SUPPLEMENTARY MATERIAL

Identification of key factors driving inflammation-induced sensitization of muscle sensory neurons

by Sridevi Nagaraja, Shivendra G. Tewari, and Jaques Reifman

Inflammation-activated G protein-coupled receptor pathways described in the model

Protein kinase C pathway

In this mechanism, we described the kinetics of $G_{\alpha q}$, which when activated by an inflammatory mediator dissociates into two subunits. One of the active subunits, G_{α} , recruits inactive phospholipase (PLC) enzyme from the cytosol to form active PLC at the membrane. PLC then hydrolyzes membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP₂), leading to the production of two intracellular second messengers, inositol trisphosphate (IP₃) and diacylglycerol (DAG). DAG activates protein kinase C (PKC) in the cytosol, and the active PKC ultimately modifies the function of ion channels on the neuronal membrane (Gold and Flake, 2005). In our model, we described the kinetics of the receptor, enzymes, and second messenger molecules using equations and parameters described previously (Bennett et al., 2005; Kapela et al., 2008; Mohan et al., 2017).

Protein kinase A pathway

In this mechanism, we described the kinetics of $G_{\alpha s}$, which when activated by an inflammatory mediator dissociates into three subunits. The G_{α} subunit recruits adjacent membrane-bound adenylate cyclase (AC), which then catalyzes the conversion of ATP in the cytosol to cAMP, which acts as a second messenger and activates protein kinase A (PKA), among other enzymes (Li et al., 2019). In our model, we described the kinetics of each of these receptor subunits, enzymes, and second messenger molecules, using equations and parameters described previously (Lindskog et al., 2006; Leander and Friedman, 2014).

Variable name	Description	Initial value	Variable name	Description	Initial value
Nav1.8m	Activation constant of voltage-gated Nav1.8 channel	0	TREK _m	Activation constant of two- pore K ⁺ channel	0
Nav1.8 _h	Inactivation constant of voltage-gated Nav1.8 channel	1	Kan	Activation constant of M- type K ⁺ channel	0
Nav1.7 _m	Activation constant of voltage-gated Nav1.7 channel	0	Kahfast	Fast inactivation constant of M-type K ⁺ channel	1
Nav1.7 _h	Inactivation constant of voltage-gated Nav1.7 channel	1	Ka _{hslow}	Slow inactivation constant of M-type K ⁺ channel	1
Nav1.9 _m	Activation constant of voltage-gated Nav1.9 channel	0	Kv7n	Activation constant of voltage-gated Kv7.2 channel	0
Nav1.9 _h	Inactivation constant of voltage-gated Nav1.9 channel	1	KDR _n	Activation constant of delayed rectifying K ⁺ channel	0
Piezom	Fast activation constant of Piezo2 channel	0	BKCan	Activation constant of large-conductance Ca ²⁺ - activated K ⁺ channel	0
Piezo _h	Inactivation variable of Piezo2 channel	1	CaL _m	Activation constant of L- type voltage-gated Ca ²⁺ channel	0
ASIC3 _m	Activation constant of ASIC3 channel	0	CaL _h	Inactivation constant of L- type voltage-gated Ca ²⁺ channel	1
ASIC3 _h	Inactivation constant of ASIC3 channel	1	CaT _m	Activation constant of T- type voltage-gated Ca ²⁺ channel	0
TRPA1 _m	Activation constant of TRPA1 channel	0	CaT _h	Inactivation constant of T- type voltage-gated Ca ²⁺ channel	1
TRPA1 _h	Inactivation constant of TRPA1 channel	1	$V_{ m m}$	Membrane potential	-55 mV
$\left[\mathrm{Na}_{i}^{+}\right]$	Intracellular Na ⁺ concentration	14 mM	$\left[K_{i}^{+}\right]$	Intracellular K ⁺ concentration	140 mM
$\left[\operatorname{Ca}_{i}^{2^{+}}\right]$	Intracellular free calcium ion concentration	5×10^{-5} mM	$\left[\mathrm{Ca}_{\mathrm{ER}}^{2+}\right]$	Calcium concentration in the endoplasmic reticulum	0.25 mM
IP ₃	Intracellular inositol trisphosphate concentration	1×10 ⁻⁵ mM	hIP ₃	Activation constant of the IP ₃ receptor	0.667

Table S1. Model variable name, description, and initial value

1					
$G_{\alpha qunphos}$	Total number of unphosphorylated $G_{\alpha q}$ receptors	1.7×10 ⁵	$[G_{\alpha sact}]$	Concentration of α subunits of $G_{\alpha s}$ receptors	0
Gaqphos	Total phosphorylated $G_{\alpha q}$ receptors	0	$[G_{\alpha s \beta \gamma}]$	Concentration of $\alpha\beta$ subunits of $G_{\alpha s}$ receptors	0
Gaq	Number of α subunits of $G_{\alpha q}$ receptors	0	$[G_{\beta\gamma s}]$	Concentration of β subunits of $G_{\alpha s}$ receptors	0
[DAG]	Intracellular diacylglycerol concentration	0 mM	[cAMP]	Intracellular concentrations of cyclic adenosine monophosphate	0 mM
PIP ₂	Total number of phosphatidylinositol 4,5- bisphosphate	5×10 ⁷	[RC]	Intracellular concentration of inactive PKA	2.2×10 ⁻⁴ mM
PLC	Concentration of active phospholipase C	0 mM	[R _{cAMP}]	Intracellular concentration of PKA regulatory subunit	0 mM
[DAG _{PKC}]	Intracellular concentration of DAG-PKC complex	0 mM	[RC _{caMP2}]	Intracellular concentration of intermediate regulatory PKA catalytic subunit	0 mM
PLC _{inact}	Concentration of membrane- bound inactive phospholipase C	1×10 ⁻² mM	[RC _{cAMP4}]	Intracellular concentration of intermediate regulatory PKA-PKA catalytic subunit	0 mM
[PKC _{inact}]	Intracellular concentration of inactive protein kinase C	1×10 ⁻³ mM	[PKA]	Intracellular concentration of active protein kinase A	0 mM
[PKC]	Intracellular concentration of protein kinase C	0 mM	V _{actNav1.7}	Membrane potential threshold for Nav1.7 activation	-25.8 mV
V _{actNav1.8}	Membrane potential threshold for Nav1.8 activation	-11.4 mV	VinactNav1.7	Membrane potential threshold for Nav1.7 inactivation	55.8 mV
VinactNav1.8	Membrane potential threshold for Nav1.8 inactivation	-24.6 mV	MactTRPA1	Mechanical force threshold for TRPA1 activation	40 mN
V _{actKv1.1}	Membrane potential threshold for Kv1.1 activation	-35 mV			

P#	Parameter name	Description	Value	Unit	References	
Na ⁺ -C	Ca ²⁺ exchanger	·		I		
1	kNCX	Constant for NCX	25.85			
2	kNa	Half-saturation constant for extracellular [Na ⁺]	87.50	mM	(Nagaraja et al.,	
3	kCa	Half-saturation constant for extracellular $[Ca^{2+}]$	1.38	mM	2021)	
4	Imax _{NCX}	Maximum current density	1×10 ⁵	nS		
ASIC	3 channel	l é		•	•	
5	Vh _{ASIC}	Half-activation pH for activation factor	6.202	pН		
6	kactASIC	Steepness factor of activation	0.1754	pH		
7	$ act_{ASIC}$	Hill slope of activation factor	5.000	ms	(Nagaraja et al.,	
8	VSASIC	Half-inactivation pH for activation factor	7.061	pН	2021)	
9	k _{inact} ASIC	Steepness factor of inactivation	0.0452	pH		
10	Imax _{ASIC18}	Maximum conductance of ASIC channel	15.0	nS		
Na ⁺ -F	K ⁺ pump			•	•	
11	nH _{Na}	Hill coefficient for sodium and potassium	1.5			
12	KNa _{NaK}	Binding constant for intracellular [Na ⁺]	14.5	mM	(Nagaraja et al.,	
13	KK _{NaK}	Binding constant for extracellular [K ⁺]	1.5	mM	2021)	
14	Imax _{NaK}	Maximum current density	150	pА		
Piezo	2 channel	ř. ř.				
15	Vh _{Piezo}	Half-activation force for inactivating factor	0.9	mN		
16	Vs _{Piezo}	Half-activation force for inactivating factor	0.6	mN		
17	k1 _{inact} Piezo	Steepness factor of inactivation	0.3	mN	(Nagaraja et al.,	
18	k2 _{inact} Piezo	Steepness factor of inactivation	0.1	mN		
19	τact _{Piezo}	Time constant for activation factor	1	ms	- 2021)	
20	$\tau linact_{Piezo}$	Time constant for fast inactivation factor	3	ms	-	
21	Imax _{Piezo}	Maximum conductance of Piezo channel	40	nS	-	
TRE	K-1 channel			1	1	
22	Vmtrek	Half-activation force for activation factor	8	mN		
23	kact _{TREK}	Steepness factor of activation	1	mN	(Nagaraja et al.,	
24	τact _{TREK}	Activation time constant	1	ms	2021)	
25	Imax _{TREK}	Maximum TREK channel conductance	0.5	nS		
TRP	1 channel				1	
26	kact _{TRPA1}	Steepness factor of activation	20	mN		
27	Vh _{TRPA1}	Half-activation force for inactivation factor	40	mN	-	
28	kinact _{TRPA1}	Steepness factor of inactivation	20	mN	(Nagaraja et al	
29	τact _{TRPA1}	Activation time constant	1	ms	2021)	
30	τinact _{TRPA1}	Inactivation time constant	5	ms		
31	Imax _{TRPA1}	Maximum conductance	15	nS	-	
Kv7.2			_			
32	Imax _{Ky7}	Maximum Kv7 conductance	600	nS	Modified	
33	k1act _{Ky7}	Steepness factor of activation	0.00395	mV		
		Half-activation membrane potential for activation			-	
34	Vm _{Kv7}	factor	15	mV	(Nagaraja et al	
35	k2act _{Kv7}	Steepness factor of activation	40	mV	2021)	
36	k1inact _{Kv7}	Steepness factor of inactivation	0.00395	mV	1	
37	k2inact _{Kv7}	Steepness factor of inactivation	20	mV	1	

r					
38	τact_{Kv7}	Activation time constant	3	ms	Modified
KDR	channel				-
39	Imax _{KDR}	Maximum KDR conductance	200	nS	(Nagaraja at al
40	δ_{KDR}	Activation factor	0.577	mV	- (Nagaraja et al., 2021)
41	kact _{KDR}	Steepness factor of activation	15.4	mV	2021)
42	τact_{TRPA1}	Activation time constant	300	ms	Modified
A-typ	e K ⁺ channel				
43	Imax _{Ka}	Maximum A-type K ⁺ channel conductance	6	nS	Modified
Nav1	.8 channel				
44	Imax _{Nav1.8}	Maximum Nav1.8 channel conductance	150	nS	Modified
45	kact _{Nav1.8}	Steepness factor of activation	8.75	mV	(Nagaraja et al.,
46	kinact _{Nav1.8}	Steepness factor of inactivation	5.76	mV	2021)
Nav1	.9 channel				
47	Imax _{Nav1.9}	Maximum Nav1.9 channel conductance	0.5	nS	Modified
Nav1	.7 channel		•		·
48	Imax _{Nav1.7}	Maximum Nav1.7 channel conductance	212.0	nS	
49	kact _{Nav1.7}	Steepness factor of activation	7.8	mV	(Nagaraja et al.,
50	kinact _{Nav1.7}	Steepness factor of inactivation	8.9	mV	2021)
Potas	sium leak cha	annel			
51	Imax _{Kleak}	Leak channel conductance	0.6	nS	Modified
Ca ²⁺ -	activated K ⁺	channel		1	
52	Imax _{BKCa}	Maximum BKCa channel conductance	10	nS	(Nagaraja et al.,
I_typ	a voltaga-gatu	ed Ca ²⁺ channel (VCCC)			2021)
<u>L-typ</u>	Imay ₁₀	Maximum L-type VGCC conductance	10	nS	
54	Vmra	Half activation potential for activation factor	22.8	mV	-
55	kacta a	Steepness factor for activation	9.85	mV	-
56	Vh. a	Half activation potential for inactivation factor	34.61	mV	(Nagaraja et al.,
57	VII <u>LCa</u>	Steepness factor for inactivation	5.05	mV	2021)
58		Time constant for activation	2.38	ms	-
50	tact _{LCa}	Time constant for inactivation	2.38	ms	-
T typ		ad Co ²⁺ channel	23.2	1115	
<u></u>	Vm-	Helf activation potential for activation factor	25.0	mV	
61	V III _{TCa}	Steeppage feater for activation	-23.0	mV	_
62	KaCl _{TCa}	Usif activation potential for inactivation factor	-3.0	mV	_
62	V IITCa	Steernees fester for insetination	-58.0		(Nagaraja et al.,
03	Kinaci _{TCa}	Time constant for estimation	-5.0	III V	2021)
04	taci _{TCa}	Time constant for activation	1	ms	_
65		Time constant for inactivation	409	ms	_
00 ID	Imax _{TCa}	Maximum 1-type VGCC conductance	0.099	nS	
IP ₃ re	ceptor (IP ₃ K)	\mathbf{P}	0.00200	C	
6/	Imax _{IP3R}	Rate constant of Ca^2 release by IP_3R	0.00288	nS	_
68	Kd1S _{IP3}	Dissociation constant for IP_3 binding to IP_3R	2.7	mM	(Nagaraja et al.,
69	kdisinact _{Ca}	Dissociation constant for Ca ²⁺ inactivation	1.0×10 ⁻⁴	mM	2021)
70	Kdisact _{Ca}	Dissociation constant for Ca^{2+} activation	1./×10 ⁻⁴	mM	- Í
/1	K _{Ca}	Rate of Ca^{4+} binding to the inhibitory site	0.0003	$\rm mM~s^{-1}$	
	A pump		7 (110		
72	Imax _{PMCA}	Maximum current	/.6418	pA	(Nagaraja et al.,
73	KCa _{PMCA}	Michaelis constant	0.1562	mM	2021)
SERC	CA pump				

74	KC a _{SERCA}	Michaelis constant	3.94×10 ⁻⁴	mN	(Nagaraja et al.,
75	Imax _{SERCA}	Maximum SERCA uptake	0.002	pА	2021)
Ryan	odine recepto	r (RyR)			
76	KC a _{CICR}	Minimum intracellular [Ca ²⁺] for RyR activation	1.2×10 ⁻⁴	mM	
77	Imax _{CICR}	Rate constant of Ca ²⁺ release by RyR	5.03×10 ⁻⁴	pА	(Nagaraja et al.,
78	kd _{CICRCa}	Dissociation constant for Ca ²⁺ inactivation	0.0501	mM	2021)
Endo	plasmic reticu	ılum (ER) Ca ²⁺ leak	•	•	•
70	Ţ		2.02 10-5		(Nagaraja et al.,
/9	Imax _{ERleak}	Maximum passive leak from ER	3.03×10°	рА	2021)
Calci	um buffering	in ER		•	•
80	K _{CQSN}	Binding affinity of calsequestrin	1.21	mM	(Nagaraja et al.,
81	CQSN	Concentration of calsequestrin in ER	16.0	mM	2021)
Prote	in kinase C (I	PKC) activation and signaling			
82	RTG	Total unphosphorylated $G_{\alpha q}$ receptors	2.00×10^4		
83	K _{1G}	Unphosphorylated receptor dissociation constant	0.01	mM	
84	K _{2G}	Phosphorylated receptor dissociation constant	0.2	mM	
85	k _{rG}	Receptor recycling rate	1.75×10 ⁻⁷	ms ⁻¹	
86	k _{pG}	Receptor phosphorylation rate	1.00×10 ⁻³	ms ⁻¹	
87	k _{eG}	Receptor endocytosis rate	6.00×10 ⁻⁶	ms ⁻¹	
88	epsilon _G	Fraction of mobile receptors	0.85		
89	GTG	Total activated $G_{\alpha\alpha}$ receptors	1.00×10^{5}		(Bennett et al.,
90	k _{degG}	IP ₃ degradation rate	0.00125	ms ⁻¹	2005; Mohan et
91	k _{aG}	$G_{\alpha\alpha}$ subunit activation rate	1.70×10 ⁻⁴	ms ⁻¹	al., 2017)
92	k _{dG}	$G_{\alpha\alpha}$ subunit deactivation rate	1.50×10 ⁻³	ms ⁻¹	
93	PIP2 _T	Total PIP ₂ molecules	5.00×10 ⁷		
94	ÎrG	PIP ₂ replenishment rate	1.50×10 ⁻⁵	ms ⁻¹	
95	k _{cG}	Dissociation constant for Ca ²⁺ binding to PLC	4.00×10 ⁻⁴	mM	
96	α _G	Effective signal gain parameter	2.78×10 ⁻⁸	ms ⁻¹	
	0	Coefficient to convert number of molecules to	5.00 10 ⁸		
97	γ _G	concentration	6.00×10°		
98	k _{PLCact}	PLC activation rate	2.2967	$mM^{-1} \cdot ms^{-1}$	
99	k _{PLCinact}	PLC inactivation rate	0.3389	ms ⁻¹	Modified
100	k _{hvd}	Rate of diacylglycerol (DAG) activation by PIP ₂	4.99×10 ⁻¹⁰	mM ⁻² ·ms ⁻¹	(Mohan et al.,
101	k _{deg}	DAG degradation rate	0.0499	ms ⁻¹	2017)
102	k _{actPKC}	Rate of PKC activation by DAG	0.20	mM ⁻¹ ·ms ⁻¹	,
103	kinactPKC	PKC inactivation rate	0.0022	ms ⁻¹	
104	k _{off}	Rate of dissociation of DAG-PKC complex	8.00×10 ⁻³	ms ⁻¹	Modified
105	k _{dp}	Rate of association of DAG and PKC	0.0112	ms ⁻¹	
Prote	Protein kinase A (PKA) activation and signaling				
106	AC _{tot}	Total basal concentration of adenyl cyclase	2.90×10 ⁻⁵	mM	
107	CDCD	Basal concentration of total phosphorylated $G_{\alpha s}$	0.70 10-6		
107	GPCR _{tot}	receptors	9.70×10 ⁻⁶	mM	
108	Gastot	Total activated of $G_{\alpha s}$ subunits	0.0061		
109	k _{EPdiss}	Dissociation rate constant	1.90×10 ⁻⁵		(Leander and
110	k1 _{Gas}	$G_{\alpha s}$ activation rate	5.00×10 ⁻³	ms ⁻¹	Friedman, 2014)
111	k2 _{Gas}	$G_{\alpha s}$ hydrolysis rate	7.00×10 ⁻⁵	ms ⁻¹	
112	k3 _{Gas}	G_{qs} - $\beta\gamma$ association rate	0.7	$mM^{-1} \cdot ms^{-1}$	1
113	k4 _{Gαs}	$G_{\alpha s}$ - $\beta \gamma$ disassociation rate	1.89×10 ⁻⁵	ms ⁻¹	1
114	k _{ACdiss}	Dissociation rate constant	3.60×10 ⁻⁶	mM	1

	1		-		
115	kAC _{βγdiss}	Disassociation constant for AC and $\beta\gamma$	9.00×10 ⁻⁵	mM	
116	$k5_{Gas}$	Active cAMP production rate	0.0105	ms ⁻¹	
117	k6 _{Gas}	Basal cAMP production rate	3.5×10 ⁻⁴	ms ⁻¹	
118	k _{degcAMP}	cAMP degradation rate	0.013	ms ⁻¹	
119	K _{fPKA}	Rate of association of PKA and cAMP	1.30×10 ⁻²	$mM^{-2} \cdot ms^{-1}$	
120	K _{bPKA}	Rate of disassociation of RCcaMP2	6.00×10 ⁻⁶	ms ⁻¹	
121	kf9	Rate of association of cAMP and RCcaMP2	1.73×10 ⁻²	$mM^{-2} \cdot ms^{-1}$	(Lindskog et al.,
122	kb ₉	Rate of disassociation of RCcaMP4	6.00×10 ⁻⁵	ms ⁻¹	2006)
123	kf ₁₀	Rate of disassociation of RC and RCcaMP	8.00×10 ⁻⁶	ms ⁻¹	
124	kb ₁₀	Rate of association of RC and RCcaMP	4.8	$mM^{-2} \cdot ms^{-1}$	
TRPA	A1 phosphory	lation by PKA and PKC			
125	k _{halfPKC}	Phosphorylation factor of PKC	5.47×10-6	mV	
126	k _{slopePKC}	Steepness factor of PKC	1.84×10 ⁻⁵	mV	
127	k _{halfPKA}	Phosphorylation factor of PKA	3.47×10 ⁻⁵	mV	
128	k _{slopePKA}	Steepness factor of PKA	8.39×10 ⁻⁶	mV	Modified
129	C _{TRPA1phos}	TRPA1 phosphorylation time constant	5×10 ⁶	ms ⁻¹	Wioumea
130	C _{Kv1.1phos}	Kv1.1 phosphorylation time constant	5×10 ⁶	ms ⁻¹	
131	C _{Navphos}	Nav1.8 and Nav1.7 phosphorylation time constant	5×10 ⁶	ms ⁻¹	

Figure S1

Figure S1. Partial rank correlation coefficient (PRCC) analysis identified key proteins and processes for action potential (AP) regulation. The bars show the PRCC values between the 131 model parameters and the fold changes in the number of APs fired after the separate application of a series of six mechanical forces of (A) 0.7 mN, (B) 4 mN, (C) 10 mN, (D) 20 mN, (E) 40 mN, and (F) 100 mN computed from simulations in which inflammation increased AP firing. The PRCCs above their respective thresholds (dotted horizontal lines) that were statistically significant (i.e., p < 0.01) are indicated by solid black bars, and the labels of the bars show the ion channels/ion pumps or the rates of intracellular processes that these parameters describe in the model. The number of simulations in which the number of APs fired increased after inflammation were 306, 837, 1,007, 529, 1,319, and 2,575 for the applied mechanical forces of 0.7, 4, 10, 20, 40, and 100 mN, respectively. DAG, diacylglycerol; GPCR, G protein-coupled receptor; IP₃, inositol trisphospate.

Figure S2

Figure S2. Partial rank correlation coefficient (PRCC) analysis identified key proteins and processes for action potential (AP) regulation. The bars show the PRCC values between the 131 model parameters and the fold changes in the number of APs fired after the separate application of a series of six mechanical forces of (A) 0.7 mN, (B) 4 mN, (C) 10 mN, (D) 20 mN, (E) 40 mN, and (F) 100 mN computed from simulations in which inflammation decreased AP firing. The PRCCs above their respective thresholds (dotted horizontal lines) that were statistically significant (i.e., p < 0.01) are indicated by solid black bars, and the labels of the bars show the ion channels/ion pumps or the rates of intracellular processes that these parameters describe in the model. The number of simulations in which the number of APs fired decreased after inflammation were 6,134, 13,625, 13,626, 14,484, 14,311, and 17,509 for the applied mechanical forces of 0.7, 4, 10, 20, 40, and 100 mN, respectively.

Parameter	Bhattacharyya	Parameter	Bhattacharyya	Parameter	Bhattacharyya
number	coefficient	number	coefficient	number	coefficient
1	0.994076	45	0.986364	89	0.988439
2	0.992218	46	0.993500	90	0.992524
3	0.992158	47	0.993177	91	0.986838
4	0.993218	48	0.990526	92	0.990516
5	0.993584	49	0.948802	93	0.989588
6	0.993606	50	0.972886	94	0.991931
7	0.993911	51	0.992912	95	0.992648
8	0.994278	52	0.992366	96	0.992518
9	0.991266	53	0.989942	97	0.991408
10	0.993573	54	0.993005	98	0.988138
11	0.992801	55	0.993110	99	0.988453
12	0.985838	56	0.993234	100	0.990976
13	0.993620	57	0.993576	101	0.990088
14	0.986760	58	0.994211	102	0.989887
15	0.965129	59	0.993072	103	0.992670
16	0.992167	60	0.992288	104	0.990117
17	0.990052	61	0 994663	105	0 991441
18	0.990342	62	0.991923	106	0.993061
19	0.991623	63	0.994803	107	0.991699
20	0.993535	64	0.993847	108	0.992943
20	0.9921/1	65	0.992111	100	0.992606
21	0.992966	66	0.992111	110	0.992000
22	0.993625	67	0.992741	110	0.994400
23	0.993023	68	0.993741	111	0.993311
24	0.992185	60	0.993205	112	0.991349
25	0.992039	70	0.002138	113	0.003/72
20	0.984734	70	0.992138	114	0.993472
27	0.992974	71	0.992832	115	0.992237
20	0.992090	72	0.992988	110	0.992398
29	0.992472	75	0.994244	11/	0.994399
30	0.992483	74	0.993390	118	0.993215
31	0.991196	75	0.990438	119	0.993589
32	0.991266	/6	0.993124	120	0.993410
33	0.993417	77	0.992430	121	0.992297
34	0.976274	78	0.992000	122	0.993004
35	0.993259	79	0.991922	123	0.989626
36	0.994324	80	0.990773	124	0.992886
37	0.990319	81	0.993283	125	0.992653
38	0.971447	82	0.993563	126	0.993665
39	0.991562	83	0.991318	127	0.993665
40	0.990489	84	0.991416	128	0.993471
41	0.992677	85	0.991646	129	0.992239
42	0.993160	86	0.984570	130	0.991636
43	0.993396	87	0.994010	131	0.977239
44	0.991408	88	0.992848		

Table S3. List of Bhattacharyya coefficients for the model's 131 parameters, computed using the parameter distributions in the simulations of sensitized and non-sensitized neurons

Figure S3

Figure S3. Distributions of the values of parameters that demonstrated the lowest Bhattacharyya coefficients (BC) across the sensitized neuron group simulations (solid lines) and the non-sensitized neuron group simulations (dashed lines), where the neuron groups were classified based on the number of APs fired after (A) 0.7 mN, (B) 4 mN, (C) 10 mN, (D) 20 mN, (E) 40 mN, and (F) 100 mN forces were applied as the input. The *x*-axis designates the normalized values of the parameters, and the *y*-axis represents the percentage of simulations in each neuron group in which the parameter values fell within a particular range (described in the "Methods" section). The number of simulations in the sensitized and non-sensitized groups were, respectively, 306 and 6,134 for 0.7 mN; 837 and 13,625 for 4 mN; 1,007 and 13,326 for 10 mN; 529 and 14,484 for 20 mN; 1,319 and 14,311 for 40 mN; and 2,575 and 17,509 for 100 mN of mechanical force.

	#APs fired before	#APs fired after	Fold				
	inflammation	inflammation	change				
Knocking out the channel or down-regulating the biochemical processes							
Nominal model	14	114	8.14				
TRPA1 KO	12	59	4.92				
Piezo2 KO	6	108	18.00				
Kv7.2 KO	53	513	9.68				
GPCR phosphorylation	14	106	7.57				
$G_{\alpha q}$ activation	14	804	57.43				
PKA inactivation	14	174	12.43				
Nav1.8 and Nav1.7 phosphorylation	14	169	12.07				
Increasing channel expression or u	p-regulating the bio	chemical processes					
Nominal model	14	114	8.14				
TRPA1 2-fold increase	6	12	2.00				
Piezo2 2-fold increase	22	126	5.73				
Kv7.2 2-fold increase	8	60	7.50				
GPCR phosphorylation	14	788	56.29				
$G_{\alpha q}$ activation	14	119	8.50				
PKA inactivation	14	33	2.36				
Nav1.8 and Nav1.7 phosphorylation	14	71	5.07				

Table S4. Total number of APs fired before and after the addition of an inflammatory mediator and the associated fold changes for 14 different modifications

Model equations for description of transmembrane currents, endoplasmic reticulum (ER) mechanisms, Nernst potentials, and mass balance of intracellular Na⁺, K⁺, and Ca²⁺ ions

Transmembrane mechanisms

1. Voltage-gated Nav1.8 channel

$$\frac{dNav1.8_{m}}{dt} = \frac{-Nav1.8_{m} + Nav1.8_{mss}}{\tau_{mNav1.8}}$$

$$\frac{dNav1.8_{h}}{dt} = \frac{-Nav1.8_{h} + Nav1.8_{hss}}{\tau_{hNav1.8}}$$

$$am_{r} = \frac{7.2}{1 + e^{((V_{m} - 0.063)/7.86)}}$$

$$bm_{r} = \frac{7.4}{1 + e^{((V_{m} + 53.06)/19.34)}}$$

$$ah_{r} = 0.003 + \frac{1.63}{1 + e^{((V_{m} + 68.5)/10.01)}}$$

$$bh_{r} = 0.81 - \frac{0.81}{1 + e^{((V_{m} - 11.44)/13.12)}}$$

$$\tau_{mNav1.8} = \frac{1}{am_{r} + bm_{r}}$$

$$\tau_{hNav1.8} = \frac{1}{ah_{r} + bh_{r}}$$

$$Nav1.8_{mss} = \frac{1}{1 + e^{(\frac{V_{mNav1.8} - V_{m}}{1 + e^{(\frac{V_{mNav1.8}}{kact_{Nav1.8}}}}}$$

$$Nav1.8_{hss} = \frac{1}{1 + e^{(\frac{V_{m} + V_{hNav1.8}}{kinact_{Nav1.8}}}}$$

 $I_{\text{Nav1.8}} = \text{Imax}_{\text{Nav1.8}} \cdot \text{Nav1.8}_{\text{m}}^2 \cdot \text{Nav1.8}_{\text{h}} \cdot (V_{\text{m}} - V_{\text{Na}})$

2. Voltage-gated Nav1.9 channel

$$\frac{\mathrm{dNav1.9}_{\mathrm{m}}}{\mathrm{d}t} = \frac{-\mathrm{Nav1.9}_{\mathrm{m}} + \mathrm{Nav1.9}_{\mathrm{mss}}}{\tau_{\mathrm{m}_{\mathrm{Nav1.9}}}}$$

$$\frac{dNav1.9_{h}}{dt} = \frac{-Nav1.9_{h} + Nav1.9_{hss}}{\tau_{h_{Nav1.9}}}$$

$$am_{1.9} = \frac{1.548}{1 + e^{((V_{m}-11.01)/-14.871)}}$$

$$bm_{1.9} = \frac{8.685}{1 + e^{((V_{m}+112.4)/22.9)}}$$

$$ah_{1.9} = \frac{0.2574}{1 + e^{((V_{m}+63.264)/3.719)}}$$

$$bh_{1.9} = \frac{0.54}{1 + e^{((V_{m}+0.28)/-0.093)}}$$

$$\tau_{m_{Nav1.9}} = \frac{1}{am_{1.9} + bm_{1.9}}$$

$$r_{h_{Nav1.9}} = \frac{1}{ah_{1.9} + bh_{1.9}}$$

$$Nav1.9_{mss} = \frac{am_{1.9}}{am_{1.9} + bm_{1.9}}$$

$$Nav1.9_{hss} = \frac{ah_{1.9}}{ah_{1.9} + bh_{1.9}}$$

$$Nav1.9_{hss} = \frac{ah_{1.9}}{ah_{1.9} + bh_{1.9}}$$

3. Voltage-gated Nav1.7 channel

$$\frac{dNav1.7_{m}}{dt} = \frac{-Nav1.7_{m} + Nav1.7_{mss}}{\tau_{mNav1.7}}$$

$$\frac{dNav1.7_{h}}{dt} = \frac{-Nav1.7_{h} + Nav1.7_{hss}}{\tau_{hNav1.7}}$$

$$am_{1.7} = \frac{15.5}{1 + e^{((V_{m}-5)/-12.08)}}$$

$$bm_{1.7} = \frac{35.2}{1 + e^{((V_{m}+72.7)/16.7)}}$$

$$ah_{1.7} = 0.24 \cdot e^{(-\frac{V_{m}+115}{46.33})}$$

$$bh_{1.7} = 4.32 \cdot (1 + e^{(\frac{V_{m}-11.8}{-12})})$$

$$\tau_{mNav1.7} = \frac{1}{am_{1.7} + bm_{1.7}}$$

$$\tau_{hNav1.7} = \frac{1}{ah_{1.7} + bh_{1.7}}$$

$$Nav1.7_{mss} = \frac{1}{1 + e^{(\frac{Vm_{Nav1.7} - V_m}{kact_{Nav1.7}})}}$$

$$Nav1.7_{hss} = \frac{1}{1 + e^{(\frac{V_m + Vh_{Nav1.7}}{kinact_{Nav1.7}})}}$$

$$I_{Nav1.7} = Imax_{Nav1.7} \cdot Nav1.7_m^2 \cdot Nav1.7_h \cdot (V_m - V_{Na})$$

4. Mechanosensitive Piezo2 channel

 $\frac{dPiezo_{m}}{dt} = \frac{Piezo_{m} + Piezo_{mss}}{\tau act_{Piezo}}$ $\frac{dPiezo_{h}}{dt} = \frac{Piezo_{h} + Piezo_{hss}}{\tau inact_{Piezo}}$ $Piezo_{mss} = \frac{1}{\frac{1}{1 + e^{\left(\frac{Vm_{Piezo} - Mechforce}{kinact_{Piezo}}\right)}}}$ $Piezo_{hss} = 1 - \frac{1}{\frac{1}{1 + e^{\left(\frac{Vh_{Piezo} - Mechforce}{kinact_{Piezo}}\right)}}}$ $I_{PiezoNa} = Imax_{Piezo} \cdot Piezo_{m}^{4} \cdot Piezo_{h}^{2} \cdot (V_{m} - V_{Na})$ $I_{PiezoCa} = Imax_{Piezo} \cdot Piezo_{m}^{4} \cdot Piezo_{h}^{2} \cdot (V_{m} - V_{Ca})$ $I_{Piezo} = I_{PiezoNa} + I_{PiezoCa}$

5. Mechanosensitive TRPA1 channel

$$\frac{dTRPA1_{m}}{dt} = \frac{-TRPA1_{m} + TRPA1_{mss}}{\tau act_{TRPA1}}$$
$$\frac{dTRPA1_{h}}{dt} = \frac{-TRPA1_{h} + TRPA1_{hss}}{\tau inact_{TRPA1}}$$
$$TRPA1_{mss} = \frac{1}{1 + e^{(\frac{Vm_{TRPA1} - Mechforce}{kact_{TRPA1}})}}$$

$$TRPA1_{hss} = 1 - \frac{1}{1 + e^{\left(\frac{Vh_{TRPA1} - Mechforce}{kinact_{TRPA1}}\right)}}$$

 $I_{\text{TRPA1}} = \text{Imax}_{\text{TRPA1}} \cdot \text{TRPA1}_{\text{m}}^2 \cdot \text{TRPA1}_{\text{h}} \cdot (V_{\text{m}} - V_{\text{Na}})$

6. Mechanosensitive two-pore TREK-1 channel

 $\frac{d\text{TREK}_{m}}{dt} = \frac{-\text{TREK}_{m} + \text{TREK}_{mss}}{\text{\tauact}_{\text{TREK}}}$ $\text{TREK}_{mss} = \frac{1}{\frac{1}{1 + e^{(\frac{Vm_{\text{TREK}} - \text{Mechforce}}{kact}_{\text{TREK}})}}}$ $I_{\text{TREK}_{1} = \text{Imax}_{\text{TREK}} \cdot \text{TREK}_{m}^{2} \cdot (V_{m} - V_{K})$

Mechforce = 0.7, 4, 10, 20, 40, or 100 mN

7. pH-mediated ASIC3 channel

$$\frac{dASIC3_{m}}{dt} = \frac{-ASIC3_{m} + ASIC3_{mss}}{\tau act_{ASIC3}}$$

$$\frac{dASIC3_{h}}{dt} = \frac{-ASIC3_{h} + ASIC3_{hss}}{\tau inact_{ASIC3}}$$

$$\tau inact_{ASIC3} = 197.36 \cdot pH^{2} - 1738.9 \cdot pH + 3968.1$$

$$ASIC3_{mss} = \frac{1}{1 + e^{\left(\frac{Vm_{ASIC3} - pH}{kact_{ASIC3}}\right)}}$$

$$ASIC3_{hss} = 1 - \frac{1}{1 + e^{\left(\frac{Vh_{ASIC3} - pH}{kinact_{ASIC3}}\right)}}$$

 $I_{\text{ASIC3}} = \text{Imax}_{\text{ASIC3}} \cdot \text{ASIC3}_{\text{m}} \cdot \text{ASIC3}_{\text{h}} \cdot (V_{\text{m}} - V_{\text{Na}})$

pH = 7.5

8. Voltage-gated Kv7.2 channel

$$\frac{\mathrm{dKv7_n}}{\mathrm{d}t} = \frac{\mathrm{-Kv7_n} + \mathrm{Kv7_{nss}}}{\tau_{\mathrm{nKv7}}}$$
$$\mathrm{an_{\mathrm{Kv7}}} = \mathrm{k1act_{\mathrm{Kv7}}} \cdot \mathrm{e}^{(\frac{V_{\mathrm{m}} + \mathrm{Vm_{\mathrm{Kv7}}}}{\mathrm{k2act_{\mathrm{Kv7}}}})}$$

$$bn_{Kv7} = k1inact_{Kv7} \cdot e^{-(\frac{V_m + Vm_{Kv7}}{k2inact_{Kv7}})}$$
$$\tau_{n_{Kv7}} = \frac{1}{an_{Kv7} + bn_{Kv7}}$$
$$Kv7_{nss} = \frac{1}{1 + e^{(\frac{-V_m - Vm_{Kv7}}{\tau act_{Kv7}})}}$$

 $I_{\mathrm{Kv7.2}} = \mathrm{Imax}_{\mathrm{Kv7}} \cdot \mathrm{Kv7}_{\mathrm{n}}^{2} \cdot (V_{\mathrm{m}} - V_{\mathrm{K}})$

9. Delayed-rectifier Kv1.1 K⁺ channel

$$\frac{dKv1.1_{n}}{dt} = \frac{-Kv1.1_{n} + Kv1.1_{nss}}{\tau act_{Kv1.1}}$$
$$Kv1.1_{nss} = \frac{\delta_{Kv1.1}}{1 + e^{(\frac{Vm_{Kv1.1} - V_{m}}{kact_{Kv1.1}})}}$$
$$I_{Kv1.1} = Imax_{Kv1.1} \cdot Kv1.1_{n}^{2} \cdot (V_{m} - V_{K})$$

10. Voltage-gated A-type K⁺ channel

$$\frac{dKa_{n}}{dt} = \frac{-Ka_{n} + Ka_{nss}}{\tau_{nKa}}$$

$$\frac{dKa_{hfast}}{dt} = \frac{-Ka_{hfast} + Ka_{hfastss}}{\tau_{hfastKa}}$$

$$\frac{dKa_{hslow}}{dt} = \frac{-Ka_{hslow} + Ka_{hslowss}}{\tau_{hslowKa}}$$

$$Ka_{nss} = \frac{1}{1 + e^{\left(\frac{-V_{m} - 40.8}{9.5}\right)}}$$

$$Ka_{hfastss} = \frac{1}{1 + e^{\left(\frac{-V_{m} - 40.8}{9.5}\right)}}$$

$$\tau_{nKa} = 1.2 + 2.56 \cdot e^{\left(-2 \cdot \left(\frac{V_{m} + 60}{45.768}\right)^{2}\right)}$$

$$\tau_{hfastKa} = 25.46 + 67.41 \cdot e^{\left(-2 \cdot \left(\frac{V_{m} + 50}{21.95}\right)^{2}\right)}$$

$$\tau_{hslowKa} = 200 + 587.4 \cdot e^{\left(-\left(\frac{V_{m}}{47.77}\right)^{2}\right)}$$

$$I_{\text{Ka}} = \text{Imax}_{\text{Ka}} \cdot \text{Ka}_{n} \cdot (0.3 \text{Ka}_{\text{hfast}} + 0.7 \text{Ka}_{\text{hslow}}) \cdot (V_{m} - V_{K})$$

11. Large-conductance Ca²⁺-activated K⁺ channel

$$\frac{dBKCa_{n}}{dt} = \frac{-BKCa_{n} + BKCa_{nss}}{\tau_{nBKCa}}$$

$$p_{Ca} = \log_{10} \cdot (Ca_{i}e^{-3})$$

$$kact_{BKCa} = (-43.4 \cdot p_{Ca}) - 203$$

$$sf_{BKCa} = 33.88 \cdot e^{-(p_{Ca} + 5.42)/1.85^{2}}$$

$$BKCa_{nss} = \frac{1}{1 + e^{(\frac{kact_{BKCa} - V_{m}}{sf_{BKCa}})}}$$

$$\tau_{nBKCa} = 5.55 \cdot e^{\frac{V_{m}}{42.91}} + 0.75 - (0.12 \cdot V_{m})$$

$$I_{BKCa} = Imax_{BKCa} \cdot BKCa_{n}^{2} \cdot (V_{m} - V_{K})$$

12. T-type voltage-gated Ca²⁺ channel

$$\frac{dCaT_{m}}{dt} = \frac{-CaT_{m}+CaT_{mss}}{\tau act_{CaT}}$$
$$\frac{dCaT_{h}}{dt} = \frac{-CaT_{h}+CaT_{hss}}{\tau inact_{CaT}}$$
$$CaT_{mss} = \frac{1}{1+e^{\left(\frac{V_{m}-Vm_{CaT}}{kact_{CaT}}\right)}}$$
$$CaT_{hss} = 1 - \frac{1}{1+e^{\left(\frac{V_{m}-Vh_{CaT}}{kinact_{CaT}}\right)}}$$

$$I_{\text{CaT}} = \text{Imax}_{\text{CaT}} \cdot \text{CaT}_{\text{m}}^2 \cdot \text{CaT}_{\text{h}} \cdot (V_{\text{m}} - V_{\text{Ca}})$$

13. L-type voltage-gated Ca²⁺ channel

$$\frac{dCaL_{m}}{dt} = \frac{-CaL_{m}+CaL_{mss}}{\tau act_{CaL}}$$
$$\frac{dCaL_{h}}{dt} = \frac{-CaL_{h}+CaL_{hss}}{\tau inact_{CaL}}$$

$$CaL_{mss} = \frac{1}{1 + e^{(\frac{Vm_{CaL} - V_{m}}{kact_{CaL}})}}$$
$$CaL_{hss} = 1 - \frac{1}{1 + e^{(\frac{Vh_{CaL} - V_{m}}{kinact_{CaL}})}}$$
$$hCa_{CaL} = \frac{1}{1 + (Ca_{i}/1e^{-6})^{4}}$$

 $I_{CaL} = Imax_{CaL} \cdot CaL_{m} \cdot CaL_{h} \cdot hCa_{CaL} \cdot (V_{m} - V_{Ca})$

14. NaK pump

 $I_{\text{NaK}} = \text{Imax}_{\text{NaK}} \cdot \frac{K_{\text{o}}^2}{K_{\text{o}}^2 + KK_{\text{NaK}}^2} \cdot \frac{\text{Na}_{\text{i}}^{\text{nH}_{\text{Na}}}}{\text{Na}_{\text{i}}^{\text{nH}_{\text{Na}}} + K\text{Na}_{\text{NaK}}^{\text{nH}_{\text{Na}}}} \cdot \frac{V_{\text{m}} + 70}{V_{\text{m}} + 180}$

15. PMCA pump

 $I_{PMCA} = Imax_{PMCA} \cdot \frac{Ca_i}{Ca_i + KCa_{PMCA}}$

16. Na⁺-Ca²⁺ exchanger

kqa= $e^{\frac{0.35 \cdot V_m}{k_{NCX}}}$

 $kb_{NCX} = e^{\frac{-0.65 \cdot V_m}{k_{NCX}}}$

 $I_{\text{NCX}} = \text{Imax}_{\text{NCX}} \cdot (\text{kqa} \cdot \text{Na}_{i}^{3} \cdot \text{Ca}_{o}) - \frac{\text{kb}_{\text{NCX}} \cdot \text{Ca}_{i} \cdot \text{Na}_{o}^{3}}{(\text{kNa}^{3} + \text{Na}_{o}^{3}) \cdot (\text{kCa} + \text{Ca}_{o}) \cdot (1 + 0.1 \text{kb}_{\text{NCX}})}$

17. Passive K⁺ leak channel

 $I_{\text{Kleak}} = \text{Imax}_{\text{Kleak}} \cdot (V_{\text{m}} - (-45))$

ER mechanisms

1. IP₃ receptor flux $\frac{dhIP_3}{dt} = kf_{IP3} \cdot (kb_{IP3} - (Ca_i + kb_{IP3}) \cdot hIP_3)$

$$I_{\text{IP3R}} = \text{Imax}_{\text{IP3R}} \cdot \left(\frac{\text{IP}_3}{\text{IP}_3 + k_{\text{IP3}}}\right) \cdot \left(\frac{\text{Ca}_i}{\text{Ca}_i + k\text{Ca}_{\text{IP3}}} \cdot \text{hIP}_3\right)^3 \cdot \left(1 - \frac{\text{Ca}_i}{\text{Ca}_{\text{ER}}}\right)$$

2. SERCA pump

$$I_{\text{SERCA}} = \text{Imax}_{\text{SERCA}} \cdot \left(\frac{\text{Ca}_{i}^{2}}{\text{Ca}_{i}^{2} + \text{KCa}_{\text{SERCA}}^{2}}\right)$$

3. ER leak current

$$I_{\text{leakER}} = 5 \times 10^{-7} \cdot \left(1 - \frac{\text{Ca}_{\text{i}}}{\text{Ca}_{\text{ER}}}\right)$$
$$I_{\text{leakER}} = \text{Imax}_{\text{ERleak}} \cdot \left(1 - \frac{\text{Ca}_{\text{i}}}{\text{Ca}_{\text{ER}}}\right) \qquad \text{if Ca}_{\text{i}} > \text{KTCa}$$

4. Ryanodine receptor flux

$$I_{\text{CICR}} = \text{Imax}_{\text{CICR}} \cdot \left(\frac{\text{Ca}_{i}}{\text{Ca}_{i} + \text{KCa}_{\text{CICR}}}\right) \cdot (\text{Ca}_{\text{ER}} - \text{Ca}_{i}) \qquad \text{if Ca}_{i} > \text{KTCa}$$
$$I_{\text{CICR}} = 0$$

5. Cai²⁺ buffering in cytosol and ER

$$\beta_{\rm ER} = \frac{\rm CSQN \cdot K_{\rm CSQN}}{\left(K_{\rm CSQN} + \rm Ca_{\rm ER}\right)^2}$$

6. PKC activation and signaling

$$\frac{d[RG_s]}{dt} = k_{rG} \cdot epsilon_G \cdot [RTG] - \left(k_{rG} + \frac{k_{pG} \cdot [PGE_2]}{(K_{1G} + [PGE_2])}\right) \cdot [RG_s] - k_{rG}[RPG_s]$$

$$\frac{d[RPG_s]}{dt} = [PGE_2] \cdot \left(\frac{k_{pG} \cdot [RG_s]}{(K_{1G} + [PGE_2])}\right) \cdot \left(\frac{k_{eG} \cdot [RPG_s]}{(K_{2G} + [PGE_2])}\right)$$

$$\rho_{rG} = \alpha_G \left(\frac{[PGE_2] \cdot [RG_s]}{epsilon_G \cdot [RTG] \cdot (K_{1G} + [PGE_2])}\right)$$

$$\frac{d[G_{\alpha q}]}{dt} = k_a (\delta + \rho_{rG})([G_T] - [G_{\alpha q}]) - k_d[G_{\alpha q}]$$

$$\begin{aligned} r_{hG} &= \alpha_{G} \left(\frac{[Ca^{2^{+}}]_{i}}{[Ca^{2^{+}}]_{i} + k_{eG}} \right) G \\ \frac{d[PIP_{2}]}{dt} &= -(r_{hG} + r_{rG})[PIP_{2}] \cdot r_{rG} \cdot \Upsilon_{G}[IP_{3}] + r_{rG}[PIP_{2T}] \\ \frac{d[IP_{3}]}{dt} &= \frac{r_{hG}}{\Upsilon_{G}}[PIP_{2}] \cdot k_{degG}[IP_{3}] \\ \frac{d[PLC_{inact}]}{dt} &= -(k_{PLCinact})[PLC_{act}] \cdot k_{PLCact} \cdot [PLC_{inact3}] \cdot [G_{aq}] \\ \frac{d[PLC_{act}]}{dt} &= -(k_{PLCact} \cdot [PLC_{inact3}] \cdot [G_{aq}] - (k_{PLCinact})[PLC_{act}] \\ \frac{d[PLC_{act}]}{dt} &= k_{PLCact} \cdot [PLC_{inact3}] \cdot [G_{aq}] - (k_{PLCinact})[PLC_{act}] \\ \frac{dDAG}{dt} &= k_{hyd} \cdot [PIP_{2}] \cdot [PLC_{act}] \cdot k_{deg}[DAG] \cdot k_{act} - k_{C}[DAG] \cdot [PKC_{inact}] + (k_{inactPKC})[PKC_{act}] + k_{off}[DAG_PKC] \\ \frac{d[PKC_{inact}]}{dt} &= -k_{actPKC} \cdot [PKC_{inact}] \cdot [DAG] + k_{inactPKC} [PKC_{act}] + k_{off}[DAG_PKC] \\ \frac{dDAG_{2}PKC]}{dt} &= k_{actPKC} \cdot [PKC_{inact}] \cdot [DAG] - k_{inactPKC} [PKC_{act}] \cdot k_{dp}[PKC_{act}] \end{aligned}$$

7. PKA activation and signaling

$$GPCR_{act} = \alpha_{G} \left(\frac{PGE_{2} \cdot [GPCR_{tot}]}{PGE_{2} + k_{EPdiss}} \right)$$

$$\frac{d[G_{\alpha s}]}{dt} = k1_{G\alpha s} [GPCR_{act}] \cdot \left(\frac{[G_{\alpha \beta \gamma}]}{(K_{EPdiss} + [G_{\alpha \beta \gamma}])} \right) - k2_{G\alpha s} [G_{\alpha s}]$$

$$[G\alpha s_{inact}] = [G\alpha s_{tot}] - [G_{\alpha s}] - [G_{\alpha \beta \gamma}]$$

$$\frac{d[G_{\alpha \beta \gamma}]}{dt} = -k1_{G\alpha s} [GPCR_{act}] \cdot \left(\frac{[G_{\alpha \beta \gamma}]}{K_{EPdiss} + [G_{\alpha \beta \gamma}]} \right) + k3_{G\alpha s} [G_{\beta \gamma}] [G_{\alpha s}] - k4_{G\alpha s} [G_{\alpha \beta \gamma}]$$

$$\frac{d[G_{\beta \gamma}]}{dt} = k1_{G\alpha s} [GPCR_{act}] \cdot \left(\frac{[G_{\alpha \beta \gamma}]}{K_{EPdiss} + [G_{\alpha \beta \gamma}]} \right) - k3_{G\alpha s} [G_{\beta \gamma}] [G_{\alpha s}] + k4_{G\alpha s} [G_{\alpha \beta \gamma}]$$

$$[AC_{act}] = \frac{[AC_{tot}] \cdot [G_{\alpha s}]}{[G_{\alpha s}] + kAC_{diss}}$$

$$[AC_{inact}] = [AC_{tot}] - [AC_{act}]$$

$$\frac{d[cAMP]}{dt} = \left(\frac{k5_{G\alphas}[AC_{act}]}{kAC_{\beta\gamma diss} + [G_{\beta\gamma}]}\right) + k6_{G\alphas}[AC_{act}] - k_{degcAMP}[cAMP]$$

$$\frac{d[RC]}{dt} = -k_{fPKA}[RC] \cdot [cAMP]^2 + k_{bPKA}[RC_{cAMP2}]$$

$$\frac{d[RC_{cAMP2}]}{dt} = k_{fPKA}[RC] \cdot [cAMP]^2 - k_{bPKA}[RC_{cAMP2}] - k_{f9}[RC_{cAMP2}] \cdot [cAMP]^2 + k_{b9}[RC_{cAMP4}]$$

$$\frac{d[RC_{cAMP4}]}{dt} = k_{f9}[RC_{cAMP2}] \cdot [cAMP]^2 - k_{b9}[RC_{cAMP4}] - k_{f10}[RC_{cAMP4}] + k_{b10}[RC_{cAMP}] \cdot [PKA]^2$$

$$\frac{d[RC_{cAMP4}]}{dt} = k_{f10}[RC_{cAMP4}] - k_{b10}[RC_{cAMP}] \cdot [PKA]^2$$

8. Equations for sensitization of nociceptor

First, we used the two equations shown below to compute the magnitude of change ($\Delta V_{\rm m}$ for Nav1.7, Nav1.8, and Kv1.1, and Δ Mech for TRPA1) induced by PKC and PKA:

where [PKC] and [PKA] denote the instantaneous concentrations of PKC and PKA (zero in the absence of an inflammatory mediator), respectively, and khalf_{PKC}, khalf_{PKA}, kslope_{PKC}, and kslope_{PKA} denote the phosphorylation and steepness factors for PKC and PKA (Nicol et al., 1997; Wu et al., 2012). Next, we computed the new values of the activation and inactivation thresholds for each of the four ion channels using the following equations:

$$Vact_{new_{i}} = Vact_{i} - \Delta V_{mPKC} - \Delta V_{mPKA}$$

$$Vinact_{new_{i}} = Vinact_{i} + \Delta V_{mPKC} + \Delta V_{mPKA}$$

$$Vact_{new_{i}} = Vact_{i} + \Delta V_{mPKC} + \Delta V_{mPKA}$$

$$Vinact_{new_{i}} = Vinact_{i} - \Delta V_{mPKC} - \Delta V_{mPKA}$$

$$Inflammatory mediator = 0$$

where i denotes one of the four channels, i.e., TRPA1, Nav1.7, Nav1.8, and Kv1.1, $Vact_{new_i}$ and $Vinact_{new_i}$ denote the new values, and $Vact_i$ and $Vinact_i$ denote the nominal values, respectively, of the activation and inactivation thresholds for each of the four channels.

9. ODEs for change in the activation and inactivation variables of Nav1.7, Nav1.8, Kv1.1, and TRPA1

$\frac{d[Vhact_{TTXs}]}{dt} =$	$\left(\frac{Vact_{new}-Vhact_{TTXs}}{C}\right)$
$\frac{d[Vhinact_{TTXs}]}{dt}$	$=\left(\frac{V_{\text{navphos}}}{C}\right)$
$\frac{\mathrm{d}[V_{\mathrm{hact}_{\mathrm{TTXr}}}]}{\mathrm{d}t} =$	$\left(\frac{Vact_{new}-Vhact_{TTXr}}{C_{Navphos}}\right)$
$\frac{d[Vhinact_{TTXr}]}{dt}$	$= \left(\frac{Vinact_{new} - Vhinact_{TTXr}}{C_{Navphos}}\right)$
$\frac{\mathrm{d}[V\mathrm{hact}_{\mathrm{Kv1.1}}]}{\mathrm{d}t} =$	$\left(\frac{Vact_{new}-Vhact_{Kv1.1}}{C_{_{Kv1.1phos}}}\right)$
$\frac{\mathrm{d}[TRPA1_{aM}]}{\mathrm{d}t} =$	$\left(\frac{Vact_{new}-TRPA1_{aM}}{C_{TRPA1_{phos}}}\right)$

Nernst potential calculations

$$V_{Na} = \frac{R \cdot T}{z N a \cdot F} \cdot \log \left(\frac{N a_o}{N a_i} \right)$$
$$V_K = \frac{R \cdot T}{z K \cdot F} \cdot \log \left(\frac{K_o}{K_i} \right)$$
$$V_{Ca} = \frac{R \cdot T}{z C a \cdot F} \cdot \log \left(\frac{C a_o}{C a_i} \right)$$

Ionic balances

$$\frac{\mathrm{dCa}_{\mathrm{i}}}{\mathrm{d}t} = -(I_{\mathrm{CaT}} + I_{\mathrm{CaL}} + I_{\mathrm{PMCA}} - 2I_{\mathrm{NCX}} + I_{\mathrm{PiezoCa}})/(z\mathrm{Ca}\cdot\mathrm{F}\cdot0.7\mathrm{vol})) - I_{\mathrm{SERCA}} - I_{\mathrm{leakER}} - I_{\mathrm{IP3}} - I_{\mathrm{CICR}})/(1/(1+370))$$

$$\frac{dCa_{ER}}{dt} = I_{SERCA} - I_{IeakER} - I_{IP3} - I_{CICR} / \beta_{ER}$$

$$\frac{dNa_i}{dt} = -(I_{Nav1.8} + I_{Nav1.9} + I_{Nav1.7} + I_{PiezoNa} + I_{TRPA1} + 3I_{NaK} + 3I_{NCX}) / (zNa \cdot F \cdot vol)$$

$$\frac{dK_i}{dt} = -(I_{TREK1} + I_{Kv7.2} + I_{Kv1.1} + I_{BKCa} + I_{Ka} + I_{Kleak} - 2I_{NaK}) / (zK \cdot F \cdot vol)$$

References

- Bennett, M.R., Farnell, L., and Gibson, W.G. (2005). A quantitative description of the contraction of blood vessels following the release of noradrenaline from sympathetic varicosities. *J Theor Biol* 234(1), 107-122. doi: 10.1016/j.jtbi.2004.11.013.
- Gold, M.S., and Flake, N.M. (2005). Inflammation-mediated hyperexcitability of sensory neurons. *Neurosignals* 14(4), 147-157. doi: 10.1159/000087653.
- Kapela, A., Bezerianos, A., and Tsoukias, N.M. (2008). A mathematical model of Ca²⁺ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation. *J Theor Biol* 253(2), 238-260. doi: 10.1016/j.jtbi.2008.03.004.
- Leander, R., and Friedman, A. (2014). Modulation of the cAMP response by Gαi and Gβγ: a computational study of G protein signaling in immune cells. *Bull Math Biol* 76(6), 1352-1375. doi: 10.1007/s11538-014-9964-4.
- Li, Z.H., Cui, D., Qiu, C.J., and Song, X.J. (2019). Cyclic nucleotide signaling in sensory neuron hyperexcitability and chronic pain after nerve injury. *Neurobiol Pain* 6, 100028. doi: 10.1016/j.ynpai.2019.100028.
- Lindskog, M., Kim, M., Wikstrom, M.A., Blackwell, K.T., and Kotaleski, J.H. (2006). Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. *PLoS Comput Biol* 2(9), e119. doi: 10.1371/journal.pcbi.0020119.
- Mohan, K., Nosbisch, J.L., Elston, T.C., Bear, J.E., and Haugh, J.M. (2017). A reaction-diffusion model explains amplification of the PLC/PKC pathway in fibroblast chemotaxis. *Biophys J* 113(1), 185-194. doi: 10.1016/j.bpj.2017.05.035.
- Nagaraja, S., Queme, L.F., Hofmann, M.C., Tewari, S.G., Jankowski, M.P., and Reifman, J. (2021). *In silico* identification of key factors driving the response of muscle sensory neurons to noxious stimuli. *Front Neurosci* 15, 719735. doi: 10.3389/fnins.2021.719735.
- Nicol, G.D., Vasko, M.R., and Evans, A.R. (1997). Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons. *J Neurophysiol* 77(1), 167-176. doi: 10.1152/jn.1997.77.1.167.
- Wu, D.F., Chandra, D., McMahon, T., Wang, D., Dadgar, J., Kharazia, V.N., et al. (2012). PKCε phosphorylation of the sodium channel Nav1.8 increases channel function and produces mechanical hyperalgesia in mice. *J Clin Invest* 122(4), 1306-1315. doi: 10.1172/JCI61934.