sets. Similarly, N0(1) =∑
i,j /∈{Uc⊗Vd} I[δij = 1], N0(0) =

∑
i,j /∈{Uc⊗Vd} I[δij = 0] be the number of
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δij = 1 and δij = 0 in the complement of {Uc ⊗ Vd}. For {M′
c,Y ′d}, define

N ′1(1), N ′1(0), N ′0(1), N ′0(0) correspondingly. We have

D(P ||Q) =
1

N
[N1(1)(log(π1)− log(π)) +N1(0)(log(1− π1)− log(1− π))

+N0(1)(log(π0) + log(π)) +N0(0)(log(1− π0) + log(1− π))] ,

approximate equation 2.8 when N →∞.

Using the fact

N1(1) +N0(1) = N ′1(1) +N ′0(1),

N1(0) +N0(0) = N ′1(0) +N ′0(0),

and

D(P ||Q)−D(P ′||Q) =
1

N
[N1(1) log(π1)−N ′1(1) log(π′1)

+N1(0) log((1− π1)−N ′1(0) log(1− π′1)

+N0(1) log(π0)−N ′0(1) log(π′0)

+N0(0) log(1− π0)−N ′0(0) log(1− π′0)] ,

is equivalent to comparing the difference between the likelihoods for those

two distributions. By Bickel et al. (2013) and Wang and Bickel (2017), the

later model has less likelihood than the ture one.

Therefore, the KL criterion D(P ||Q) of the optimal solution is greater

than KL criterion D(P ′||Q) of the non optimal solution. �
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Appendix A.3. Choice of Loss Functions

To complete our algorithm by tuning the unknown parameter λ in ob-

jective function 2.4, we use a proposed Kullback–Leibler (KL) divergence

function 2.5 and maximize the divergence to obtain the best λ. Under the

distribution in equation 2.6, the estimate of the unknown probabilities in this

model is given by the maximum likelihood estimates:

π̂MLE
1 =

∑
c,d

∑
i∈Uc,j∈Vd δij∑

c,d |Uc||Vd|
,

π̂MLE
0 =

∑
i∈U,j∈V δij −

∑
c,d

∑
i∈Uc,j∈Vd δij

|U ||V | −
∑

c,d |Uc||Vd|
.

(A.1)

Uc, Vd are the selected sets consists the bi-cluster. The calculation of MLE is

similar to Wu et al. (2020) and details discussions the relative theories can

be also found in Wu et al. (2021b).

Another choice of the loss function is to use the entropy function based

on the binary entropy:

H = arg max
λ

−
∑
c,d

|Uc||Vd|[π̂1 log(π̂1) + (1− π̂1) log(1− π̂1)]

+ |U \ {Uc}||V \ {Vd}|[π̂0 log(π̂0) + (1− π̂0) log(π̂0)],

for λ selection similar as in Kenley and Cho (2011). Another consideration

is to maximum a log-likelihood function:

logL = arg max
λ

∑
c,d

[
∑

i∈Uc,j∈Vd

δij log(π̂1) +
∑

i∈Uc,j∈Vd

(1− δij) log(1− π̂1)

+
∑

i∈U\{Uc},j∈V \{Vd}

δij log(π̂0) +
∑

i∈U\{Uc},j∈V \{Vd}

(1− δij) log(1− π̂0)].
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There is numerical evidence showing that KL is superior to the likelihood

function and the entropy function, as it is more sensitive to the change of

density in the subgraph (Table A.1). In this table, we simulate a dense graph

with 10 × 10 signal area and see the performance of those three functions

under different selected areas containing the actual area. Density in the

original 10×10 differs, and to compare them consistently, we take the negative

entropy (-H), and we tend to choose the subgraph that maximum the function

values. In the sparse subgraph situation, we can see that the log-likelihood

function has a higher value under a misselected region (the red box). Overall,

Kullback–Leibler divergence is more sensitive to signal density as the values

diverge more than the other two functions. The null distribution Q eliminates

the influence of the π0 in P as π ≈ π0. This approximate equal is plausible

for the assumption that systematic patterns require the distribution outside

the Uc ⊗ Vd to be random.

80% Density LogLike -H Kullback–Leibler
Subgraph Size

10× 10 -499.12 -428.46 315.32
20× 20 -566.32 -515.34 28.18
40× 40 -556.86 -532.43 -29.95
5× 5 -591.99 -716.86 42.42

60% Density LogLike -H Kullback–Leibler
Subgraph Size

10× 10 -520.49 -449.84 169.74
20× 20 -536.94 -485.96 10.24
40× 40 -498.70 -474.27 -23.97
5× 5 -554.31 -639.77 43.77

Table A.1: Performance of Different Function in order to select λ
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Appendix A.4. Causal Mediation Estimation

The causal mediation analysis is often used for experimental datasets

with manipulable exposure and mediators. Here, we provide the assump-

tions for causal mediation analysis. Using the potential outcome notation

(Rubin, 2005), let Z as the observed confounders, we adopted the sequential

ignorability assumption (Imai et al., 2010a; Chén et al., 2018) as:

M̃(x) |= X|Z,

Y(x, m̃) |= M̃|X,Z,

Y(x, M̃(x)) |= X|Z,

Y(x, m̃) |= M̃(x∗)|Z,

(A.2)

which indicates that i) no unmeasured confounders between exposure and

mediating factors, ii) no unmeasured confounders between mediating fac-

tors and outcomes, iii) no unmeasured confounders between exposure and

outcomes, and iv) no confounders for the relationships between mediating

factors and outcomes which are affected by the exposure. In addition to

sequential ignorability, the identifiability in the causal mediation analysis

further requires that the mediators (or mediator factors) are conditionally

independent given the exposure (i.e., causally independent mediators, Imai

and Yamamoto, 2013; Huang and Pan, 2016).

Under these strong assumptions, for each Y
(j)
d ∈ Yd we calculate the

average natural direct effect (NDE), average natural indirect effect (NIE),
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and average total effect (ATE) on the orthogonal mediators:

NDE(x)j = E(Y
(j)
d (x, M̃c(x

∗))−Y
(j)
d (x∗, M̃c(x

∗))) = θj(x− x∗),

NIE(x)j = E(Y
(j)
d (x, M̃c(x))−Y

(j)
d (x, M̃c(x

∗))) =
Lc∑
l=1

βljαl(x− x∗),

ATE(x)j = NDE(x)j + NIE(x)j = (
Lc∑
l=1

βljαl + θj)(x− x∗),

(A.3)

where M̃c is the observed matrix for M̃c, c = 1, . . . , C.

Appendix A.5. Algorithm

We summarize the algorithm described in step 1 (Section2.2.1) as in Al-

gorithm 1.

Appendix A.6. Mediation Effect Estimation

Estimation by Partical Correlation: Consider for estimated {Mc,Yd}

and corresponding factors M̃c = Mcηc + εc. Using the same indexes as in

(A.3), let ε
(j)
Y d and ε

(l)
Mc be the residuals of regressing each mediator factor

(M̃
(l)
c ) on exposure and each outcome (Y

(j)
d ) on exposure. The indirect me-

diation effect calculated by partial correlation then is given by:

ˆIEρd =
1

Jd

Jd∑
j=1

Lc∑
l=1

ρ̂
ε
(j)
Y d,ε

(l)
Mc
ρ̂
X,M̃

(l)
c
, (A.4)

where ρs,v is the correlation between variables s, v.
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Algorithm 1 Mediation dense bi-cluster extraction

repeat
for λ in a given λ range do

S ← U , T ← V
for iter = 1 to |S|+ |T | − 1 do

if |S| > 0 and |T | > 0 then
o = mins∈S

∑
t∈T |W(s, t)|, dS =

∑
t∈T |W(o, t)|

z = mint∈T
∑

s∈S |W(s, t)|, dT =
∑

s∈S |W(s, z)|
if
√
kdX ≤ dT/

√
k then

S ← S/{o}
else

T ← T/{z}
end if

else
Value of objective function ((2)) is 0

end if
Calculate function ((2)) with Uc = S, Vd = T

end for
Output the subgraph {Ûc ⊗ V̂d(λ)} with the maximum value of the

objective function
Calculate the divergence function ((6))

end for
Output the subgraph and the corresponding λ with largest divergence

D(P{Ûc⊗V̂d(λ)})

U ← U \ {Ûc}, V ← V \ {V̂d}
until D(PÛc⊗V̂d(λ)) has an absolute difference of less than ξ
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Appendix B. Data Example

Appendix B.1. Data Acquisition and Processing

The Arterial-spin labeling (ASL) data are acquired on a 3-T Siemens

Prisma scanner with 64 channels. Three-dimensional (3D) pseudo-continuous

ASL (pCASL) with backgrounds suppressed gradient and spin-echo (GRASE)

sequence consisting of 13 pairs of labeled and control scans are used. Param-

eters are spatial resolution equals to 2.5mm× 2.5mm× 2.6mm with matrix

size 96×96 and 58 axial slices. Time/Echo time repeated is 4, 000/37ms with

120◦ flip angle, 220mm field of view (FoV) read, 100% FoV phase, 1, 700ms

post-label delay and 1650ms labeling duration. The total scan time is about

10min. A 3D T1 weighted image is acquired for anatomical reference, and

the gray and white matter tissue segmentation. The parameters are: TR =

2, 400ms, TE = 2.22ms, TI = 1, 000ms, flip angel = 8◦, matrix = 320× 320,

slices per slab = 208, and 0.8mm × 0.8mm spatial resolution with 0.8mm

slice thickness. The volume of M0 image is also acquired without background

suppression to normalize the control-label difference for CBF quantification.

This image is smoothed with a 5mm Gaussian-kernel to suppress the effects

of noise (Alsop et al., 2015).Participants with lifetime diagnosis of psychiatric

disorders are excluded in order to avoid confounded effects from psychiatric

diseases.

The rsfMRI data acquire from two runs. Oblique axial acquisitions alter-

nated between phase encoding in the anterior-to-posterior(AP) and posterior-

to-anterior(PA) directions are from a single run. Separate single-band ref-

erence images acquired for phase encoding in AP and PA directions are

used for spatial distortion correction. The parameters are: TR=780ms,
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TE=34.4ms,spatial resolution of 2-mm isotropic voxels, matrix size =104 ×

104 with 72 axial slices, number of volumes=420/run, flip angel=52◦, multi-

band acceleration factor is 8 and 2, 186, Hz/pixel bandwidth. The Enhancing

NeuroImaging Genetics through Meta-Analysis (ENIGMA) is used to pro-

cess the rsfMRI data (Adhikari et al., 2018, 2022). Motions are estimated as

the magnitude of the displacement from one-time point to the next, includ-

ing neighboring time points and outliers voxels fraction (> 0.1). Time points

with excessive motion (> 0.2mm) are excluded from the analysis.

Appendix B.2. Mediation Pathways

We used causal discovery method (Glymour et al., 2019) to determine

the mediation directed acyclic graph (DAG). We started with the marginal

correlation between SBP, average CBF and average ReHo (Glodzik et al.,

2019). Correlation tests showed significant relation between pairs of the

three variables with p-values all < 0.0001, correlation between SBP and

average CBF is −0.295, between SBP and average ReHo is −0.175, and be-

tween average CBF and average ReHo is 0.461. [Figure B.2(a)]. Conditional

correlation tests revealed no-significant relation between SBP and average

ReHo, conditional on average CBF (p = 0.5306, correlation is −0.046, con-

ditional independence), but still significant relation between SBF and

average CBF (p = 0.001, correlation is −0.246) and significant relation be-

tween average CBF and average ReHo (p < 0.0001, correlation is 0.435).

[Figure B.2(b)]. The possible DAGs between the three variables then are

showed in Figure B.2(c). Biologically, no previous research has suggested

that CBF can influence SBP. Therefore, we exclude the first two DAGs in

Figure B.2(c). Further, the existence of marginal correlation between SBP

10



and average ReHo exclude the situation where average CBF is a collider

[bottom left DAG in Figure B.2(c)]. Therefore, the DAG in the green box in

Figure B.2(c) is the most plausible DAG for our mediation analysis.

(a) Marginal Correlation (b) Conditional Correlation

(c) Possible DAGs

Figure B.2: The Mediation Discovery procedure for determining the mediation pathway.
(a) is the marginal correlation between SBP, CBF, ReHo. (b) is the conditional corre-
lation between the three variables, conditional on the boxed variables. The conditional
correlation between SBP and ReHo given CBF is not significant. (c) is all the possible
DAGs based on the results in (b). The green box is the most possible DAG for our data.
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Appendix B.3. Sensitivity Analysis

In practice, assumptions in (A.2) for an observational study may need to

be validated. Imai et al. (2010b) suggested a parametric sensitivity analysis

based on the residual correlations. Following this procedure, we conducted

a sensitivity analysis for our data example. Specifically, we considered the

violation of the sequential ignorability with the correlation of residuals for

(1) (defined as ρ) is correlated. When the assumption holds, we should have

ρ = 0. We let ρ vary and evaluate the performance of our method. The sen-

sitivity analysis results are demonstrated in Figure B.3. In our analysis, the

assumption appears valid because ρ̂ ≈ 0. The estimated mediation effect is

−0.094. In the sensitivity analysis, ρ deviates from 0, and the corresponding

estimation of the mediation effect differs from −0.094. The bias is relatively

small when ρ is small to medium (e.g., < 0.3). The sign of mediation ef-

fect estimation is changed when ρ̂ > 0.375. Therefore, we conclude that

our results are generally robust to the (mild or moderate) violation of the

assumption. (Imai et al., 2010b).
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Figure B.3: Sensitivity analysis to assess the impact of the violated assumptions for our
data example. The sensitivity analysis is performed based on the procedure described in
Imai et al. (2010b). The sequential ignorability holds when ρ = 0 (ρ is the correlation of
residuals of mediators and outcomes conditional on the exposure). The dashed horizontal
line is the estimated mediation effect with the valid assumption of sequential ignorability.
When ρ deviates further from 0, the bias is larger. The results suggested that our mediation
results were generally robust to (mild to moderate) violation of this assumption (e.g.,
ρ = 0–0.375 ).

Appendix B.4. Selected Regions

Selected regions for CBF include CGC L, CingG L, SMG R, SMG L,

IOG R, CingG R. Selected ReHo regions contain SPG L, CingG L, SFG L,

MFG L IFG L, PrCG L, PoC L, AG L, PrCu L, Fu L, PHG L, SOG L,

IOG L, ENT L, STG L, ITG L, LFOG L, MFOG L, RG L, Ins L, Hippo L,

cerebrellum L, SCR L, CGC L, GCC L, Caud L, Put L, Thal L, Midbrain L,

SPG R, CingG R, SFG R, MFG R, IFG R, FuG R, PHG R, ENT R, STG R,

ITG R, MTG R, LFOG R, MFOG R, SMG R, RG R, Ins R, Amyg R, Hippo R,

cerebellum R, CST R, ICP R, SCP R, SCR R, CGC R, CGH R, EC R, Put R,

Thal R, GP R and Medulla R. The corresponding region names are available

online at https://github.com/zhuivv/MMO/blob/main/Suppl_II_regionnames.
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txt or the online supplements.

Appendix C. Simulation

Appendix C.1. Data Generation

To generate (X, M̃,Y) ∼ N(µ,Σ), we first specify the precision matrix

Ω = Σ−1. The off-diagonal elements in Ω is the partial correlations. Let ωij

be the elements in Ω, the subscripts represent the rows and columns of Ω

and hence correspond to the univariate X, elements in M̃ and Y. We set

ωij 6= 0 if βij 6= 0 as in Equation 2.1 for i, j representing elements in M̃ and

Y. Similarly, let σij be the element in Σ and set σ1j 6= 0 if αj 6= 0 for j

representing elements in M̃.

Appendix C.2. Additional Simulations

Appendix C.2.1. Non-normally distributed mediators and outcomes

To further assess our method, we considered two additional settings for

simulation. Specifically, we generated data from the Cauchy distribution and

Laplace distribution (X, M̃,Y) ∼ Cauchy(µ,Σ) and (X, M̃,Y) ∼ Laplace(µ,Σ).

We let n = 200 for each setting and set the effect size as 0.24 and 0.16. We

show the results for bi-cluster mediation pathway extraction in Table C.2,

and the results of mediation effect estimation in Table C.3. The performance

of MMO under these settings appear similar to the results in normally dis-

tributed data settings.
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Mediation effect size
and Sample size Method

Cluster Size = 10× 10 Cluster Size = 20× 20
FDR sens spec FDR sens spec

BH 0.030(0.110) 0.434(0.445) 0.999(0.003) 0.039(0.115) 0.404(0.439) 0.997(0.010)
Effect=0.24 3-step 0.049(0.129) 0.510(0.390) 0.999(0.002) 0.103(0.181) 0.787(0.263) 0.993(0.012)

Cauchy PathL 0.066(0.085) 0.671(0.330) 0.992(0.011) 0.0922(0.102) 0.743(0.268) 0.980(0.027)
MMO 0.039(0.101) 0.824(0.254) 0.9995 0.065(0.134) 0.781(0.293) 0.996(0.009)

BH 0.002(0.014) 0.757(0.425) 1 0.002(0.014) 0.798(0.398) 1∗

Effect=0.24 3-step 0.060(0.095) 0.950(0.224) 0.999(0.001) 0.011(0.030) 0.967(0.193) 1∗

Laplace PathL 0.011(0.035) 0.680(0.193) 0.999(0.004) 0.048(0.073) 0.394(0.098) 0.994(0.009)
MMO 0.020(0.056) 0.998(0.026) 1∗ 0.009(0.036) 0.998(0.026) 1∗

BH 0.020(0.081) 0.309(0.425) 1∗ 0.039(0.109) 0.366(0.432) 0.997(0.009)
Effect=0.16 3-step 0.010(0.146) 0.835(0.311) 0.999(0.002) 0.142(0.185) 0.676(0.377) 0.990(0.014)

Cauchy PathL 0.045(0.091) 0.544(0.436) 0.949(0.084) 0.026(0.055) 0.680(0.253) 0.996(0.008)
MMO 0.040(0.103) 0.808(0.267) 1∗ 0.084(0.133) 0.714(0.297) 0.996(0.009)

BH 0.006(0.027) 0.497(0.497) 1∗ 0.005(0.018) 0.632(0.474) 1∗

Effect=0.16 3-step 0.024(0.035) 0.898(0.316) 1∗ 0.020(0.038) 0.785(0.416) 0.999(0.002)
Laplace PathL 0.033(0.703) 0.510(0.129) 0.998(0.005) 0.055(0.091) 0.345(0.086) 0.994(0.011)

MMO 0.057(0.085) 1∗ 0.999(0.001) 0.046(0.071) 0.991(0.053) 0.998(0.004)

Table C.2: Simulation results (Step 1) for simulated datasets with non-normal mediators
and outcomes: the accuracy of mediation pattern Uc ⊗ Vd extraction. We demonstrate
the edge-wise false discovery rate (FDR), sensitivity (sens), and specificity (spec). The
standard Cauchy distribution and Laplace distribution are used to generate the mediators
and outcomes of the synthetic datasets with the sample size is n = 200. ∗ represents a
rounded number.

Effect size
and Sample size Method

signal region = 10× 10 signal region = 20× 20
Mean Bias Coverage Prob Mean Bias Coverage Prob

effect=0.24
Cauchy

‘Oracle Model’ 0.285(0.372) 0.255(0.360)
medLRM 0.029(0.132) 0.257(0.358) 6.2% 0.040(0.183) 0.215(0.316) 18.0%
MMO 0.235(0.320) 0.051(0.093) 79.0% 0.211(0.306) 0.045(0.095) 81.2%

effect=0.24
Laplace

‘Oracle Model’ 0.294(0.060) 0.283(0.058)
medLRM 0.081(0.106) 0.213(0.102) 16.5% 0.204(0.110) 0.079(0.093) 68.9%
MMO 0.287(0.062) 0.008(0.017) 98.8% 0.279(0.060) 0.004(0.010) 99.52%

effect=0.16
Cauchy

‘Oracle Model’ 0.183(0.313) 0.232(0.333)
medLRM 0.011(0.098) 0.172(0.297) 6.0% 0.048(0.162) 0.184(0.293) 11.7%
MMO 0.151(0.272) 0.032(0.079) 81.2% 0.186(0.255) 0.045(0.113) 73.8%

effect=0.16
Laplace

‘Oracle Model’ 0.192(0.052) 0.195(0.052)
medLRM 0.031(0.051) 0.161(0.060) 6.4% 0.040(0.064) 0.155(0.071) 13.6%
MMO 0.180(0.053) 0.012(0.018) 96.2% 0.184(0.053) 0.011(0.015) 97.3%

Table C.3: Simulation results (Step 2) for simulated datasets with non-normal mediators
and outcomes: mediation effect estimation. We perform Step 2 analysis based on the above
results (Step 1 analysis results based on datasets generated by the Cauchy distribution or
Laplace distribution) and compare the estimated mediation effects by Low Rank Model
(medLRM) and MMO, with reference to the estimated mediation effect based on the
oracle model (with known mediating imaging factors).
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Appendix C.2.2. Non-orthogonal Mediating Factors

To evaluate our method’s performance under the setting of non-orthogonal

mediating factors, we conducted additional simulation analysis. Specifically,

we set the correlations between correlated mediating factors M̃ between 0.5–

0.8. We simulated datasets with n = 200 and the two effect sizes 0.16 and

0.24. The results are shown in Table C.4 and Table C.5. The results suggest

that the performance of Step 1 in our model is invariant to the correlated me-

diating factors. However, the estimation of the mediation effects in Step 2 can

be affected because the regression models can be unstable due to collinearity.

Mediation effect size
and Sample size Method

Cluster Size = 10× 10 Cluster Size = 20× 20
FDR sens spec FDR sens spec

BH 0.054(0.093) 0.547(0.483) 0.999(0.001) 0.052(0.061) 0.736(0.426) 0.998(0.003)
Effect=0.24 3-step 0.285(0.150) 0.992(0.034) 0.995(0.003) 0.187(0.068) 0.997(0.001) 0.990(0.004)

PathL 0.099(0.151) 0.520(0.132) 0.991(0.017) 0.036(0.083) 0.325(0.089) 0.996(0.008)
MMO 0.094(0.160) 0.923(0.100) 0.999(0.003) 0.075(0.104) 0.937(0.077) 0.996(0.006)

BH 0 0.305(0.454) 1 0∗ 0.368(0.478) 1
Effect=0.16 3-step 0.025(0.096) 0.675(0.452) 1∗ 0 0.775(0.329) 1

PathL 0.05(0.158) 0.490(0.160) 0.997(0.011) 0 0.270(0.098) 1
MMO 0.029(0.090) 0.990(0.074) 1∗ 0.048(0.128) 0.994(0.058) 0.997(0.011)

Table C.4: Simulation results (Step 1) for simulated datasets with non-orthogonal media-
tors: the accuracy of mediation pattern Uc⊗Vd extraction. We demonstrate the edge-wise
false discovery rate (FDR), sensitivity (sens) and specificity (spec). The correlations of
non-orthogonal factors vary from 0.5 to 0.8 with sample size is n = 200. ∗ represents a
rounded number.
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Effect size
and Sample size Method

signal region = 10× 10 signal region = 20× 20
Mean Bias Mean Bias

effect=0.24
‘Oracle Model’ 0.226(0.032) 0.228(0.030)

medLRM 0.373(0.058) 0.143(0.038) 0.394(0.047) 0.162(0.028)
MMO 0.388(0.057) 0.159(0.035) 0.396(0.048) 0.164(0.029)

effect=0.16
‘Oracle Model’ 0.162(0.031) 0.159(0.032)

medLRM 0.193(0.041) 0.032(0.015) 0.172(0.058) 0.021(0.039)
MMO 0.199(0.043) 0.038(0.015) 0.174(0.059) 0.023(0.039)

Table C.5: Simulation results (Step 2) for simulated datasets with non-orthogonal medi-
ators: the estimated mediation effects. We compare the estimated mediation effects by
Low Rank Model (medLRM) and MMO, with reference to the estimated mediation effect
based on the oracle model (with known mediating imaging factors). The correlations of
simulated non-orthogonal factors vary from 0.5 to 0.8 withn = 200. ∗ represents rounded
numbers.

Appendix C.3. Low-rank mediators

Low-rank models are commonly used to reduce the dimensionality of the

multivariate mediators in the neuroimaging study. For example, PCA and

factor analysis methods have been widely applied to multivariate mediation

analysis with neuroimaging data as mediators (Chén et al., 2018; Zhao et al.,

2020). Alternatively, a composite mediator can be constructed based on the

weighted sum from the W matrix. We further evaluate the performance of

mediation effect estimation using these methods. Figure C.4 illustrates the

results: both methods perform well while the mediating factors by factoriza-

tion method slightly outperforms the cumulative weight composite mediator.

One possible reason could be that the cumulative weight method may have

included insignificant weights as noise.
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Figure C.4: Results of mediation effect estimation based on mediators by orthogonal
factorization method and a composite mediator based on the weighted sum method. Based
on 1 000 simulations, both methods perform well, while the factorization method slightly
outperforms the weighted sum component method.
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