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Supplementary Text 1

As shown in the inset in Fig. 2, the monoclinic P2i/c phase gives the best fit with
a R-factor of 0.0065 in the EXAFS spectrum of the BHO12-RT film, indicating a high-
quality fitting. The fitting window is set to R = 1.0 ~ 4.0 A, which is typical for the
EXAFS analysis of amorphous structure because (i) R < 1.0 A is meaningless since
there is no interatomic distance shorter than 1.0 A in actual crystals; (ii) the oscillation
amplitude of EXAFS spectrum is too low to be fitted when R > 4.0 A since the
amorphous structure only has short-range ordering. The extracted structural parameters,
including the interatomic distance (Ruf-o(or ), the coordination number (Nuf.0), and the
disorder (Debye-Waller) factor (¢), are listed in table below. The oscillation in R = 1.0
~2.2 A, i.e., the first shell, can be attributed to single-scattering paths from the nearest-
neighbor oxygen atoms at the Rut.o of ~2.14 A with the Nur.o of ~6.35, while that in R
=2.0 ~ 3.5 A is due to the single-scattering paths from Hf atoms at the Rurnr of ~3.43
A in the second shell. The ¢ is 0.007 in the first shell. These results are in good
agreement with the short-range structures reported previously in amorphous HfO: thin
films.

However, the BHO12 exhibits two distinguished oscillations in 2.2 A <R <3.5 A,
which is obviously different from the unannealed BHO12-RT. Such a doublet feature
makes the fit by only the P2i/c symmetry unavailable. The orthorhombic Pca2:
symmetry shows a better fit and the best is obtained by combining the P21/c and Pca2:
phases, in which the single-scattering paths from the Hf atoms at the Rurnr of ~3.42 A
(the P21/c) and the oxygen atoms at the Rur.o of ~3.70 A (the Pca21) contribute to the
doublet oscillations of the second shell together. The R-factor is 0.0092 for the fitting
window of R = 1.0 ~ 4.0 A. In addition, the best fit also reveals that the oscillation in R

=1.0~2.2 A is attributed to the single-scattering paths from oxygen atoms at the Rur-0



0f 2.07 ~ 2.09 A with the Nut.o of 6.75 ~ 6.81 in the first shell. Therefore, the BHO12

film exhibits a higher density compared to that prepared at room temperature since the

Hf atoms are surrounded by more neighboring oxygen atoms with smaller coordination

bond lengths. Also, due to the coexistence of Pca21 and P21/c symmetries, the BHO12

has a large disorder factor of ~0.011.

The first and second shell fits for EXAFS data of Hf Ly edge

P2i/c Pca2,

Scatteri Scatteri
Sample ID R (A) N o (A?) R(A) N o (A?)

ng ng
BHO12- Hf-O 2.1440.01 | 6.35+0.67 | 0.007+0.002
RT Hf-Hf | 3.43+0.1 10.86+4.98 | 0.026+0.008

Hf-O 2.09+0.03 | 6.75+1.78 | 0.011+0.005 Hf-O 2.07+0.02 | 6.81+1.51 | 0.011+0.004
BHOI12

Hf-Hf | 3.42+0.07 | 8.76+£12.02 | 0.029+0.025 Hf-O 3.70+0.05 | 5.43+4.5 | 0.004+0.013
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Figure S1. A sketch for the calculations of Urec and # in the P-E hysteresis loop.
As shown in Fig. S1, the Uk is calculated by f: "™ EdP, indicated by the green

area. The hysteresis area during a charging-discharging cycle is the Uloss. Then the 7 is

obtained by Urec/ ( Urect (jloss) .
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Figure S2. A comparison of the Eb and & of the amorphous BHO12 to well-known
dielectric materials for energy storage (BOPP: Biaxially oriented polypropylene; PVDEF:
Poly(vinylidene fluoride); PET: Poly(ethylene terephthalate); P(MDA/MDI): Aromatic
polyurea (ploy(diaminodiphenylmethane dipheylmethane diisocyanate))).

Fig. S2 shows a comparison of the Eb and & of the amorphous BHO12 to well-
known high-k, ferroelectric, and polymer materials for dielectric energy storage. In
dielectric materials, the Eb is usually limited by &, following Ey, = K * - %, where K
and a are constants. In the model by McPherson et al.,[1-3] the K and o are 35.3 and
0.64 for the theoretical (the thick green curve) and 29.9 and 0.65 for the experimental
(the thick blue curve), respectively. One can find that these dielectric materials are
following this permittivity limitation. However, the breakdown strength of amorphous
BHO12 is much higher than the upper-limit of its permittivity, overcoming the negative
correlation between Eb and &.. In ref.1 of the main text, a comprehensive review of
capacitive energy storage, the authors have also fitted the experimental Ev and &r of
dielectric materials using Ej, = K * & and extracted the K and a, which are 25.09

and 0.559, respectively, very close to the model used in Fig. S2.
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Figure S3. a, XRD patterns of the Sr-substituted HfO2 thin films with increasing
substitution concentration from 0 to 50 %. b, P-E hysteresis loops of the amorphous
Pt/SHO30/LSMO capacitor at 10 kHz.

As shown in Fig. S3a, the amorphous Sr-substituted HfO2 (SHOx) thin films
appear at the concentration of 23% ~ 30%, which is narrower than that of the BHO, in
agreement with that observed in the first-principles calculation. For the amorphous
Pt/SHO30/LSMO capacitor, the Eb is above 10 MV/cm (Fig. S3b), which is also much
higher than that reported in the amorphous and crystalline HfO2-based capacitors. The

Urec and 7 calculated by the P-E loop is 117 J/cm® and 76.8% at E = 10 MV/cm.
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Figure S4. a, XRD patterns of the Ca-substituted HfO2 thin films with increasing

substitution concentration from 0 to 50 %. b, P-E hysteresis loops of the amorphous

Pt/CHO33/LSMO capacitor at 10 kHz.

As shown in Fig. S4a, the amorphous Ca-substituted HfO2 (CHOx) thin films

appear at the Ca concentration of 33% ~ 36%, which is narrower than that of the SHO

and BHO, in agreement with that observed in the first-principles calculation. For the

amorphous Pt/CHO33/LSMO capacitor, the Eb is above 8.0 MV/cm (Fig. S4b), which

is also much higher than that reported in the amorphous and crystalline HfO2-based

capacitors. The Ut and 7 calculated by the P-E loop is 72 J/cm? and 82.4% at E = 8.3

MV/cm.



Figure S5. HAADF image of the BHO02/LSMO/STO heterostructure to show the

coexistence of m- and o-phase.
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Figure S6. STEM characterizations of the BHO12/LSMO/STO heterostructure in a
large scale to show the uniformity in amorphous structure (a) and element distributions
(b, ¢). b, the EELS mappings for Hf, Ba, O, La, Mn, and Ti elements, respectively. ¢,
the EDS (energy dispersive spectra) mappings for Hf, Ba, O, Sr, La, and Mn elements,
respectively.

In Fig. S6a, one can find that the amorphous structure is uniform over a large area
with the scale bar of 20 nm. Combined with the EELS (Fig. S6b) and EDS (Fig. S6c)

mapping, one can find the element distributions are also uniform.
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Figure S7. XPS spectra of O 1s core level for the BHOO, BHO02, BHO12, BHO20,

and BHOS50 thin films, respectively.

Fig. S7 shows XPS spectra of O s core level for the BHO thin films etched by Ar

ions for 30 s to remove the adsorbed oxygen. In the HfO2-based films the peaks of Vo

are in general present at the binding energy of ~532 eV, higher than that of the lattice

oxygen ions.[4,5] In Fig. S7, one can find that the Vos in the BHOO and BHOS50, that

is the HfO2 and BaH{fO3, are negligible owing to the post-annealing in flowing O2. With

the Ba substitution, the Vos appear in BHO02, BHO12, and BHO20, in agreement with

the first-principle calculation. In addition, the relative concentration of Vos increases

from the BHOO02 to the BHO12 and then decreases in the BHO20.
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Figure S8. XPS spectra of Hf 4f'and Ba 3d core levels of the BHO12 thin film.

In the XPS spectrum of Hf 4f core level, the peaks at 16.3 and 18.0 eV are Hf 4f72
and Hf 452, which are attributed to the Hf*" of Hf-O bond. In the XPS spectrum of Ba
3d core level, the Ba 3ds2 and 3d3/2 appear at 779.5 and 794.8 eV, respectively, separated
by 15.3 eV, which correspond to the Ba*" in Ba-O bond. There are no metallic Hf and

Ba observed in the amorphous BHO12 thin film.
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Figure S9. The Ef(Vo) at the first nearest-neighbor site as a function of Ba?" substitution
concentration in different phases.

In the main text, the Ba substitution induces strong effect on the oxygen instability
in the t-phase HfO2, which is the high-temperature phase considering that the
amorphous state is formed in the crystallizing process of the Ba-Hf-O system. However,
the amorphous HfO: films reported in literature are in general formed by low-
temperature deposition. In this case, the HfOz is in a low symmetry, like the m- and o-
phases. We therefore calculate the E'(Vo) in the m- and o-phase HfO: lattices, for
comparison. As shown by the dashed and dotted curves in Fig. S9, the Ef(Vo) are always
positive with increasing Ba concentration from 1/32 to 1/4, indicating that the Ba
substitution yields weak effect on the oxygen instability in the m- and o-phases. These
results also suggest that the low-temperature stacking of A/Hf and O atoms cannot
generate the amorphous structure like the BHO films in the main text, in agreement

with the short-range structures observed in the EXAFS spectra.

12
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Figure S10. O s energy loss spectra of the BHOO, BHO02, BHO12, and BHOS50 thin
films.

Considering that the BHO thin films are grown on the LSMO/STO and the
bandgap of BHO should be higher than that of the STO substrate, we adopted the O 1s
energy loss spectra to estimate their bandgaps, which have been reported frequently in
the band structure studies of high-k thin films.[6,7] As shown in Fig. S10, the bandgaps
of the representative BHO thin films are about 5.0 eV, regardless of crystalline or not.
These results are reasonable since the bandgaps of HfO2 and BaHfOs are about 4.0 ~

6.0 eV, as reported previously.[1,8,9]

13
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Figure S11. P-E hysteresis loops of the Pt/BHO12-RT/LSMO capacitor measured at
10 kHz

As shown in Fig. S11, the capacitor based on the BHO12-RT thin film exhibits an
Ebv of ~3.64 MV/cm, which is comparable with that reported in the amorphous HfO2

thin films.[10]
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Figure S12. a, The £, of BHOO, BHO02, BHO12, and BHOS50 capacitors as a function
of thin-film thickness. b, Replotted the thickness-dependent breakdown strength in 1/Eb
vs. Ind.

In the avalanche mechanism, the Eb usually exhibits a thickness-dependence
character, following an empirical formula Ey, < d=#, in which /8 is a constant and d is
thickness. In Fig. S12a, one can find that the breakdown strengths of the crystalline
BHOO0, BHO02, and BHOS50 capacitors are decreasing with increasing d from 10 to 50
nm, exhibiting the f 0 0.29, 0.18, and 0.12, respectively. However, the Eb of amorphous
BHOI12 capacitor is almost independent with the thickness. The thickness-dependent

Ev is further analyzed by the 40-generation-electron theory, which obeys

—k
Eo ="/hn ) (S1)

where do = 40/a0 (a0 is the ionization coefficient) and & is a parameter with the same
unit of electric field. By linear fitting the 1/Eb vs. Ind plots, the do and & can be extracted,
which are 1.27 nm and 16 MV/cm, 0.11 nm and 34 MV/cm, and 0.008 nm and 43

MV/cm for the BHOO, BHOO02, and BHOS0 capacitors, respectively.
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Figure S13. Current density-electric field curves of the BHOO, BHO02, BHO12, and
BHOS50 thin-film capacitors. Here, the noise of our facilities is also shown for
comparison.

As shown in Fig. S13, the BHO12 capacitor exhibits the lowest leakage current
density, which is even close to the current noise (~1.0 pA) of our facilities. At £ =7.0

MV/cm, the current density is still less than 1x10% A/cm?.
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Figure S14. & and dielectric loss (tan 6) of the BHOO, the amorphous BHO12, SHO30,
and CHO33, as well as the unannealed BHO12-RT, as a function of frequency.

As shown in Fig. S14, the & of amorphous BHO12, SHO30, and CHO33 thin-film
capacitors are about 18 ~ 21 in the frequency range of 1x10° ~ 4x10° Hz, which is much
larger than that of the unannealed BHO12-RT counterpart and even larger than the
crystalline BHOO (i.e., the undoped HfO2) capacitor at high frequency. In addition,

these amorphous hafnium-based oxides also exhibit very low dielectric loss.
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Figure S15. P-E hysteresis loops of the BHOO, BHO02, BHOI12, and BHO50
capacitors as functions of applied E (a), measurement frequency (b),
charging/discharging cycling number (¢), and temperature (d), respectively.

Fig. S15a-d are the corresponding P-E hysteresis loops of the data plotted in Fig.
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4a-d, respectively. Here, we give a discussion on the BHOO2 capacitor since it shows a
large change in the # with the measurement conditions due to the ferroelectric behaviors.
In Fig. S15a, the ferroelectric hysteresis becomes stronger with increasing E, resulting
in the decrease of 7 (Fig. 4a). In Fig. S15¢, the BHOO02 capacitor shows a polarization
fatigue phenomenon with increasing cycling number, in which the remanent
polarization is decreased and thus the hysteresis is suppressed. It results in the increase
of # with increasing cycling number in Fig. 4c. In Fig. S15d, the BHOO2 exhibits a
weak-up effect of ferroelectric polarization, resulting in the increase of hysteresis and

the decrease of # with increasing temperature (Fig. 4d).
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Table S1. The dielectric energy storage properties, including device structure, &r, Eb, Urec, and 7, for representative thin-film capacitors fabricated

by different material systems,[11-97] in which the symbols for dielectric capacitors plotted in Fig. 4e are indicated.

Film Eb Urec o
Type Dielectric films thickness & MV em) | (7 em?) 1 (%) Ref.
BHO12 12 155 87
This
SHO30 somm | 1891 10 116.86 | 768
work
8.3 71.83 82.4
CHO33
Ta;0s/Hfo.5Zro.s02 (¢) 25 nm - 7.2 109 94.4 [11]
High-x binary oxides | A:HfO, (V) 6.5 nm ; 6.5 637 | 642 | [12]
Hfo.5Zr0502/ Hfo.25Zr0.7502 (%) 10 nm - 6 71.95 57.8 [13]
Hfo.67Z103302/Al,03 /Hf0 677103302 (A) 10 nm - 6 70 50 [14]
Zr0, (@) 470 nm 26 5.8 75.4 88 [15]
TiO2/ZrO,/TiO, (M) 8.7 nm - 5.5 94 80 [16]
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AL:HfO, (A) 50 nm 26 5 63 85 [17]
Hfo5Zro5s0, (A) 7.1 nm 40 5 55 57 [18]
ZrO,/AL:HfO, (V) 7 nm - 5 54.3 51.3 [19]
Si:HfO, (7)) 10 nm - 4.5 61.2 65 [20]
Si:Hfo.5Zr0502 (@) 10 nm - 4.5 50 80 [21]
Hfy.3Z1070, (@) 9.2 nm 42~44 4.35 45 50 [22]
HfO, (%) 63 nm 26 4.25 21.3 75 [23]
La:Hfy 5Zro 502 (@) 10 nm 45 4 50 70 [24]
HfO,/ZrO, (®) 8.8 nm - 4.0 49.9 61.87 [25]
ALHfO, (®) 10 nm 56 4 40.58 50 [26]
Si:HfO, (1) 9 nm 34 3.33 40 80 [27]
ALH{O, (M) 50 nm 32.28 3 18.17 51.79 [28]

21



Hfo 321070, (M) 6 nm - 2.5 35.4 69.3 [29]
0.90BaTi03-0.08Bi(Nig 5710 5)03-0.02BiFeO; (@) 120 nm - 8.3 114.3 87.0 [30]
SrTiO3 (A) 610 nm - 6.6 307 89 [31]
(Bi3.25La0.75)(Ti1.8Zr0.4Hfo 4Sno 4)O12 (e ) 620 nm - 6.35 182 78 [32]
Bii 5ZnosTa; 5060 (5) 150 nm 55 6.1 60.7 - [33]
Bi15Zno9Nbj 35Ta0.1506.9 (O) 150 nm 122 5.5 66.9 - [33]
Perovskite
| Paraelectrics | g 70 Nby 506 (%) 150nm | 145 5.1 60.8 - [33]
oxides
Bao 53S10.47Ti03 (V) 170 nm - 4.82 51.2 54.3 [34]
3 mol% Mn-doped 0.94BaTi03-0.06Bi(Zn12Zr12)03 (O) 175 nm - 4.75 85 84 [35]
1 mol% Mn-doped SrTiO3 (D) 140 nm 43 4.54 53.9 77.2 [36]
0.94BaTi03-0.06Bi(Zni,2Zr12)03 (<] ) 175 nm - 4.50 51.6 62.2 [35]
Bi2Zny3NbasO7 (<>) 150 nm 182 3.81 63.5 61.13 [37]
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Bag.53St0.47TiOs (V) 170 nm - 3.4 36.1 68.1 | [38]
Bi; sMgNbj 507-BixMg23Nbaz07 (A) 100 nm 158 2.91 40.59 61.67 [39]
3 mol% Mn-doped Bao4Sro6TiO3 (©) 100 nm - 1.63 8.48 424 | [40]
Bao 7Sr0.3Fe0.00s Ti0.00203 (1) 100 nm 300 0.4 7.6 65 [41]
BaZr0,35Tio,6503/l mol% SiOz—dOped

400 nm 158 9.39 130.1 73.8 | [42]
BaZro35Ti0.6503/BaZro35Tioes0s (F)
BaTiOs () 160 nm - 8.75 242 76 [43]
BaTiO; (7) 200 nm 110 7.0 130 76 [44]

Ferroelectrics

PbZr0.52Tio 4503/ Al203/PbZro 5, Tio.4503 () 330 nm 43 5.71 63.7 81.3 [45]
Ba(Zro2Tios)0s (2) 350 nm - 5.7 166 78 [46]
BaZro5Tio 7505 () 180 nm - 5.22 60.8 87.8 | [47]
Bi(MgosTio75)0s (<) 120 nm ; 5.0 126 y [48]
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St0.99(Nao.5B10.5)0.01(Ti0.99Mno 01)O3 (@)

200nm | 158.6 4.91 53 48.8 | [49]
BiAIO; (V) 140 nm - 3.54 31.1 822 | [50]
Bio sNag sTiO3/Al,O3/Big sNag sTiO3 (£+) 338nm | 228 3.08 19.9 49.8 | [51]
0.5 mol% 0.91Bi3.15Ndo g5 Ti2.sZ10.2012-0.09BiFeOs () 350 nm - 3.01 124 81.9 | [52]
0.4SrTi03-0.6Bi3 25Lag 75 Tis012 () 300nm | 244 3.0 44.7 874 | [53]
Bis25La0.75Ti3012/BiFeOs/Bis 25Lag.75Ti3012 (O) 320 nm 298 2.75 65.5 74.2 [54]
BiFeo.93Mng 0703/Ba;BisTisO1s (7)) 375 nm - 2.5 52.6 75.9 [55]
Bi3 25Lag75Tiz012 (V) 480 nm - 2.4 44.7 784 | [56]
Ba,BisTisOs (7)) 410 nm - 2.36 412 791 | [55]
SrTiOs/BiFeOs/StTiOs (<) 170nm | 274 2.06 4069 | 447 | [57]
0.95(Nao.sBio ) TiO3-0.05S1TiO3 (<) 1.5 um 964 1.97 36.1 40.8 | [58]
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BiFeOs/BaTiO; (v) 980 nm 380 1.94 71 61 [59]
BiMgo 56Ti0.503 (A) - - 1.80 44.1 80 [60]
Pb(Zro.52Ti0.48)O3 (O ) 1 um 1260 1.0 10.3 62.4 [61]
BiFeOs (1) 40 nm - 0.5 32 - [54]
Pbo.sSro sHfO3 (&) 75 nm 52 5.12 77 97 [62]
Pbo.ssCao.12Z10s (/) 300 nm 58 4.99 91.3 85.3 [63]
PbZrO3/PbgoLag.1 Zro 52 Tig 4803 multilayer () 500 nm - 4.4 128.4 81.2 [64]
Anti-
ferroelectrics Pbo.gsLao.04Zro.08Tio.0203 (~) 690 nm 350 4.3 61 33 [65]
Pbo.97Lao.02(Zro.66Sn0.23Ti0.11)O03 () 650 nm - 4.0 46.3 84 [66]
(Pbo.97L.a0.02)(Z10.91S1n0.04Ti0.05)O03 () 1.8 um 525 3.71 56 - [67]
PbHFO; () 330 nm ; 3 25 73| [68]
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Pbo.s2Lao.12Zro.85Tio.1503 (V) 1 pm 433 2.14 38 71 [69]
Pbo.gsLao1ZrOs (“) 450 nm - 1.4 23.1 73 [70]
Pb0.97Y 0.02[(Z10.6S10.4)0.925Ti0.075]03 () 500 nm - 1.3 21.0 91.9 [71]
PbHfO; (*) 200 nm - 1.25 21.41 70 [72]
BaZro35Tio.6s03 (77) 295 nm - 8.7 100.8 78.0 [73]
0.85BaTi03-0.15Bi(Mgo.5Z10.5)O3 (V) 300 nm - 8.17 99.34 75.65 [74]
0.68Pb(Mg1/3Nb2/3)03-0.32PbTiO; (+) 175 nm - 5.92 133.3 75 [75]
Relaxor
forroelectrics 30 mol% Sm-doped 0.3BiFe03-0.7BaTiOs () 650 nm - 5.2 152 77 [76]
0.88Bay 55510 45Ti03-0.12BiMgy3Nb; 303 () 400 nm 225 5.0 86 73 [77]
0.25BiFe03-0.30BaTi03-0.45SrTiOs () 450 nm - 4.9 112 80 [78]
(0.4BiFe03-0.6SrTiO3)/Bag 5sSro s TiO3 multilayer ( e ) 410 nm 471 4.76 98 80 [79]
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Bag 7Cao3Ti03/BaZr2Tip.sO3 multilayer ( ) 100 nm - 4.5 524 723 [80]
0.25BiFe03-0.75SrTiOs () 500 nm - 4.46 70 68 [81]
0.30BiFe03-0.35BaTi03-0.35SrTiOs (=) 500 nm - 4.0 79 78 [82]
0.4BiFe03-0.6SrTiOs () 500 nm - 3.85 70.3 70 [81]
Sm-doped BaZro 2 Tio 503 (<) 200 nm - 3.68 4042 | 85.03 | [83]
Pbo.gLao.1(Zro52Ti0.43)O3 (?/ ) 1 um - 3.6 68.2 80.4 [61]
0.5 mol% Mn-doped 0.4BiFe03-0.6SrTiO; (V) 500 nm - 3.6 51 64 [84]
(100) BaZro3Tio703 () 400nm | 3446 3.0 156 72.8 | [85]
PbooLa.1(Zro52Tio.4s)03 () 1.2 pm - 3.0 40.9 80.2 | [86]
BaZro2Tios0s (7)) 90 nm - 3.0 30.4 81.7 | [87]
0.01 mol% Mn-doped 0.55Nag 5Bi.sTi03-0.45Sr02Bi0 7 TiO3 ('“) 360 nm - 2.86 30.5 65 [88]
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La-doped 0.9Nay.sBiosTiO3-0.1BiFeOs () 330 nm - 2.7 52.4 60.3 [89]
(0.7Nayg 5Bi sTi03-0.3SrTi03)/(0.6SrTiO3-0.4Nag 5sBio s Ti03)

190 nm - 2.61 60 51 [90]
multilayer ()
0.6PbTi03-0.4Bi(Mgo.5Z10.5)O3 ( ) 500 nm - 2.6 32.3 514 [91]
Pbo.oLag.1(Zro.52Tio.48)O3/Pb(Zro.52Tio.48)0.99Nb0.0103 (7    ) 200 nm - 2.45 435 84.1 [92]
BaBisTisO15 ( ) ) 450 nm 314 2.06 443 87.1 [93]
0.9NaosBiosTi03-0.1BiFeOs (V) 500nm | 491 2.0 38.5 520 | [94]
0.65Pb(Mg1sNb23)03-0.35PbTiOs () 2 um - 2.0 35 70 | [95]
Mn-doped Pbo.97L.20.02(Zr0.905S10.015Tio.08)O3 () 350 nm - 2.0 31.2 58 [96]
Nao.sBiosTiO3 () 400 nm 405 1.25 233 61.6 [97]
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