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Supplementary Text 1 

As shown in the inset in Fig. 2, the monoclinic P21/c phase gives the best fit with 

a R-factor of 0.0065 in the EXAFS spectrum of the BHO12-RT film, indicating a high-

quality fitting. The fitting window is set to R = 1.0 ~ 4.0 Å, which is typical for the 

EXAFS analysis of amorphous structure because (i) R < 1.0 Å is meaningless since 

there is no interatomic distance shorter than 1.0 Å in actual crystals; (ii) the oscillation 

amplitude of EXAFS spectrum is too low to be fitted when R > 4.0 Å since the 

amorphous structure only has short-range ordering. The extracted structural parameters, 

including the interatomic distance (RHf-O(or Hf)), the coordination number (NHf-O), and the 

disorder (Debye-Waller) factor (σ2), are listed in table below. The oscillation in R = 1.0 

~ 2.2 Å, i.e., the first shell, can be attributed to single-scattering paths from the nearest-

neighbor oxygen atoms at the RHf-O of ~2.14 Å with the NHf-O of ~6.35, while that in R 

= 2.0 ~ 3.5 Å is due to the single-scattering paths from Hf atoms at the RHf-Hf of ~3.43 

Å in the second shell. The σ2 is 0.007 in the first shell. These results are in good 

agreement with the short-range structures reported previously in amorphous HfO2 thin 

films. 

However, the BHO12 exhibits two distinguished oscillations in 2.2 Å < R < 3.5 Å, 

which is obviously different from the unannealed BHO12-RT. Such a doublet feature 

makes the fit by only the P21/c symmetry unavailable. The orthorhombic Pca21 

symmetry shows a better fit and the best is obtained by combining the P21/c and Pca21 

phases, in which the single-scattering paths from the Hf atoms at the RHf-Hf of ~3.42 Å 

(the P21/c) and the oxygen atoms at the RHf-O of ~3.70 Å (the Pca21) contribute to the 

doublet oscillations of the second shell together. The R-factor is 0.0092 for the fitting 

window of R = 1.0 ~ 4.0 Å. In addition, the best fit also reveals that the oscillation in R 

= 1.0 ~ 2.2 Å is attributed to the single-scattering paths from oxygen atoms at the RHf-O 
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of 2.07 ~ 2.09 Å with the NHf-O of 6.75 ~ 6.81 in the first shell. Therefore, the BHO12 

film exhibits a higher density compared to that prepared at room temperature since the 

Hf atoms are surrounded by more neighboring oxygen atoms with smaller coordination 

bond lengths. Also, due to the coexistence of Pca21 and P21/c symmetries, the BHO12 

has a large disorder factor of ~0.011.  

 

 The first and second shell fits for EXAFS data of Hf LIII edge 

 P21/c Pca21 

Sample ID 
Scatteri

ng 
R (Å) N σ2 (Å2) 

Scatteri

ng 
R (Å) N σ2 (Å2) 

BHO12-

RT 

Hf-O 2.140.01 6.350.67 0.0070.002     

Hf-Hf 3.430.1 10.864.98 0.0260.008     

BHO12 
Hf-O 2.090.03 6.751.78 0.0110.005 Hf-O 2.070.02 6.811.51 0.0110.004 

Hf-Hf 3.420.07 8.7612.02 0.0290.025 Hf-O 3.700.05 5.434.5 0.0040.013 
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Figure S1. A sketch for the calculations of Urec and η in the P-E hysteresis loop.  

As shown in Fig. S1, the Urec is calculated by  𝐸𝑑𝑃
ౣ
౨

, indicated by the green 

area. The hysteresis area during a charging-discharging cycle is the Uloss. Then the η is 

obtained by Urec/(Urec+Uloss). 
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Figure S2. A comparison of the Eb and εr of the amorphous BHO12 to well-known 

dielectric materials for energy storage (BOPP: Biaxially oriented polypropylene; PVDF: 

Poly(vinylidene fluoride); PET: Poly(ethylene terephthalate); P(MDA/MDI): Aromatic 

polyurea (ploy(diaminodiphenylmethane dipheylmethane diisocyanate))).  

Fig. S2 shows a comparison of the Eb and εr of the amorphous BHO12 to well-

known high-κ, ferroelectric, and polymer materials for dielectric energy storage. In 

dielectric materials, the Eb is usually limited by 𝜀୰, following 𝐸ୠ ൌ 𝐾 ∗ 𝜀୰ିఈ, where K 

and α are constants. In the model by McPherson et al.,[1-3] the K and α are 35.3 and 

0.64 for the theoretical (the thick green curve) and 29.9 and 0.65 for the experimental 

(the thick blue curve), respectively. One can find that these dielectric materials are 

following this permittivity limitation. However, the breakdown strength of amorphous 

BHO12 is much higher than the upper-limit of its permittivity, overcoming the negative 

correlation between Eb and 𝜀୰. In ref.1 of the main text, a comprehensive review of 

capacitive energy storage, the authors have also fitted the experimental Eb and εr of 

dielectric materials using 𝐸ୠ ൌ 𝐾 ∗ 𝜀୰ିఈ and extracted the K and α, which are 25.09 

and 0.559, respectively, very close to the model used in Fig. S2. 
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Figure S3. a, XRD patterns of the Sr-substituted HfO2 thin films with increasing 

substitution concentration from 0 to 50 %. b, P-E hysteresis loops of the amorphous 

Pt/SHO30/LSMO capacitor at 10 kHz. 

As shown in Fig. S3a, the amorphous Sr-substituted HfO2 (SHOx) thin films 

appear at the concentration of 23% ~ 30%, which is narrower than that of the BHO, in 

agreement with that observed in the first-principles calculation. For the amorphous 

Pt/SHO30/LSMO capacitor, the Eb is above 10 MV/cm (Fig. S3b), which is also much 

higher than that reported in the amorphous and crystalline HfO2-based capacitors. The 

Urec and η calculated by the P-E loop is 117 J/cm3 and 76.8% at E = 10 MV/cm. 
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Figure S4. a, XRD patterns of the Ca-substituted HfO2 thin films with increasing 

substitution concentration from 0 to 50 %. b, P-E hysteresis loops of the amorphous 

Pt/CHO33/LSMO capacitor at 10 kHz. 

As shown in Fig. S4a, the amorphous Ca-substituted HfO2 (CHOx) thin films 

appear at the Ca concentration of 33% ~ 36%, which is narrower than that of the SHO 

and BHO, in agreement with that observed in the first-principles calculation. For the 

amorphous Pt/CHO33/LSMO capacitor, the Eb is above 8.0 MV/cm (Fig. S4b), which 

is also much higher than that reported in the amorphous and crystalline HfO2-based 

capacitors. The Urec and η calculated by the P-E loop is 72 J/cm3 and 82.4% at E = 8.3 

MV/cm. 
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Figure S5. HAADF image of the BHO02/LSMO/STO heterostructure to show the 

coexistence of m- and o-phase. 
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Figure S6. STEM characterizations of the BHO12/LSMO/STO heterostructure in a 

large scale to show the uniformity in amorphous structure (a) and element distributions 

(b, c). b, the EELS mappings for Hf, Ba, O, La, Mn, and Ti elements, respectively. c, 

the EDS (energy dispersive spectra) mappings for Hf, Ba, O, Sr, La, and Mn elements, 

respectively. 

In Fig. S6a, one can find that the amorphous structure is uniform over a large area 

with the scale bar of 20 nm. Combined with the EELS (Fig. S6b) and EDS (Fig. S6c) 

mapping, one can find the element distributions are also uniform.  
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Figure S7. XPS spectra of O 1s core level for the BHO0, BHO02, BHO12, BHO20, 

and BHO50 thin films, respectively. 

Fig. S7 shows XPS spectra of O 1s core level for the BHO thin films etched by Ar 

ions for 30 s to remove the adsorbed oxygen. In the HfO2-based films the peaks of VO 

are in general present at the binding energy of ~532 eV, higher than that of the lattice 

oxygen ions.[4,5] In Fig. S7, one can find that the VOs in the BHO0 and BHO50, that 

is the HfO2 and BaHfO3, are negligible owing to the post-annealing in flowing O2. With 

the Ba substitution, the VOs appear in BHO02, BHO12, and BHO20, in agreement with 

the first-principle calculation. In addition, the relative concentration of VOs increases 

from the BHO02 to the BHO12 and then decreases in the BHO20. 
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Figure S8. XPS spectra of Hf 4f and Ba 3d core levels of the BHO12 thin film. 

In the XPS spectrum of Hf 4f core level, the peaks at 16.3 and 18.0 eV are Hf 4f7/2 

and Hf 4f5/2, which are attributed to the Hf4+ of Hf-O bond. In the XPS spectrum of Ba 

3d core level, the Ba 3d5/2 and 3d3/2 appear at 779.5 and 794.8 eV, respectively, separated 

by 15.3 eV, which correspond to the Ba2+ in Ba-O bond. There are no metallic Hf and 

Ba observed in the amorphous BHO12 thin film. 
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Figure S9. The Ef(VO) at the first nearest-neighbor site as a function of Ba2+ substitution 

concentration in different phases. 

In the main text, the Ba substitution induces strong effect on the oxygen instability 

in the t-phase HfO2, which is the high-temperature phase considering that the 

amorphous state is formed in the crystallizing process of the Ba-Hf-O system. However, 

the amorphous HfO2 films reported in literature are in general formed by low-

temperature deposition. In this case, the HfO2 is in a low symmetry, like the m- and o- 

phases. We therefore calculate the Ef(VO) in the m- and o-phase HfO2 lattices, for 

comparison. As shown by the dashed and dotted curves in Fig. S9, the Ef(VO) are always 

positive with increasing Ba concentration from 1/32 to 1/4, indicating that the Ba 

substitution yields weak effect on the oxygen instability in the m- and o-phases. These 

results also suggest that the low-temperature stacking of A/Hf and O atoms cannot 

generate the amorphous structure like the BHO films in the main text, in agreement 

with the short-range structures observed in the EXAFS spectra. 
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Figure S10. O 1s energy loss spectra of the BHO0, BHO02, BHO12, and BHO50 thin 

films. 

Considering that the BHO thin films are grown on the LSMO/STO and the 

bandgap of BHO should be higher than that of the STO substrate, we adopted the O 1s 

energy loss spectra to estimate their bandgaps, which have been reported frequently in 

the band structure studies of high-κ thin films.[6,7] As shown in Fig. S10, the bandgaps 

of the representative BHO thin films are about 5.0 eV, regardless of crystalline or not. 

These results are reasonable since the bandgaps of HfO2 and BaHfO3 are about 4.0 ~ 

6.0 eV, as reported previously.[1,8,9] 
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Figure S11. P-E hysteresis loops of the Pt/BHO12-RT/LSMO capacitor measured at 

10 kHz 

As shown in Fig. S11, the capacitor based on the BHO12-RT thin film exhibits an 

Eb of ~3.64 MV/cm, which is comparable with that reported in the amorphous HfO2 

thin films.[10] 
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Figure S12. a, The Eb of BHO0, BHO02, BHO12, and BHO50 capacitors as a function 

of thin-film thickness. b, Replotted the thickness-dependent breakdown strength in 1/Eb 

vs. lnd. 

In the avalanche mechanism, the Eb usually exhibits a thickness-dependence 

character, following an empirical formula 𝐸ୠ ∝ 𝑑ିఉ, in which β is a constant and d is 

thickness. In Fig. S12a, one can find that the breakdown strengths of the crystalline 

BHO0, BHO02, and BHO50 capacitors are decreasing with increasing d from 10 to 50 

nm, exhibiting the β of 0.29, 0.18, and 0.12, respectively. However, the Eb of amorphous 

BHO12 capacitor is almost independent with the thickness. The thickness-dependent 

Eb is further analyzed by the 40-generation-electron theory, which obeys 

𝐸ୠ ൌ 𝑘
ln ሺ 

బ
ሻ൘                                                    (S1) 

where d0 = 40/α0 (α0 is the ionization coefficient) and k is a parameter with the same 

unit of electric field. By linear fitting the 1/Eb vs. lnd plots, the d0 and k can be extracted, 

which are 1.27 nm and 16 MV/cm, 0.11 nm and 34 MV/cm, and 0.008 nm and 43 

MV/cm for the BHO0, BHO02, and BHO50 capacitors, respectively. 
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Figure S13. Current density-electric field curves of the BHO0, BHO02, BHO12, and 

BHO50 thin-film capacitors. Here, the noise of our facilities is also shown for 

comparison. 

As shown in Fig. S13, the BHO12 capacitor exhibits the lowest leakage current 

density, which is even close to the current noise (~1.0 pA) of our facilities. At E = 7.0 

MV/cm, the current density is still less than 110-6 A/cm2.  
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Figure S14. εr and dielectric loss (tan δ) of the BHO0, the amorphous BHO12, SHO30, 

and CHO33, as well as the unannealed BHO12-RT, as a function of frequency.  

As shown in Fig. S14, the εr of amorphous BHO12, SHO30, and CHO33 thin-film 

capacitors are about 18 ~ 21 in the frequency range of 1105 ~ 4106 Hz, which is much 

larger than that of the unannealed BHO12-RT counterpart and even larger than the 

crystalline BHO0 (i.e., the undoped HfO2) capacitor at high frequency. In addition, 

these amorphous hafnium-based oxides also exhibit very low dielectric loss. 
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Figure S15. P-E hysteresis loops of the BHO0, BHO02, BHO12, and BHO50 

capacitors as functions of applied E (a), measurement frequency (b), 

charging/discharging cycling number (c), and temperature (d), respectively. 

Fig. S15a-d are the corresponding P-E hysteresis loops of the data plotted in Fig. 
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4a-d, respectively. Here, we give a discussion on the BHO02 capacitor since it shows a 

large change in the η with the measurement conditions due to the ferroelectric behaviors. 

In Fig. S15a, the ferroelectric hysteresis becomes stronger with increasing E, resulting 

in the decrease of η (Fig. 4a). In Fig. S15c, the BHO02 capacitor shows a polarization 

fatigue phenomenon with increasing cycling number, in which the remanent 

polarization is decreased and thus the hysteresis is suppressed. It results in the increase 

of η with increasing cycling number in Fig. 4c. In Fig. S15d, the BHO02 exhibits a 

weak-up effect of ferroelectric polarization, resulting in the increase of hysteresis and 

the decrease of η with increasing temperature (Fig. 4d). 
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Table S1. The dielectric energy storage properties, including device structure, εr, Eb, Urec, and , for representative thin-film capacitors fabricated 

by different material systems,[11-97] in which the symbols for dielectric capacitors plotted in Fig. 4e are indicated.   

Type Dielectric films 
Film 

thickness 
εr 

Eb 

(MV cm-1) 

Urec 

(J cm-3) 
 (%) Ref. 

High-κ binary oxides 

BHO12 

SHO30 

CHO33 

30 nm 18~21 

12 

10 

8.3 

155 

116.86 

71.83 

87 

76.8 

82.4 

This 

work 

Ta2O5/Hf0.5Zr0.5O2 () 25 nm - 7.2 109 94.4 [11] 

Al:HfO2 () 6.5 nm - 6.5 63.7 64.2 [12] 

Hf0.5Zr0.5O2/ Hf0.25Zr0.75O2 () 10 nm - 6 71.95 57.8 [13] 

Hf0.67Zr0.33O2/Al2O3 /Hf0.67Zr0.33O2 () 10 nm - 6 70 50 [14] 

ZrO2 () 470 nm 26 5.8 75.4 88 [15] 

TiO2/ZrO2/TiO2 () 8.7 nm - 5.5 94 80 [16] 
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Al:HfO2 () 50 nm 26 5 63 85 [17] 

Hf0.5Zr0.5O2 () 7.1 nm 40 5 55 57 [18] 

ZrO2/Al:HfO2 () 7 nm - 5 54.3 51.3 [19] 

Si:HfO2 () 10 nm - 4.5 61.2 65 [20] 

Si:Hf0.5Zr0.5O2 () 10 nm - 4.5 50 80 [21] 

Hf0.3Zr0.7O2 () 9.2 nm 42~44 4.35 45 50 [22] 

HfO2 () 63 nm 26 4.25 21.3 75 [23] 

La:Hf0.5Zr0.5O2 () 10 nm 45 4 50 70 [24] 

HfO2/ZrO2 () 8.8 nm - 4.0 49.9 61.87 [25] 

Al:HfO2 () 10 nm 56 4 40.58 50 [26] 

Si:HfO2 () 9 nm 34 3.33 40 80 [27] 

Al:HfO2 () 50 nm 32.28 3 18.17 51.79 [28] 
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Hf0.3Zr0.7O2 () 6 nm - 2.5 35.4 69.3 [29] 

Perovskite 

oxides 
Paraelectrics 

0.90BaTiO3-0.08Bi(Ni0.5Zr0.5)O3-0.02BiFeO3 ( ) 120 nm - 8.3 114.3 87.0 [30] 

SrTiO3 ( ) 610 nm - 6.6 307 89 [31] 

(Bi3.25La0.75)(Ti1.8Zr0.4Hf0.4Sn0.4)O12 ( ) 620 nm - 6.35 182 78 [32] 

Bi1.5Zn0.9Ta1.5O6.9 ( ) 150 nm 55 6.1 60.7 - [33] 

Bi1.5Zn0.9Nb1.35Ta0.15O6.9 ( ) 150 nm 122 5.5 66.9 - [33] 

Bi1.5Zn0.9Nb1.5O6.9 ( ) 150 nm 145 5.1 60.8 - [33] 

Ba0.53Sr0.47TiO3 ( ) 170 nm - 4.82 51.2 54.3 [34] 

3 mol% Mn-doped 0.94BaTiO3-0.06Bi(Zn1/2Zr1/2)O3 ( ) 175 nm - 4.75 85 84 [35] 

1 mol% Mn-doped SrTiO3 ( ) 140 nm 43 4.54 53.9 77.2 [36] 

0.94BaTiO3-0.06Bi(Zn1/2Zr1/2)O3 ( ) 175 nm - 4.50 51.6 62.2 [35] 

Bi2Zn2/3Nb4/3O7 ( ) 150 nm 182 3.81 63.5 61.13 [37] 
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Ba0.53Sr0.47TiO3 ( ) 170 nm - 3.4 36.1 68.1 [38] 

Bi1.5MgNb1.5O7-Bi2Mg2/3Nb4/3O7 ( ) 100 nm 158 2.91 40.59 61.67 [39] 

3 mol% Mn-doped Ba0.4Sr0.6TiO3 ( ) 100 nm - 1.63 8.48 42.4 [40] 

Ba0.7Sr0.3Fe0.008Ti0.092O3 ( ) 100 nm 300 0.4 7.6 65 [41] 

Ferroelectrics 

BaZr0.35Ti0.65O3/1 mol% SiO2-doped 

BaZr0.35Ti0.65O3/BaZr0.35Ti0.65O3 ( ) 
400 nm 158 9.39 130.1 73.8 [42] 

BaTiO3 ( ) 160 nm - 8.75 242 76 [43] 

BaTiO3 ( ) 200 nm 110 7.0 130 76 [44] 

PbZr0.52Ti0.48O3/Al2O3/PbZr0.52Ti0.48O3 ( ) 330 nm 43 5.71 63.7 81.3 [45] 

Ba(Zr0.2Ti0.8)O3 ( ) 350 nm - 5.7 166 78 [46] 

BaZr0.25Ti0.75O3 ( ) 180 nm - 5.22 60.8 87.8 [47] 

Bi(Mg0.5Ti0.75)O3 ( ) 120 nm - 5.0 126 - [48] 
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Sr0.99(Na0.5Bi0.5)0.01(Ti0.99Mn0.01)O3 ( ) 200 nm 158.6 4.91 53 48.8 [49] 

BiAlO3 ( ) 140 nm - 3.54 31.1 82.2 [50] 

Bi0.5Na0.5TiO3/Al2O3/Bi0.5Na0.5TiO3 ( ) 338 nm 228 3.08 19.9 49.8 [51] 

0.5 mol% 0.91Bi3.15Nd0.85Ti2.8Zr0.2O12-0.09BiFeO3 ( ) 350 nm - 3.01 124 81.9 [52] 

0.4SrTiO3-0.6Bi3.25La0.75Ti3O12 ( ) 300 nm 244 3.0 44.7 87.4 [53] 

Bi3.25La0.75Ti3O12/BiFeO3/Bi3.25La0.75Ti3O12 ( ) 320 nm 298 2.75 65.5 74.2 [54] 

BiFe0.93Mn0.07O3/Ba2Bi4Ti5O18 ( ) 375 nm - 2.5 52.6 75.9 [55] 

Bi3.25La0.75Ti3O12 ( ) 480 nm - 2.4 44.7 78.4 [56] 

Ba2Bi4Ti5O18 ( ) 410 nm - 2.36 41.2 79.1 [55] 

SrTiO3/BiFeO3/SrTiO3 ( ) 170 nm 274 2.06 40.69 44.7 [57] 

0.95(Na0.5Bi0.5)TiO3-0.05SrTiO3 ( ) 1.5 m 964 1.97 36.1 40.8 [58] 
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BiFeO3/BaTiO3 ( ) 980 nm 380 1.94 71 61 [59] 

BiMg0.56Ti0.5O3 ( ) - - 1.80 44.1 80 [60] 

Pb(Zr0.52Ti0.48)O3 ( ) 1 m 1260 1.0 10.3 62.4 [61] 

BiFeO3 ( ) 40 nm - 0.5 3.2 - [54] 

Anti-

ferroelectrics 

Pb0.5Sr0.5HfO3 ( ) 75 nm 52 5.12 77 97 [62] 

Pb0.88Ca0.12ZrO3 ( ) 300 nm 58 4.99 91.3 85.3 [63] 

PbZrO3/Pb0.9La0.1Zr0.52Ti0.48O3 multilayer ( ) 500 nm - 4.4 128.4 81.2 [64] 

Pb0.96La0.04Zr0.98Ti0.02O3 ( ) 690 nm 350 4.3 61 33 [65] 

Pb0.97La0.02(Zr0.66Sn0.23Ti0.11)O3 ( ) 650 nm - 4.0 46.3 84 [66] 

(Pb0.97La0.02)(Zr0.91Sn0.04Ti0.05)O3 ( ) 1.8 m 525 3.71 56 - [67] 

PbHfO3 ( ) 330 nm - 3 25 73 [68] 
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Pb0.82La0.12Zr0.85Ti0.15O3 ( ) 1 m 433 2.14 38 71 [69] 

Pb0.85La0.1ZrO3 ( ) 450 nm - 1.4 23.1 73 [70] 

Pb0.97Y0.02[(Zr0.6Sn0.4)0.925Ti0.075]O3 ( ) 500 nm - 1.3 21.0 91.9 [71] 

PbHfO3 ( ) 200 nm - 1.25 21.41 70 [72] 

Relaxor 

ferroelectrics 

BaZr0.35Ti0.65O3 ( ) 295 nm - 8.7 100.8 78.0 [73] 

0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3 ( ) 300 nm - 8.17 99.34 75.65 [74] 

0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ( ) 175 nm - 5.92 133.3 75 [75] 

30 mol% Sm-doped 0.3BiFeO3-0.7BaTiO3 ( ) 650 nm - 5.2 152 77 [76] 

0.88Ba0.55Sr0.45TiO3-0.12BiMg2/3Nb1/3O3 ( ) 400 nm 225 5.0 86 73 [77] 

0.25BiFeO3-0.30BaTiO3-0.45SrTiO3 ( ) 450 nm - 4.9 112 80 [78] 

(0.4BiFeO3-0.6SrTiO3)/Ba0.5Sr0.5TiO3 multilayer ( ) 410 nm 471 4.76 98 80 [79] 
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Ba0.7Ca0.3TiO3/BaZr0.2Ti0.8O3 multilayer ( ) 100 nm - 4.5 52.4 72.3 [80] 

0.25BiFeO3-0.75SrTiO3 ( ) 500 nm - 4.46 70 68 [81] 

0.30BiFeO3-0.35BaTiO3-0.35SrTiO3 ( ) 500 nm - 4.0 79 78 [82] 

0.4BiFeO3-0.6SrTiO3 ( ) 500 nm - 3.85 70.3 70 [81] 

Sm-doped BaZr0.2Ti0.8O3 ( ) 200 nm - 3.68 40.42 85.03 [83] 

Pb0.9La0.1(Zr0.52Ti0.48)O3 ( ) 1 m - 3.6 68.2 80.4 [61] 

0.5 mol% Mn-doped 0.4BiFeO3-0.6SrTiO3 ( ) 500 nm - 3.6 51 64 [84] 

(100) BaZr0.3Ti0.7O3 ( ) 400 nm 3446 3.0 156 72.8 [85] 

Pb0.9La0.1(Zr0.52Ti0.48)O3 ( ) 1.2 m - 3.0 40.9 80.2 [86] 

BaZr0.2Ti0.8O3 ( ) 90 nm - 3.0 30.4 81.7 [87] 

0.01 mol% Mn-doped 0.55Na0.5Bi0.5TiO3-0.45Sr0.2Bi0.7TiO3 ( ) 360 nm - 2.86 30.5 65 [88] 
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La-doped 0.9Na0.5Bi0.5TiO3-0.1BiFeO3 ( ) 330 nm - 2.7 52.4 60.3 [89] 

(0.7Na0.5Bi0.5TiO3-0.3SrTiO3)/(0.6SrTiO3-0.4Na0.5Bi0.5TiO3) 

multilayer ( ) 
190 nm - 2.61 60 51 [90] 

0.6PbTiO3-0.4Bi(Mg0.5Zr0.5)O3 ( ) 500 nm - 2.6 32.3 51.4 [91] 

Pb0.9La0.1(Zr0.52Ti0.48)O3/Pb(Zr0.52Ti0.48)0.99Nb0.01O3 ( ) 200 nm - 2.45 43.5 84.1 [92] 

BaBi4Ti4O15 ( ) 450 nm 314 2.06 44.3 87.1 [93] 

0.9Na0.5Bi0.5TiO3-0.1BiFeO3 ( ) 500 nm 491 2.0 38.5 52.0 [94] 

0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 ( ) 2 m - 2.0 35 70 [95] 

Mn-doped Pb0.97La0.02(Zr0.905Sn0.015Ti0.08)O3 ( ) 350 nm - 2.0 31.2 58 [96] 

Na0.5Bi0.5TiO3 ( ) 400 nm 405 1.25 23.3 61.6 [97] 
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