Photo- and Metal-Mediated Deconstructive Approaches to Cyclic Aliphatic Amine Diversification

David M. Soro,^{||,¢} Jose B. Roque,^{||,¢} Jonas W. Rackl,^{||} Bohyun Park,^{‡,⊥} Stefan Payer,^{||} Yuan Shi,[§] J. Craig Ruble,[§] Alexey L. Kaledin,[†] Mu-Hyun Baik,^{*,‡,⊥} Djamaladdin G. Musaev,^{*,†} Richmond Sarpong^{||*}

 Department of Chemistry, University of California, Berkeley, CA 94720, United States
[†]Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, GA, 30322, United States
[‡]Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon

34141, Korea

¹Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea

[§]Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285, United States

Table of Contents

1. General Information	S4
1.1 Solvents and Reagents	S4
1.2 Experimental Procedures	S4
1.3 Analytical Instrumentation	S4
2. Experimental Procedures	S5
2.1 Preparation of N-Protected Cyclic Amines	S5
2.2 Preparation of Photocatalyst 2a (Riboflavin Tetraacetate, RF	ΓΑ)S11
2.3 Experimental Setup of Photoreactor	S12
2.4 Photochemical Method Optimization	S13
2.5 Experiments to Probe Triplet Energy Transfer Mechanism	S19
2.6 Kinetics Experiments	S20
2.7 Procedure for Riboflavin Tetraacetate-Mediated Ring Openir	ngS22
2.8 Procedure for Copper-Mediated Ring Opening	S30
2.9 Procedures for Peptide Diversification	S37
2.10Procedure for Deconstructive Minisci Reaction	S40
2.11 Procedure for Autocyclization Reaction	S44
2.12Counterion Effect for Autocyclization Reaction	S45
3. Computational Details	S46
3.1 General Computational Considerations for Photo-	and Copper-Mediated
Reactions	S46
3.2 Critical Interactions in {(2.A.m)–[K ₂ S ₂ O ₈]} and {(2.A.m)–[K ₂ S	2 0₈]}–(1a) S47
3.3 Verification of Photocatalyst Model	S48
3.4 Computed Reaction Mechanism for Photo-Mediated Reactio	nS52
3.5 Optimized Structure Energy Components for Photo-Mediate	d ReactionS53
3.6 Optimized Structures and Energy Components for Copper-M	ediated ReactionS54
3.7 General Computational Considerations for Computations in I	Figure 13
3.8 Reaction Rate Comparison Between 11-TS and 11-TS'	\$56
3.9 Energy Components for Optimized Structures in Figure 13	S57
4. X-ray Crystallographic Data	S58
4.1 X-ray Analysis of 10m	S58
5. NMR Spectral Data	S63

6. Computational Coordinates and Vibrational Frequencies	S126
7. References	S148

1. General Considerations

1.1 Solvents and Reagents

Tetrahydrofuran (THF) and triethylamine (Et₃N) were sparged with argon and dried by passing through alumina columns using argon in a Glass Contour solvent purification system. Dichloromethane (CH₂Cl₂) was freshly distilled over calcium hydride under a N₂ atmosphere prior to each use. DMF was purchased in Aldrich Sure/SealTM bottles. N-Boc-piperidine (**1a.a**) was obtained from Aldrich and used as received. Reagents were purchased from commercial vendors as follows: Riboflavin (RTA, 98%) was purchased from Alfa Aesar. Silver nitrate (AgNO₃, ≥99%) was purchased from Sigma-Aldrich. Ammonium persulfate ((NH₄)₂S₂O₈, ACS Reagent) was purchased from Fisher Scientific, and sodium persulfate (Na₂S₂O₈, 98+%) was purchased from Acros Organics. Acetonitrile (HPLC), acetone (HPLC) and water (HPLC) were purchased from Fisher Scientific.

1.2 Experimental Procedures

Unless otherwise noted in the experimental procedures, reactions were carried out in flame or oven-dried glassware under a positive pressure of N₂ in anhydrous solvents using standard Schlenk techniques. Reaction temperatures above room temperature (22-23 °C) were controlled by an IKA® temperature modulator and monitored using liquid-in-glass thermometers. Reaction progress was monitored using a combination of LC/MS analysis (using a Shimadzu LCMS-2020 (UFLC) equipped with the LC-20AD solvent delivery system, a SPD-20AV prominence UV/Vis detector (SPD-M20A Photo Diode Array), and a Thermo Scientific Hypersil GOLD HPLC column (5 μ m particle size, 4.6 \times 50 mm)), and thin-layer chromatography (TLC) on Macherey-Nagel (MN) silica gel plates (glass backed, 60 Å, 0.25 mm thickness, UV254 manganese-activated zinc silicate fluorescence indicator). Visualization of the developed plates was performed under UV-light (254 nm) irradiation, and then gently heated with *p*-anisaldehyde or cerium ammonium molybdate (CAM) stain. Flash column chromatography was performed with either glass columns using Silicycle silica gel (40-63 µm particle size) or using a Yamazen Smart Flash EPCLC W-Prep 2XY (dual channel) automated flash chromatography system on prefilled, premium, universal columns using ACS grade solvents. Preparative thin layer chromatography was performed on SiliCycle Siliaplates (glass backed, extra hard layer, 60 Å, 250 µm thickness, F254 indicator).

1.3 Analytical Instrumentation

¹H NMR and ¹³C NMR data were recorded on Bruker AVQ-400, AVB-400, AV-600 and AV-700 spectrometers using CDCl₃ as solvent, typically at 20–23 °C. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ 7.26 for ¹H NMR, δ 77.16 for ¹³C NMR in CDCl₃). ¹⁹F NMR spectra were acquired on an AVQ-400 spectrometer and internally referenced to CFCl₃ (δ 0.00). Data for ¹H and ¹³C spectroscopy are reported as follows; chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, hept = heptet, m = multiplet, br = broad), coupling constant (Hz), integration. Melting points were determined using a MEL-TEMPTM apparatus and are uncorrected. High-resolution mass spectra (HRMS) were analyzed as MeOH solutions (30–50 µM) using a Finnigan LTQ FT mass spectrometer (Thermo). Solutions were injected directly into the ion source via syringe pump with 5 uL/min flow rate. Xcalibur software (version 2.0.7, Thermo) was used for both spectra acquisition and data analysis.

2. Experimental Procedures

2.1 Preparation of *N*-Protected Cyclic Amines

A 25 mL round-bottomed flask was charged with a solution of the cyclic amine (500 mg, 1.0 equiv) and Et_3N (2.3 equiv) in CH_2Cl_2 (20 mL) and cooled to 0 °C. Pivaloyl chloride (1.1 equiv) was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for 12 h, after which the reaction mixture was quenched with HCl (1M, 5 mL). The phases were separated, and the aqueous phase was extracted with CH_2Cl_2 (3 x 5–10 mL). The combined organic layers were washed with brine (5–10 mL), dried over Na_2SO_4 , filtered, and concentrated under reduced pressure.

2,2-Dimethyl-1-(3-methylpiperidin-1-yl)propan-1-one (**1i**): The title compound was prepared according to the general procedure using 3-methylpiperidine to give **1i** (644mg, 81%) as a colorless to slight yellowish liquid.

¹**H NMR** (400 MHz, CDCl₃): δ 4.28 (dd, J = 30.5, 13.2 Hz, 2H), 2.72 (t, J = 12.1 Hz, 1H), 2.41 (t, J = 12.0 Hz, 1H), 1.9 – 1.74 (m, 1H), 1.73 – 1.61 (m, 1H), 1.61 – 1.37 (m, 2H), 1.27 (s, 9H), 1.13 – 1.05 (m, 1H), 0.89 (d, J = 6.6 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 176.2, 38.9, 38.5, 33.44, 31.7, 28.6, 27.2, 25.8, 19.2; HRMS (ESI): Calc'd for $C_{11}H_{22}NO [M+H]^+$: 184.1696, found: 186.1695.

1-(2-ethylpiperidin-1-yl)-2,2-dimethylpropan-1-one (**1h**): The title compound was prepared according to the general procedure using 2-ethylpiperidine to give **1h** (854 mg, 98%) as a slight yellowish liquid.

¹**H NMR** (400 MHz, CDCl₃): δ 4.67 (s, 1H), 4.01 (s, 1H), 2.98 (s, 1H), 1.70 – 1.51 (m, 6H), 1.49 – 1.31 (m, 2H), 1.25 (s, 9H), 0.83 (t, *J* = 7.3 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 176.6, 39.0, 28.7, 27.3, 26.3, 22.5, 19.2, 10.7

(Two ¹³C signals are missing due to peak broadening); HRMS (ESI): Calc'd for $C_{12}H_{24}NO [M+H]^+$: 198.1852, found: 198.1852.

2,2-dimethyl-1-(3-phenylpiperidin-1-yl)propan-1-one (**1j**): The title compound was prepared according to the general procedure using 3-phenylpiperidine (250 mg, 1.55 mmol, 1 equiv) to give **1j** (378 mg, 99%) as a slight yellowish liquid.

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 – 7.29 (m, 2H), 7.27 – 7.20 (m, 3H), 4.52 (t, *J* = 15.3 Hz, 2H), 2.85 – 2.62 (m, 3H), 2.11 – 2.00 (m, 1H), 1.88 – 1.77 (m, 1H), 1.76 – 1.67 (m, 1H), 1.66 – 1.53 (m, 1H), 1.30 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃) δ 176.4, 143.4, 128.8, 127.2, 126.9, 43.4, 39.00, 32.1, 28.6, 26.1 (*Two* ¹³*C signals are missing due to peak broadening*);

HRMS (ESI): Calc'd for C₁₆H₂₄NO [M+H]⁺: 246.1852, found: 246.1852.

1-(4-(4-chlorophenyl)piperidin-1-yl)-2,2-dimethylpropan-1-one (**1b**): The title compound was prepared according to the general procedure using 4-(4-chlorophenyl)piperidine (250 mg, 1.28 mmol, 1 equiv) to give **1b** (300 mg, 84%) as a slight brownish-yellowish liquid.

¹**H NMR** (400 MHz, CDCl₃): δ 7.32 – 7.24 (m, 3H), 7.17 – 7.09 (m, 2H), 4.57 (d, *J* = 13.3 Hz, 2H), 2.86 (t, *J* = 13.0 Hz, 2H), 2.74 (tt, *J* = 12.1, 3.8 Hz, 1H), 1.87 (d, *J* = 13.5 Hz, 2H), 1.66 – 1.51 (m, 2H), 1.31 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃) δ 176.5, 149.6, 129.2, 125.5, 117.8, 49.7, 45.0, 28.5. (*Three* ¹³*C* signals are missing due to peak broadening);

HRMS (ESI): Calc'd for C₁₆H₂₃NOCl [M+H]⁺: 280.1463, found: 280.1461.

1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1*H***)-yl)-2,2-dimethylpropan-1-one (1I): The title compound was prepared according to the general procedure using 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (250 mg, 1.55 mmol, 1 equiv) to give 1I** (378 mg, 99%) as a slight yellowish liquid.

¹**H NMR** (500 MHz, CDCl₃) δ 6.61 (s, 1H), 6.59 (s, 1H), 4.67 (s, 1H), 4.09 – 3.68 (m, 8H), 2.80 (t, J = 6.1 Hz, 2H), 1.31 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 176.8, 147.9, 147.8, 126.3, 125.5, 111.5, 109.2, 56.1, 56.1, 47.2, 43.6, 38.9, 28.6, 28.5.

HRMS (ESI): Calc'd for C₁₆H₂₄NO₃ [M+H]⁺: 278.1751, found: 278.1750.

2,2-dimethyl-1-(piperidin-1-yl)propan-1-one (1b) was prepared according to a published procedure.¹ Spectral data were in full agreement with the reported literature values.

2,2-dimethyl-1-(4-phenylpiperidin-1-yl)propan-1-one (1e) was prepared according to a published procedure.² Spectral data were in full agreement with the reported literature values.

Methyl 2-(1-pivaloylpiperidin-4-yl)acetate (1f) was prepared according to a published procedure. Spectral data were in full agreement with the reported literature values.³

1-(3,4-dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1-one (**1k**) was prepared according to a published procedure.⁴ Spectral data were in full agreement with the reported literature values.

2,2-dimethyl-1-(4-methylpiperidin-1-yl)propan-1-one (1d) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

Ethyl 1-pivaloylpiperidine-4-carboxylate (1e) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

2,2-dimethyl-1-(2-methylpiperidin-1-yl)propan-1-one (1g) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

2,2-dimethyl-1-(pyrrolidin-1-yl)propan-1-one (1m) was prepared according to a published procedure.⁵ Spectral data were in full agreement with the reported literature values.

1-(azepan-1-yl)-2,2-dimethylpropan-1-one (1n) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

1-(azocan-1-yl)-2,2-dimethylpropan-1-one (1o) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

2,2-dimethyl-1-((4a*R***,8a***S***)-octahydroquinolin-1(2***H***)-yl)propan-1-one** (**1p**) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

2,2-dimethyl-1-(piperidin-1-yl- d_{10} **)propan-1-one** (**1a**- d_{10}): The title compound was prepared according to the general procedure using piperidine- d_{11} to give **1a**- d_{10} (881 mg, 95%) as a colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 1.24 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃) δ 176.2, 45.8 – 45.0 (m), 38.7, 28.5, 25.7 – 24.7 (m), 23.8 – 23.2 (m).

HRMS (ESI): Calc'd for C₁₆H₂₄NO₂ [M+H]⁺: 180.2168, found: 180.2167.

Methyl O-(tert-butyl)-N-(pivaloyl-L-prolyl)-L-threoninate (5a) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

Methyl pivaloyl-L-prolyl-L-valinate (5b) was prepared according to a published procedure.³ Spectral data were in full agreement with the reported literature values.

2.2 Preparation of Photocatalyst 2a (Riboflavin Tetraacetate, RFTA)

(2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)pentane-

1,2,3,4-tetrayl tetraacetate (**2a**): (–)-Riboflavin (**S1** (10.0 g, 26.6 mmol, 1 equiv) was dissolved in pyridine (120 mL) and acetic anhydride (118 mL, 47 equiv) was added. The resulting reaction mixture was stirred at reflux (120 °C) over night (12 h) and then cooled to room temperature, diluted with CH₂Cl₂ (200 mL) and poured into ice cold HCl (aq., 1M, 200 mL). The aqueous and organic layer were separated, the aqueous phase extracted with CH₂Cl₂ (3 x 100 mL) and the combined organic layers washed with HCl (aq., 1 M, 100 mL) and water (100 mL), dried over Na₂SO₄ and concentrated in *vacuo*. Purification of the crude product via column chromatography (10% MeOH/CH₂Cl₂) afforded the title compound (**2a**) as yellowbrown solid (5.30 g, 37%).

Spectral data were in full agreement with the reported literature values.⁶

2.3 Experimental Setup of Photoreactor

Photochemical reactions were performed either in an air-cooled photobox lined with aluminum foil using a blue Kessil brand A160WE Tuna Blue LED 40 W lamp (Figure S1), or the commercially marketed *Penn PhD Photoreactor M2* (450 nm).

Figure S1. Photoreactor setup using a blue Kessil brand A160WE Tuna Blue LED 40 W lamp.

2.4 Photochemical Method Optimization

Representative Procedure for Photocatalyst Screening

To a 2-dram vial was added sequentially piperidine **1a** (50.7 mg, 0.30 mmol, 1 equiv), potassium persulfate (243 mg, 0.60 mmol, 3 equiv), photocatalyst **(2a, S1 – S11)** (5 mol%) and 15 ml of a 1:1 acetonitrile:H₂O solution. The resulting mixture was sparged with nitrogen for 10 min and subsequently transferred to the photoreactor, exposed to a blue Kessil brand A160WE Tuna Blue LED 40 W lamp and cooled with an airstream. After 1 h, the reaction mixture was partitioned with DCM (5 ml) and the phases were separated. The aqueous phase was extracted with DCM (4 X 5 ml) and the combined organic layers dried over Na₂SO₄ and concentrated under nitrogen. (C₆H₅)₃CH (0.1 mmol, 24.4 mg) was added as NMR standard to the crude reaction product and the yield and conversion determined using ¹H-NMR (pg. S69–S70).

entry	catalyst	yield [%] [#]	conv. [%] [#]
1	2 a	70 (4)	79
2	S2	9 (0)	28
3	S3	10 (1)	86
4	S4	7 (0)	23
5	S5	30 (9)	93
6	S6	5 (0)	48
7	S7	36 (9)	74
8	S8	10 (2)	35
9	S 9	34 (17)	69
10	S10	29 (11)	91
11	S11	25 (3)	37
12	S12	38 (10)	71

Table S1. Results of photocatalyst screening.

 $^{\rm \#}$ Yield and conversion by $^1{\rm H}$ integration using Ph_3CH as internal standard. Yield of carboxylic acid shown in parentheses.

Photochemical Method – Optimization of Reaction Time

To a 2-dram vial was added, sequentially, piperidine **1a** (50.7 mg, 0.30 mmol, 1 equiv), potassium persulfate (243 mg, 0.60 mmol, 3 equiv), photocatalyst **2a** or **S9** (5 mol%) and 15 ml of a 1:1 acetonitrile/H₂O solution. The resulting mixture was sparged with nitrogen for 10 min, placed in a photoreactor, and irradiated with a blue Kessil brand A160WE Tuna Blue LED 40 W lamp cooled with an airstream. After the set duration (see Table S2 below), the reaction mixture was partitioned with DCM (5 ml) and the phases were separated. The aqueous phase was extracted with DCM (4 X 5 ml) and the combined organic layers dried over Na₂SO₄ and concentrated under nitrogen. (C₆H₅)₃CH (0.1 mmol, 24.4 mg) was added as NMR standard to the crude reaction product and the yield and conversion determined via ¹H-NMR (pg. S71).

Table S2. Optimization of reaction time for photochemical method.				
entry	yield [%] [#]	conv. [%] [#]		
1	S9	60	34 (17)	69
2	S9	120	11 (51)	>99
3	2a	60	70 (4)	79

4	2a	120	83 (13)	99
5	2a	220	59 (33)	>99

 $^{\rm #}$ Yield and conversion by $^1{\rm H}$ integration using Ph_3CH as internal standard. Yield of carboxylic acid shown in parentheses.

Photochemical Method – Optimization of Catalyst Loading

To a 2-dram vial was added, sequentially, piperidine **1a** (50.7 mg, 0.30 mmol, 1 equiv), potassium persulfate (243 mg, 0.60 mmol, 3 equiv), photocatalyst **2a** (1, 2.5, or 5 mol%) and 15 ml of a 1:1 acetonitrile:H₂O solution. The resulting mixture was sparged with nitrogen for 10 min and placed in a photoreactor, irradiated with a blue Kessil brand A160WE Tuna Blue LED 40 W lamp and cooled with an airstream. After 2 h, the reaction mixture was partitioned with DCM (5 ml) and the phases were separated. The aqueous phase was extracted with DCM (4 X 5 ml) and the combined organic layers dried over Na₂SO₄ and concentrated under nitrogen. (C₆H₅)₃CH (0.1 mmol, 24.4 mg) was added as NMR standard to the crude reaction product and the yield as well as conversion determined by ¹H-NMR (pg. S72).

Table S3. Optimization of catalyst loading for RTA (A).					
cat. loading					
entry	[mol%]	yield [%] [#]	conv. [%] [#]		
1	1	37 (9)	97		
2	2.5	63 (24)	96		
3	5	83 (13)	99		

[#] Yield and conversion by ¹H integration using Ph₃CH as internal standard. Yield of carboxylic acid shown in parentheses.

Photochemical Method – Optimization of Oxidant and Solvent

To a 2-dram vial was added, sequentially, piperidine **1a** (50.7 mg, 0.30 mmol, 1 equiv), oxidant (0.60 mmol, 3 equiv; or 1.20 mmol, 6 equiv), photocatalyst **2a** (5 mol%) and 15 ml of a 1:1 solvent solution. The resulting mixture was sparged with nitrogen for 10 min and placed in a photoreactor, exposed to a blue Kessil brand A160WE Tuna Blue LED 40 W lamp and cooled with an airstream. After 2 h, the reaction mixture was partitioned with DCM (5 ml) and the phases were separated. The aqueous phase was extracted with DCM (4 X 5 ml) and the combined organic layers dried over Na₂SO₄ and concentrated under nitrogen. (C₆H₅)₃CH (0.1 mmol, 24.4 mg) was added as NMR standard to the crude reaction product and the yield and conversion determined using ¹H-NMR (pg. S72–S73).

entry	oxidant	equiv.	yield [%] [#]	conv. [%] [#]
1	$K_2S_2O_8$	3	83 (13)	99
2	(NH ₄) ₂ S ₂ O ₈	3	18 (1)	98
3	$Na_2S_2O_8$	3	70 (24)	>99
4	Oxone	3	47 (31)	87
5	H ₂ O ₂ (30%)	3	0	35
6	TBHP	3	0	20

Table S4. Optimization of oxidant for photochemical method.

[#] Yield and conversion by ¹H integration using Ph_3CH as internal standard. Yield of carboxylic acid shown in parentheses.

Table S5. Optimization	of solvent for	photochemical	method.
------------------------	----------------	---------------	---------

entry	solvent	M [mol/L]	yield [%] [#]	conv. [%] [#]
1	MeCN/H ₂ O (1:1)	0.02	83 (13)	99
2	Acetone/H ₂ O (1:1)	0.02	67 (18)	96
3	DCE/H ₂ O (1:1)	0.02	3 (0)	44

[#] Yield and conversion by ¹H integration using Ph_3CH as internal standard. Yield of carboxylic acid shown in parentheses.

Photochemical Method – Variation of Reaction Parameters

Any variation to the reaction conditions is listed as a change to the standard reaction parameters listed below.

To a 2-dram vial was added, sequentially, piperidine **1a** (50.7 mg, 0.30 mmol, 1 equiv), potassium persulfate (243 mg, 0.60 mmol, 3 equiv), photocatalyst **2a** (8.1 mg, 5 mol%) and 15

ml of a 1:1 acetonitrile:H₂O solution. The resulting mixture was sparged with nitrogen for 10 min and placed in a photoreactor, exposed to a blue Kessil brand A160WE Tuna Blue LED 40 W lamp and cooled with an an airstream. After 2 h, the reaction mixture was partitioned with DCM (5 ml) and the phases were separated. The aqueous phase was extracted with DCM (4 X 5 ml) and the combined organic layers dried over Na₂SO₄ and concentrated under nitrogen. (C₆H₅)₃CH (0.1 mmol, 24.4 mg) was added as an NMR standard to the crude reaction product and the yield and conversion determined using ¹H NMR (pg. S74).

Table S6. Variation of the reaction parameters with respect to the standard conditions.				
entry	variation from the standard conditions	yield [%]		
1	no sparging, open to air	73 (19)#		
2	no riboflavin tetraacetate	29 (12)#		
3	riboflavin (S1) (without acetate groups)	31 (4)#		
4	no oxidant	O [#]		
6	no light source	O [#]		
7	450 nm	45 (34)#		

[#] Yield and conversion by ¹H integration using Ph_3CH as internal standard. Yield of carboxylic acid shown in parentheses.

Photochemical Method – N-Protecting Group Screening

Piperidine derivatives bearing different substituents on nitrogen were subjected to the standard reaction conditions according to the representative procedure. The result obtained for N-Boc piperidine is representative of the observations made under the standard conditions.

For the quantification of the reaction outcome, $(C_6H_5)_3$ CH (0.1 mmol, 24.4 mg) was added as NMR standard to the crude reaction product and the yield and conversion determined using ¹H NMR integration (pg. S75).

		R	yield [#]	conv.#
\frown	1a:	Piv	96%	99%
└ _Ņ ノ	1a.a :	Вос	18%	86%
I R	1a.b:	Bz	41%	54%
	[#] Yield by	¹ H integratior	using Ph ₃ CH as	internal standard.

Figure S3. Results for N-protecting group screening.

2.5 Experiments to Probe Triplet Energy Transfer Mechanism

Some recent reports⁷ of photochemical transformations have implicated excited-state triplet energy transfer from the photocatalyst to the substrate or oxidant as a key process in the reaction mechanism. In order to determine the viability of such a reaction pathway in our photoinitiated riboflavin tetraacetate oxidation method, photocatalysts of varying triplet energies were explored in place of riboflavin tetraacetate (**2a**), and the conversion of substrate **1a** was assessed for a correlation between the photocatalyst triplet energy and substrate conversion (see Table S7 below). The excited state triplet energy of the photocatalyst does not appear to have an effect on substrate conversion, so it is unlikely that triplet energy transfer is an operable pathway for oxidation.

\bigcirc	photocatalyst (5 mol%) K ₂ S ₂ O ₈ (3 equiv)	\sim)) (\sim	`он
N I Piv	MeCN/H ₂ O (1:1) [0.02 M]	NH I Piv		NH I Piv	
1a	light source , 2 h Table S7. Results of triplet energy transfer m	3a Bechanistic experiment	nts.	4a	
	tripl	et	3a	4a	

catalyst	λ [nm]	energy [kcal/mol]	conv. [%] [#]	yield [%] [#]	yield [%] [#]	
(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	400	61	61	22	0	-
	450		63	21	0	
9-fluorenone	400	53	34	2	0	
	450		51	0	0	
Ru(bpy)₃Cl · H₂O	400	47	99	0	46	
	450		98	0	54	

[#] Yield and conversion by ¹H integration using Ph₃CH as internal standard.

2.6 Kinetics Experiments

Kinetic Isotope Effect

Absolute rates: **1a** (169 mg, 1.00 mmol, 1 equiv) or **1a**-*d*₁₀ (179 mg, 1.00 mmol, 1 equiv), potassium persulfate (811 mg, 3.00 mmol, 3 equiv), and **2a** (27.2 mg, 50.0 µmol, 0.05 equiv) were combined in a 30 mL vial with a magnetic stir bar, dissolved in 20 mL of 1:1 MeCN/H₂O, and the mixture was sparged with N₂. The mixture was allowed to stir under irradiation from a Kessil brand A160WE Tuna Blue LED 40 W lamp. Every 5 minutes, the lamp was quickly turned off, a 0.25 mL aliquot was taken from the mixture, the reaction vessel was placed back into the photobox, and irradiation was resumed. The aliquot was diluted with DI H₂O and extracted with 3 x 1 mL DCM. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The resulting crude samples were analyzed by ¹H NMR using Ph₃CH as a standard to assess yield of **3a** or **3a**-*d*₉. *k*_H/*k*_D = 1.1 (average of three trials).

Figure S4. Initial rates for **1a** (black, 9.6×10^{-3} M/s) and **1a**-*d*₁₀ (red, 8.2×10^{-3} M/s), k_H/k_D = 1.1.

Intermolecular competition: **1a** (8.5 mg, 50.0 μ mol, 1 equiv) and **1a**-*d*₁₀ (8.9 mg, 50.0 μ mol, 1 equiv), potassium persulfate (81.1 mg, 0.300 mmol, 6 equiv), and **2a** (2.7 mg, 5.0 μ mol, 0.1 equiv) were combined in a 2 dram vial with a magnetic stir bar, dissolved in 5 mL of 1:1 MeCN/H₂O, and the mixture was sparged with N₂. The mixture was allowed to stir under irradiation from a Kessil brand A160WE Tuna Blue LED 40 W lamp for 15 minutes. The mixture was extracted with 3 x 3 mL DCM. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The aldehyde products were isolated by preparative thin-layer

chromatography (1:1 hexanes/EtOAc). The resulting mixture of **3a** and **3a**- d_9 was analyzed by ¹H NMR using Ph₃CH as a standard to assess yields. [P_H]/[P_D] = 1.0 (average of three trials)

Light On/Off Experiment

1a (169 mg, 1.00 mmol, 1 equiv), potassium persulfate (811 mg, 3.00 mmol, 3 equiv), and **2a** (27.2 mg, 50.0 μ mol, 0.05 equiv) were combined in 30 mL vial with a magnetic stir bar, dissolved in 20 mL of 1:1 MeCN/H₂O, and the mixture was sparged with N₂. The reaction mixture was irradiated with a Kessil brand A160WE Tuna Blue LED 40 W lamp and kept in the dark for alternating 20 min periods. At the start/end of each period, a 0.25 mL aliquot was taken from the mixture. The aliquot was diluted with DI H₂O and extracted with 3 x 1 mL DCM. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The resulting crude samples were analyzed by ¹H NMR using Ph₃CH as a standard to assess yield of **3a**.

Figure S5. Light on/off experiment.

2.7 Procedure for Riboflavin Tetraacetate-mediated Ring Opening

To a 2-dram vial was added, sequentially, piperidine **1a** (50.7 mg, 0.30 mmol, 1 equiv), potassium persulfate (243 mg, 0.60 mmol, 3 equiv), photocatalyst riboflavin tetraacetate (8.1 mg, 5 mol%) and 15 ml of a 1:1 acetonitrile:H₂O solution. The resulting mixture was sparged with nitrogen for 10 min and placed in a photoreactor, exposed to a blue Kessil brand A160WE Tuna Blue LED 40 W lamp and cooled with an airstream. After 2 h, the reaction mixture was partitioned with DCM (5 ml) and the phases were separated. The aqueous phase was extracted with DCM (4 X 5 ml) and the combined organic layers dried over Na₂SO₄ and concentrated under nitrogen to afford a mixture of *N*-(5-oxopentyl)pivalamide (**3a**) and 5-pivalamidopentanoic acid (**4a**). The mixture was subjected to an acid-base extraction using sodium bicarbonate (sat. solution) and HCl (5N) to give the major aldehyde product (**3a**) (47.6 mg, 86%) as a dark yellow brownish oil and the minor acid product (**4a**) (1.9 mg, 3%) as a yellowish oil.

Aldehyde (3a):

¹**H NMR** (500 MHz, CDCl₃): δ 9.73 (t, J = 1.5 Hz, 1H), 5.83 (s, 1H), 3.20 (td, J = 7.0, 5.8 Hz, 2H), 2.46 (td, J = 7.0, 1.4 Hz, 2H), 1.65 – 1.55 (m, 2H), 1.54 – 1.45 (m, 2H), 1.15 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃): δ 202.4, 178.6, 43.4, 39.0, 38.7, 29.1, 27.7, 19.1;

HRMS (ESI): Calc'd for $C_{10}H_{20}NO_2$ [M+H]⁺: 186.1489, found: 186.1488.

<u>Acid (</u>4a):

¹**H NMR** (500 MHz, CDCl₃): δ 5.76 (s, 1H), 3.26 (qd, *J* = 7.1, 5.8 Hz, 2H), 2.40 (t, *J* = 7.1 Hz, 2H), 1.70 – 1.49 (m, 4H), 1.20 (d, *J* = 1.8 Hz, 9H);

¹³**C NMR** (126 MHz, CDCl₃): δ 178.9, 177.0, 39.0, 38.8, 33.2, 29.1, 27.7, 21.9.

N-(3-(4-chlorophenyl)-5-oxopentyl)pivalamide (**3b**): The title compound was prepared according to the representative procedure using 1-(4-(4-chlorophenyl)piperidin-1-yl)-2,2-dimethylpropan-1-one to give **3b** (9.1 mg, 62%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ 9.67 (t, J = 1.5 Hz, 1H), 7.31 – 7.24 (m, 2H), 7.17 – 7.11 (m, 2H), 5.63 (s, 1H), 3.26 – 3.13 (m, 2H), 3.05 (ddt, J = 11.6, 7.5, 5.9 Hz, 1H), 2.84 – 2.69 (m, 2H), 1.92 – 1.73 (m, 2H), 1.14 (s, 9H);

¹³**C NMR** (101 MHz, CDCl₃): δ 200.9, 178.6, 141.8, 132.8, 129.2, 128.9, 50.6, 38.7, 37.9, 37.1, 36.2, 27.6;

HRMS (ESI): Calc'd for C₁₆H₂₃NO₂Cl [M+H]⁺: 296.1412, found: 296.1411.

3c

N-(5-Oxo-3-phenylpentyl)pivalamide (**3c**): The title compound was prepared according to the representative procedure using 2,2-dimethyl-1-(4-phenylpiperidin-1-yl)propan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided (**3c**) (11.24 mg, 43%, 75% BRSM) as a colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 9.68 (t, J = 1.7 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 5.58 (s, 1H), 3.28 - 3.19 (m, 2H), 3.11 - 3.01 (m, 1H), 1.99 - 1.86 (m, 2H), 1.86 - 1.74 (m, 2H), 1.11 (s, 9H);

¹³**C NMR** (151 MHz, CDCl₃) δ 201.4, 178.6, 143.3, 129.1, 127.5, 50.7, 38.7, 38.0, 36.2, 28.5, 27.6;

HRMS (ESI): Calc'd for C₁₆H₂₄NO₂ [M+H]⁺: 262.1802, found: 262.1802.

3d

N-(3-Methyl-5-oxopentyl)pivalamide (3e): The title compound was prepared according to the representative procedure using 2,2-dimethyl-1-(4-methylpiperidin-1-yl)propan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided (**3d**) (15.1 mg, 76%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 9.75 (t, J = 1.7 Hz, 1H), 5.83 (s, 1H), 3.34 – 3.13 (m, 2H), 2.56 – 2.24 (m, 2H), 2.10 (dq, J = 13.5, 6.7 Hz, 1H), 1.55 – 1.38 (m, 2H), 1.19 (s, 9H), 0.99 (d, J = 6.8 Hz, 3H);

¹³**C NMR** (101 MHz, CDCl₃): δ 202.6, 178.7, 51.1, 38.8, 37.5, 36.6, 27.7, 25.5, 20.2; **HRMS** (ESI): Calc'd for C₁₁H₂₁NO₂Na [M+Na]⁺: 222.1465, found: 222.1466.

Ethyl 4-oxo-2-(2-pivalamidoethyl)butanoate (**3e**): The title compound was prepared according to the representative procedure using ethyl 1-pivaloylpiperidine-4-carboxylate. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided (**3e**) (34.7 mg, 45%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ 9.74 (d, J = 1.0 Hz, 1H), 6.03 – 5.97 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.37 – 3.15 (m, 2H), 2.96 – 2.84 (m, 2H), 2.70 – 2.60 (m, 1H), 1.90 – 1.66 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.17 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃): δ 200.0, 178.8, 174.5, 61.2, 45.4, 38.8, 37.3, 36.7, 31.4, 31.3, 27.6, 14.3;

HRMS (ESI): Calc'd for C₁₃H₂₄NO₄ [M+H]⁺: 258.1700, found: 257.1699.

Methyl 5-oxo-3-(2-pivalamidoethyl)pentanoate (**3f**): The title compound was prepared according to the representative procedure using methyl 2-(1-pivaloylpiperidin-4-yl)acetate. However, the catalyst loading was increased to 10 mol%. Purification by preparative thin-layer chromatography (70% EtOAc/hexanes) provided (**3f**) (9.62 mg, 75%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ 9.76 (d, J = 1.3 Hz, 1H), 6.04 (s, 1H), 3.67 (s, 3H), 3.25 (tdd, J = 6.8, 5.5, 1.6 Hz, 2H), 2.57 (dd, J = 6.3, 1.3 Hz, 2H), 2.52 – 2.43 (m, 1H), 2.42 – 2.31 (m, 2H), 1.55 (m, 2H), 1.20 (s, 9H);

¹³C NMR (126 MHz, CDCl₃): δ 201.4, 178.8, 172.9, 51.7, 48.2, 38.2, 36.9, 34.0, 28.3, 27.6, 26.7; HRMS (ESI): Calc'd for C₁₃H₂₃NO₄Na [M+Na]⁺: 280.1519, found: 280.1519.

3g

*N***-(6-oxohexan-2-yl)pivalamide** (**3g**): The title compound was prepared according to the representative procedure on a 300 μ mol scale using 2,2-dimethyl-1-(2-methylpiperidin-1-yl)propan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided (**3g**) (43.3 mg, 72%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ 9.76 (t, J = 1.4 Hz, 1H), 5.41 (s, 1H), 4.04 – 3.92 (m, 1H), 2.56 – 2.40 (m, 2H), 1.62 – 1.38 (m, 4H), 1.19 (d, J = 3.6 Hz, 9H), 1.12 (d, J = 6.6 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃): δ 202.42, 178.1, 44.7, 43.6, 38.8, 36.4, 27.7, 21.1, 18.5;

HRMS (ESI): Calc'd for C₁₁H₂₂NO₂ [M+H]⁺: 200.1645, found: 200.1646.

3h

*N***-(7-oxoheptan-3-yl)pivalamide** (**3h**): The title compound was prepared according to the representative procedure on a 300 μ mol scale using 1-(2-ethylpiperidin-1-yl)-2,2-dimethylpropan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided (**3h**) (33.4 mg, 52%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 9.72 (t, *J* = 1.5 Hz, 1H), 5.35 (d, *J* = 9.0 Hz, 1H), 3.82 (dtd, *J* = 12.3, 8.7, 4.5 Hz, 1H), 2.54 – 2.34 (m, 2H), 1.68 – 1.41 (m, 4H), 1.34 (m, 2H), 1.17 (s, 9H), 0.85 (t, *J* = 7.5 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 202.4, 178.3, 49.9, 43.6, 34.3, 28.2, 27.8, 18.4, 10.3; HRMS (ESI): Calc'd for C₁₂H₂₄NO₂ [M+H]⁺: 214.1802, found: 214.1800.

N-(2-methyl-5-oxopentyl)pivalamide (3i.a) and *N*-(4-methyl-5-oxopentyl)pivalamide (3i.b): The title compound was prepared according to the representative procedure using 2,2dimethyl-1-(3-methylpiperidin-1-yl)propan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided a mixture of **3i.a** and **3i.b** (14.4 mg, 72%; ratio **3i.a**:**3i.b** 1:0.78) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 9.76 (t, J = 1.3 Hz, 1H), 9.59 (d, J = 1.7 Hz, 1H), 5.89 (s, 1H), 5.78 (s, 1H), 3.29 – 3.00 (m, 4H), 2.60 – 2.42 (m, 2H), 2.36 (hd, J = 7.0, 1.7 Hz, 1H), 1.77 – 1.28 (m, 6H), 1.18 (d, J = 6.0 Hz, 18H), 1.09 (d, J = 7.1 Hz, 2H), 0.88 (d, J = 6.5 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃): δ 204.9, 202.5, 178.7, 178.6, 46.0, 44.7, 41.5, 39.4, 38.9, 38.8, 33.1, 27.7, 27.7, 27.5, 27.2, 25.9, 17.6, 13.5;

HRMS (ESI): Calc'd for C₁₁H₂₂NO₂ [M+H]⁺: 200.1645, found: 200.1644.

N-(5-Oxo-2-phenylpentyl)pivalamide (3j.a) and N-(5-Oxo-4-phenylpentyl)pivalamide (3j.b): The title compounds were prepared according to the representative procedure using 2,2dimethyl-1-(3-phenylpiperidin-1-yl)propan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided a mixture of **3i.a** and **3j.b** (52.40 mg, 67%; ratio 3j.a:3j.b 1:0.5) as colorless oils.

¹**H NMR** (500 MHz, CDCl₃): δ 9.67 (t, J = 1.3 Hz, 1H), 9.66 (d, J = 1.6 Hz, 1H), 7.39 – 7.22 (m, 7H), 7.18 – 7.11 (m, 4H), 5.73 (s, 1H), 5.54 (s, 1H), 3.73 – 3.60 (m, 2H), 3.54 (ddd, J = 8.1, 6.4, 1.6 Hz, 1H), 3.28 - 3.16 (m, 3H), 2.86 - 2.76 (m, 2H), 2.44 - 2.27 (m, 3H), 2.14 - 1.98 (m, 3H), 1.91 – 1.79 (m, 2H), 1.76 – 1.66 (m, 1H), 1.53 – 1.39 (m, 1H), 1.17 (s, 6H), 1.06 (s, 14H); ¹³C NMR (126 MHz, CDCl₃): δ 201.9, 200.6, 178.6, 178.5, 141.6, 136.1, 129.3, 129.0, 128.9, 127.9, 127.8, 127.3, 58.7, 45.1, 44.9, 41.8, 39.1, 38.7, 38.7, 27.7, 27.5, 27.3, 26.8, 25.5;

HRMS (ESI): Calc'd for C₁₆H₂₄NO₂ [M+H]⁺: 262.1802, found: 262.1801.

N-(2-Formylphenethyl)pivalamide (3k): The title compound was prepared according to the representative procedure using 1-(3,4-dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the title compound (3k) (12.13 mg, 52%) as a yellow-brownish oil.

¹H NMR (500 MHz, CDCl₃) δ 10.17 (s, 1H), 7.80 (dd, J = 7.6, 1.6 Hz, 1H), 7.53 (td, J = 7.5, 1.5 Hz, 1H), 7.43 (td, J = 7.5, 1.2 Hz, 1H), 7.31 (dd, J = 7.7, 1.2 Hz, 1H), 5.99 (s, 1H), 3.51 (td, J = 6.9, 5.6 Hz, 2H), 3.25 (t, J = 6.9 Hz, 2H), 1.12 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 193.8, 178.8, 141.7, 134.4, 134.1, 134.0, 132.1, 127.3, 41.2, 38.8, 32.4, 27.7;

HRMS (ESI): Calc'd for C₁₄H₂₀NO₂ [M+H]⁺: 234.1489, found: 234.1489.

N-(2-Formyl-4,5-dimethoxyphenethyl)pivalamide (**3I**): The title compound was prepared according to the representative procedure using 1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the title compound (**3I**) (27.9 mg, 95%) as a yellow-brownish oil.

¹**H** NMR (500 MHz, CDCl₃) δ 10.08 (s, 1H), 7.30 (s, 1H), 6.75 (s, 1H), 5.98 (t, J = 5.9 Hz, 1H), 3.93 (d, J = 9.4 Hz, 6H), 3.49 (td, J = 7.0, 5.8 Hz, 2H), 3.19 (t, J = 7.0 Hz, 2H), 1.13 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 191.0, 178.9, 153.9, 148.0, 137.0, 127.3, 113.8, 113.6, 56.3, 56.2, 41.7, 38.8, 31.7, 27.7;

HRMS (ESI): Calc'd for C₁₆H₂₄NO₄ [M+H]⁺: 294.1700, found: 294.1700.

N-(4-oxobutyl)pivalamide (3m) and 4-pivalamidobutanoic acid (4m): The title compounds were prepared according to the representative procedure using *N*-(4-oxobutyl)pivalamide--2,2-dimethyl-1-(pyrrolidin-1-yl)propan-1-one. Evaporation of the organic solvent afforded a mixture of the products (3m) and (4m). The mixture was subjected to an acid-base extraction using sodium bicarbonate (sat. solution) and HCl (5N) to give the major aldehyde product (3m) (30.9 mg, 60%) as a dark yellow brownish oil and the minor acid product (4m) (1.4 mg, 2.5%) as a yellowish oil.

<u>Aldehyde</u> (**3m**):

¹H NMR (500 MHz, CDCl₃): δ 9.77 (t, J = 1.2 Hz, 1H), 5.89 (s, 1H), 3.25 (td, J = 6.8, 5.6 Hz, 2H), 2.51 (td, J = 6.9, 1.2 Hz, 2H), 1.83 (p, J = 6.9 Hz, 2H), 1.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ 202.2, 178.8, 41.7, 39.1, 38.7, 27.6, 22.0; HRMS (ESI): Calc'd for C₉H₁₈NO₂ [M+H]⁺: 172.1332, found: 172.1334. <u>Acid (4m)</u>: ¹H NMR (700 MHz, CDCl₃) δ 6.05 (s, 1H), 3.35 – 3.29 (m, 2H), 2.39 (t, J = 6.9 Hz, 2H), 1.85 (p, J = 6.8 Hz, 2H), 1.19 (s, 9H); ¹³C NMR (176 MHz, CDCl₃) δ 179.6, 177.5, 81.5, 39.2, 38.9, 31.7, 27.7, 24.8;

HRMS (ESI): Calc'd for C₉H₁₈NO₃ [M+H]⁺: 188.1281, found: 188.1282.

N-(6-oxohexyl)pivalamide (3n) and 6-pivalamidohexanoic acid (4n): The title compounds were prepared according to the representative procedure using 1-(azepan-1-yl)-2,2dimethylpropan-1-one. Evaporation of the organic solvent afforded a mixture of the products (3n) and (4n). The mixture was treated with an acid-base extraction using sodium bicarbonate (sat. solution) and HCl (5N) to give the major aldehyde product (3n) (16.8 mg, 84%) as a colorless oil and the minor acid product (4n) (2.8 mg, 13%) as a yellowish oil.

Aldehyde (**3n**):

¹**H NMR** (500 MHz, CDCl₃) δ 9.75 (t, J = 1.7 Hz, 1H), 5.68 (s, 1H), 3.23 (td, J = 7.2, 5.8 Hz, 2H), 2.44 (td, J = 7.2, 1.7 Hz, 2H), 1.64 (p, J = 7.3 Hz, 2H), 1.51 (ddd, J = 14.8, 7.8, 6.6 Hz, 2H), 1.38 - 1.30 (m, 2H), 1.18 (s, 9H);

¹³C NMR (101 MHz, CDCl₃) δ 202.6, 178.7, 43.8, 39.3, 38.8, 29.5, 27.7, 26.4, 21.7;

HRMS (ESI): Calc'd for C₁₁H₂₂NO₂ [M+H]⁺: 200.1645, found: 200.1646.

Acid (4n):

¹**H NMR** (500 MHz, CDCl₃) δ 5.67 (s, 1H), 3.25 (td, J = 7.2, 5.8 Hz, 2H), 2.36 (t, J = 7.4 Hz, 2H), 1.66 (p, J = 7.4 Hz, 2H), 1.57 – 1.47 (m, 2H), 1.42 – 1.32 (m, 2H), 1.19 (s, 9H);

¹³C NMR (126 MHz, CDCl₃) δ 178.7, 177.7, 39.4, 38.8, 33.7, 29.4, 27.7, 26.3, 24.4;

HRMS (ESI): Calc'd for C₁₁H₂₂NO₃ [M+H]⁺: 216.1594, found: 216.1595.

N-(7-oxoheptyl)pivalamide (30): The title compound was prepared according to the representative procedure using 1-(azocan-1-yl)-2,2-dimethylpropan-1-one. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided (30) (19.4 mg, 91%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ 9.75 (t, J = 1.7 Hz, 1H), 5.64 (s, 1H), 3.21 (td, J = 7.3, 5.7 Hz, 2H), 2.42 (td, J = 7.3, 1.8 Hz, 2H), 1.62 (p, J = 7.2 Hz, 2H), 1.49 (p, J = 7.2 Hz, 2H), 1.32 (qd, J = 6.8, 5.8, 3.6 Hz, 4H), 1.18 (s, 9H);

¹³C NMR (126 MHz, CDCl₃): δ 202.8, 178.5, 43.9, 39.5, 38.8, 29.6, 28.9, 27.7, 26.7, 22.0; **HRMS** (ESI): Calc'd for C₁₂H₂₄NO₂ [M+H]⁺: 214.1802, found: 214.1803.

N-((1*S*,2*R*)-2-(3-oxopropyl)cyclohexyl)pivalamide (3p): The title compound was prepared according to the representative procedure using 2,2-dimethyl-1-((4a*R*,8a*S*)-octahydroquinolin-1(2*H*)-yl)propan-1-one. Purification by preparative thin-layer chromatography (80% EtOAc/hexanes) provided (3p) (15.5 mg, 65%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 9.75 (d, *J* = 1.4 Hz, 1H), 5.62 (d, *J* = 8.7 Hz, 1H), 3.56 (tdd, *J* = 11.0,

8.8, 4.1 Hz, 1H), 2.60 – 2.50 (m, 1H), 2.49 – 2.39 (m, 1H), 2.04 – 1.93 (m, 1H), 1.89 – 1.83 (m, 1H), 1.83 – 1.75 (m, 1H), 1.74 – 1.64 (m, 2H), 1.38 – 1.27 (m, 3H), 1.21 (s, 9H), 1.15 – 0.95 (m, 3H);

¹³**C NMR** (126 MHz, CDCl₃): δ 202.9, 178.1, 51.9, 42.7, 41.0, 38.9, 33.9, 31.1, 27.8, 25.8, 25.3, 24.4;

HRMS (ESI): Calc'd for C₁₄H₂₆O₂N [M+H]⁺: 240.1958, found: 240.1958;

Calc'd for C₁₄H₂₆NO₂Na [M+Na]⁺: 262.1778, found: 262.1778.

2.8 Procedure for Copper-Mediated Ring Opening

A 1-dram vial was charged with piperidine 1a (16.9 mg, 0.10 mmol) and 0.50 mL of a 1:9 acetone:H₂O solution. Sodium persulfate (95 mg, 0.40 mmol) and tetrakis(acetonitrile)copper(I) tetrafluoroborate (7.9 mg, 0.025 mmol) were added to the solution, and the resulting mixture was allowed to stir at 40 °C for 24 h. The reaction mixture was basified with sat. sodium bicarbonate to approx. pH 9, extracted with EtOAc (3 x 3 mL), subsequently acidified to ~pH 4 with 5N HCl and extracted with CH₂Cl₂ (3 x 3 mL). The combined CH₂Cl₂ extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to provide 5-pivalamidopentanoic acid 4a (10.9 mg, 54%) as a colorless liquid. ¹H NMR and ¹³C NMR spectral data were in full agreement with those for **4a** reported above. HRMS (ESI): Calc'd for C₁₀H₁₉NO₃ [M+H]⁺: 202.1438, found: 202.1439.

NOTE: Substrates typically show full conversion after a 24 h reaction period. Some overoxidation can be observed, leading to reduced yields of the desired carboxylic acid.

4-Pivalamidobutanoic acid (4m): The title compound was prepared according to the representative procedure on a 200 μmol scale using 2,2-dimethyl-1-(pyrrolidin-1-yl)propan-1-one. Purification by acid-base extraction provided the title compound (**4m**) (22.1 mg, 59%) as a colorless oil.

¹**H NMR** (700 MHz, CDCl₃) δ 6.05 (broad s, 1H), 3.32 (td, J = 6.7, 5.8 Hz, 2H), 2.39 (t, J = 6.9 Hz, 2H), 1.85 (apparent p, J = 6.9 Hz, 2H), 1.19 (s, 9H).

¹³**C NMR** (176 MHz, CDCl₃) δ 179.6, 177.5, 39.2, 38.8, 31.7, 27.6, 24.8.

HRMS (ESI): Calc'd for C₉H₁₈NO₃ [M+H]⁺: 188.1281, found: 188.1282.

6-Pivalamidohexanoic acid (4n): The title compound was prepared according to the representative procedure on a 200 μ mol scale using 1-(azepan-1-yl)-2,2-dimethylpropan-1-one. Purification via acid-base extraction provided the title compound (**4n**) (26.3 mg, 61%) as a colorless oil.

¹**H NMR** (700 MHz, CDCl₃) δ 5.74 (broad s, 1H), 3.23 (td, J = 7.2, 5.7 Hz, 2H), 2.34 (t, J = 7.4 Hz, 2H), 1.64 (apparent p, J = 7.4 Hz, 2H), 1.51 (apparent p, J = 7.6 Hz, 2H), 1.44 – 1.33 (m, 2H), 1.18 (s, 9H).

¹³C NMR (176 MHz, CDCl₃) δ 178.9, 178.4, 39.4, 38.8, 33.9, 29.3, 27.7, 26.3, 24.4. HRMS (ESI): Calc'd for C₁₁H₂₂NO₃ [M+H]⁺: 216.1594, found: 216.1595.

7-Pivalamidoheptanoic acid (4o): The title compound was prepared according to the representative procedure on a 200 μ mol scale using 1-(azocan-1-yl)-2,2-dimethylpropan-1-one. Purification using acid-base extraction provided the title compound (**4o**) (24.3 mg, 53%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 5.68 (s, 1H), 3.22 (td, J = 7.2, 5.7 Hz, 2H), 2.34 (t, J = 7.4 Hz, 2H), 1.63 (p, J = 7.4 Hz, 2H), 1.50 (p, J = 7.3 Hz, 2H), 1.35 (qtd, J = 16.2, 5.8, 2.8 Hz, 4H), 1.18 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 178.9, 178.8, 39.6, 38.8, 34.0, 29.5, 28.7, 27.7, 26.6, 24.7; HRMS (ESI): Calc'd for C₁₂H₂₄NO₃ [M+H]⁺: 230.1751, found: 230.1752.

5-Pivalamidohexanoic acid (**4g**): The title compound was prepared according to the representative procedure on a 200 μ mol scale using 2,2-dimethyl-1-(2-methylpiperidin-1-yl)propan-1-one. Purification using acid-base extraction provided the title compound (**4g**) (26.7 mg, 62%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 5.52 (d, J = 8.3 Hz, 1H), 3.97 (ddd, J = 14.2, 7.9, 6.1 Hz, 1H), 2.43 – 2.28 (m, 2H), 1.69 – 1.54 (m, 2H), 1.54 – 1.39 (m, 2H), 1.17 (s, 9H), 1.11 (d, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 178.4, 178.3, 44.9, 38.7, 38.6, 36.2, 33.7, 27.7, 21.2, 21.0; HRMS (ESI): Calc'd for C₁₁H₂₂NO₃ [M+H]⁺: 216.1594, found: 216.1595.

5-Pivalamidoheptanoic acid (4d): The title compound was prepared according to the representative procedure using 1-(2-ethylpiperidin-1-yl)-2,2-dimethylpropan-1-one. Purification using acid-base extraction provided the title compound (**4d**) (25.0 mg, 59%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 5.95 (d, J = 5.3 Hz, 1H), 3.27 (td, J = 7.0, 5.4 Hz, 2H), 2.34 (dd, J = 15.6, 7.2 Hz, 1H), 2.23 (dd, J = 15.6, 6.6 Hz, 1H), 1.99 (dq, J = 13.8, 7.0 Hz, 1H), 1.65 – 1.50 (m, 1H), 1.43 (dq, J = 14.2, 7.1 Hz, 1H), 1.17 (s, 9H), 0.99 (d, J = 6.9 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 179.2, 177.8, 41.3, 38.8, 37.6, 36.2, 27.8, 27.6, 20.1;

HRMS (ESI): Calc'd for C₁₁H₂₂NO₃ [M+H]⁺: 216.1594, found: 216.1595.

3-phenyl-5-pivalamidopentanoic acid (**4c**): The title compound was prepared according to the representative procedure on a 200 μ mol scale using 2,2-dimethyl-1-(4-phenylpiperidin-1-yl)propan-1-one and 1:1 acetone/H₂O solvent. Purification using acid-base extraction provided the title compound (**4c**) (30.2 mg, 54%) as a yellowish oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.24 – 7.16 (m, 3H), 5.64 (t, J = 5.6 Hz, 1H), 3.27 – 3.17 (m, 1H), 3.16 – 2.98 (m, 2H), 2.73 – 2.58 (m, 2H), 2.00 – 1.88 (m, 1H), 1.85 - 1.72 (m, 1H), 1.08 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃) δ 178.9, 176.7, 143.3, 129.0, 127.5, 127.1, 41.4, 40.1, 38.7, 38.2, 35.7, 27.5;

HRMS (ESI): Calc'd for C₁₁H₂₄NO₃ [M+H]⁺: 278.1751, found: 278.1751.

3-(Ethoxycarbonyl)-5-pivalamidopentanoic acid (4e): The title compound was prepared according to the representative procedure on a 200 µmol scale using ethyl 1-pivaloylpiperidine-4-carboxylate. Purification using acid-base extraction provided the title compound (**4e**) (24.9 mg, 46%) as a yellow-orange oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.2 (t, J = 5.8 Hz, 1H), 4.2 (q, J = 7.1 Hz, 2H), 3.5 – 3.1 (m, 2H), 2.9 – 2.8 (m, 2H), 2.5 (dd, J = 16.5, 5.6 Hz, 1H), 1.9 – 1.8 (m, 1H), 1.8 (dtd, J = 14.2, 7.1, 5.3 Hz, 1H), 1.3 (t, J = 7.1 Hz, 3H), 1.2 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃) δ 179.4, 175.8, 174.7, 61.2, 39.0, 38.8, 37.6, 35.8, 31.2, 27.6, 14.2; **HRMS** (ESI): Calc'd for C₁₃H₂₄NO₅ [M+H]⁺: 274.1649, found: 274.1649.

5-methoxy-5-oxo-3-(2-pivalamidoethyl)pentanoic acid (4f): The title compound were prepared according to the representative procedure on a 200 μ mol using methyl 2-(1-pivaloylpiperidin-4-yl)acetate. Purification via acid-base extraction provided the title compound (**4f**) (31.2 mg, 57%) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.17 (s, 1H), 3.68 (s, 3H), 3.39 – 3.28 (m, 1H), 3.23 (ddd, J = 14.0, 6.9, 5.5 Hz, 1H), 2.53 – 2.28 (m, 5H), 1.59 (pd, J = 5.8, 2.6 Hz, 2H), 1.20 (s, 9H);

¹³C NMR (126 MHz, CDCl₃) δ 179.6, 176.3, 173.2, 51.9, 38.9, 38.4, 37.2, 33.9, 29.2, 27.63, 27.61; HRMS (ESI): Calc'd for C₁₃H₂₄NO₅ [M+H]⁺: 274.1649, found: 274.1649.

2,4-Dimethyl-5-pivalamidopentanoic acid (4q): The title compound was prepared according to the representative procedure on a 200 μmol scale using 1-(3,5-dimethylpiperidin-1-yl)-2,2-dimethylpropan-1-one. Purification using acid-base extraction provided the title compound (**4q**) (18.8 mg, 41%, mixture of diastereomers 1.0:0.5) as a slight yellowish oil. ¹**H NMR** See ¹H NMR spectrum (pg. S101).

¹³**C NMR** (126 MHz, CDCl₃) δ 182.1, 181.8, 179.3, 179.0, 45.2, 45.1, 38.9 (corresponding peak for minor diastereomer overlapping), 38.3, 38.2, 37.5, 36.9, 32.0, 31.3, 27.70, 27.68, 18.3, 18.0, 17.9, 17.3;

3-(2-Pivalamidocyclohexyl)propanoic acid (4p): The title compound was prepared according to the representative procedure on a 200 μ mol scale using 2,2-dimethyl-1-(octahydroquinolin-1(2*H*)-yl)propan-1-one and one equivalent of tetrakis(acetonitrile)copper(I) tetrafluoroborate (63.0 mg, 0.20 mmol). Purification using acid-base extraction provided the title compound (**4p**) (26.5 mg, 52%) as a light orange amorphous solid.

¹H NMR (500 MHz, CDCl₃) δ 9.74 (br s, 1H), 6.32 (d, J = 7.8 Hz, 1H), 4.59 (td, J = 7.5, 5.0 Hz, 1H), 3.74 (s, 3H), 2.44 – 2.25 (m, 2H), 1.92 – 1.86 (m, 1H), 1.75 – 1.55 (m, 3H), 1.21 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 178.8, 178.6, 51.99, 51.98, 42.6, 38.9, 33.8, 31.0, 27.7, 27.2, 25.7, 25.3;

HRMS (ESI): Calc'd for C₁₄H₂₆NO₃ [M+H]⁺: 256.1907, found: 256.1907.

3-(2-Pivalamidocyclohexyl)propanoic acid (4r): The title compound was prepared according to the representative procedure using 2,2-dimethyl-1-(octahydroquinolin-1(2*H*)-yl)propan-1-one. Purification using acid-base extraction provided the title compound (**4r**) (32.0 mg, 62%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 9.73 (br s, 2H), 6.32 (d, J = 7.6 Hz, 1H), 4.59 (apparent td, J = 7.5, 5.1 Hz, 1H), 3.74 (s, 3H), 2.70 – 2.23 (m, 2H), 1.91 (apparent ddt, J = 12.3, 9.5, 5.1 Hz, 1H), 1.78 – 1.52 (m, 3H), 1.21 (s, 9H);

¹³C NMR (126 MHz, CDCl₃) δ 178.8, 178.0, 173.2, 52.6, 51.8, 38.9, 33.3, 31.8, 27.5, 20.5; HRMS (ESI): Calc'd for $C_{12}H_{22}NO_5$ [M+H]⁺: 260.1492, found: 260.1493.

4s

(S)-5-Methoxy-5-oxo-4-pivalamidopentanoic acid (4s): The title compound was prepared according to the representative procedure using methyl pivaloyl-*L*-prolinate. Purification using acid-base extraction provided the title compound (4s) (29.3 mg, 60%) as a slight yellowish oil.

¹H NMR (700 MHz, CDCl₃) δ 6.46 (d, J = 7.5 Hz, 1H), 4.62 (td, J = 8.2, 5.1 Hz, 1H), 3.76 (s, 3H), 2.48 – 2.38 (m, 2H), 2.31 – 2.15 (m, 1H), 1.98 (apparent ddt, J = 13.8, 8.5, 6.9 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 179.2, 176.9, 172.7, 52.8, 51.8, 38.9, 30.3, 27.5, 27.5; HRMS (ESI): Calc'd for C₁₁H₂₀NO₅ [M+H]⁺: 246.1336, found: 246.1337.

N-(5-Oxo-5-phenylpentyl)pivalamide (4t) and 5-oxo-5-phenylpentanoic acid (4t.a): The title compounds were prepared according to the representative procedure using (*S*)-2,2-dimethyl-1-(2-phenylpiperidin-1-yl)propan-1-one. Purification using acid-base extraction provided the title compounds 4t (8.9 mg, 17%, 41% brsm) as a colorless oil and 4t.a (3.5 mg, 9%, 17% brsm) as a white amorphous solid.

4t:

¹**H NMR** (500 MHz, CDCl₃) δ 8.14 – 7.86 (m, 2H), 7.64 – 7.51 (m, 1H), 7.46 (dd, J = 8.3, 7.1 Hz, 2H), 5.85 (s, 1H), 3.27 (td, J = 6.9, 5.6 Hz, 2H), 3.02 (t, J = 7.0 Hz, 2H), 1.92 – 1.73 (m, 2H), 1.65 – 1.53 (m, 2H), 1.20 (s, 9H);

¹³C NMR (126 MHz, CDCl₃) δ 200.3, 178.7, 137.0, 133.2, 128.2, 39.2, 38.8, 38.0, 29.2, 27.8; HRMS (ESI): Calc'd for C₁₆H₂₃NO₂Na [M+Na]⁺: 284.1621, found: 284.1623.

4t.a:

¹H NMR (500 MHz, CDCl₃) δ 8.16 – 7.88 (m, 2H), 7.75 – 7.52 (m, 1H), 7.46 (apparent t, J = 7.7 Hz, 2H), 3.09 (t, J = 7.1 Hz, 2H), 2.51 (t, J = 7.1 Hz, 2H), 2.09 (apparent p, J = 7.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 199.5, 178.1, 136.9, 133.3, 128.8, 128.2, 37.4, 33.0, 19.2; HRMS (ESI): Calc'd for C₁₁H₁₂O₃Na [M+Na]⁺: 216.0679, found: 216.0677

4u

2-(1-(2-pivalamidoethyl)cyclopropyl)acetic acid (4u): The title compound was prepared according to the representative procedure on a 200 µmol scale using 2,2-dimethyl-1-(6-azaspiro[2.5]octan-6-yl)propan-1-one. Purification using acid-base extraction provided the title compound (4u) (25.0 mg, 55%) as a yellowish oil.

¹**H NMR** (500 MHz, CDCl₃) δ 6.30 (br s, 1H), 3.34 (td, J = 6.8, 5.5 Hz, 2H), 2.31 (s, 2H), 1.57 (t, J = 6.8 Hz, 2H), 1.18 (s, 9H), 0.51 – 0.46 (m, 2H), 0.46 – 0.41 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 179.0, 177.1, 41.0, 38.7, 37.7, 36.3, 27.6, 15.2, 12.3.

HRMS (ESI): Calc'd for C₁₂H₂₂NO₃ [M+H]⁺: 228.1595, found: 228.1595.
2.9 Procedures for Peptide Diversification

6a

(S)-5-(((2S,3R)-3-(tert-Butoxy)-1-methoxy-1-oxobutan-2-yl)amino)-5-oxo-4-pivalamidopentanoic acid (6a): The title compound was prepared according to the representative procedure using methyl (3R)-3-(tert-butoxy)-2-((S)-1-pivaloylpyrrolidine-2carboxamido)butanoate (5a) with 1:1 acetone/H2O as solvent. Purification using acid-base extraction provided the title compound 6a (22.5 mg, 56%, mixture of rotamers 1:0.8) as a slightly yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.06 (t, J = 9.3 Hz), 6.92 (d, J = 7.3 Hz), 6.77 (d, J = 7.7 Hz), 4.68 – 4.58 (m), 4.45 (ddd, J = 9.2, 4.4, 1.8 Hz), 4.23 (dtd, J = 12.6, 6.2, 1.8 Hz), 3.70 (d, J = 5.0 Hz), 2.60 – 2.41 (m), 2.26 – 2.14 (m), 2.09 – 1.95 (m), 1.21 (d, J = 9.0 Hz), 1.16 (dd, J = 6.3, 4.9 Hz), 1.10 (d, J = 7.3 Hz);

¹³**C NMR** 13C NMR (126 MHz, CDCl₃) δ 179.5, 179.3, 176.9, 176.6, 172.24, 172.20, 171.3, 171.1, 74.5, 74.4, 67.4, 67.3, 58.3, 58.1, 52.9, 52.5, 52.3, 39.0, 38.9, 30.5, 30.2, 28.4, 28.2, 27.6, 27.5, 21.09, 21.08;

HRMS (ESI): Calc'd for C₁₈H₂₉N₉O₂ [M+H]⁺: 403.2439, found: 403.2439.

6b

(*S*)-5-(((*S*)-1-Methoxy-3-methyl-1-oxobutan-2-yl)amino)-5-oxo-4-pivalamidopentanoic acid (6b): The title compound was prepared according to the representative procedure using methyl pivaloyl-*L*-prolyl-*L*-valinate (5b). Purification using acid-base extraction provided the title compound 6b (25.5 mg, 74%, mixture of rotamers 1:0.5) as a slightly yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.50 (t, J = 8.2 Hz), 6.84 (d, J = 8.0 Hz), 4.74 – 4.65 (m), 4.45 (dd, J = 8.7, 5.1 Hz), 4.42 (dd, J = 8.3, 5.2 Hz), 3.72 (s), 3.70 (s), 2.48 (qd, J = 5.7, 2.3 Hz), 2.24 – 2.05 (m), 2.01 – 1.88 (m), 1.29 – 1.22 (m), 1.19 (s), 1.18 (s), 0.95 – 0.88 (m);

¹³C NMR (126 MHz, CDCl₃) δ 179.8, 179.7, 176.3, 176.2, 172.2, 172.1, 172.0, 57.9, 57.7, 52.29, 52.28, 52.2, 52.1, 38.94, 38.91, 38.6, 31.0, 30.7, 30.3, 30.1, 27.4, 27.2, 19.2, 19.1, 17.84, 17.83; HRMS (ESI): Calc'd for $C_{15}H_{23}N_9O$ [M+H]⁺: 345.2020, found: 345.2019.

Procedures for Peptide Diversification from Dipeptide 6b

1,3-dioxoisoindolin-2-yl (5)-5-(((5)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-5-oxo-4pivalamidopentanoate (7a): A 2-dram vial was charged with carboxylic acid **5b** (207 mg, 0.6 mmol), *N*-hydroxyphthalimide (NHPI; 97.9 mg, 0.6 mmol), *N*,*N'*-dicyclohexylcarbodiimide (DCC; 123.8 mg, 0.6 mmol), and dry CH₂Cl₂ (3.0 mL), and the reaction mixture was allowed to stir at room temperature overnight. The mixture was concentrated under reduced pressure, and the resulting crude material was purified by column chromatography (1:2 Hexanes/EtOAc) to provide the title compound **7a** (237 mg, 80%, mixture of rotamers 1:1) as an off-white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (ddd, J = 5.5, 2.5, 0.9 Hz), 7.79 (ddd, J = 5.5, 3.1, 0.9 Hz), 6.97 (s), 6.44 (d, J = 8.3 Hz), 4.78 – 4.57 (m), 4.47 (ddd, J = 8.5, 4.9, 1.4 Hz), 3.73 (d, J = 0.9 Hz), 3.72 (d, J = 1.1 Hz), 3.04 – 2.83 (m), 2.82 – 2.60 (m), 2.48 – 2.25 (m), 2.18 (dqd, J = 15.0, 6.7, 3.6 Hz), 1.23 (d, J = 0.8 Hz), 1.21 (d, J = 0.7 Hz), 0.94 (dd, J = 10.4, 7.0 Hz), 0.91 (dd, J = 6.9, 1.5 Hz); ¹³**C NMR** (126 MHz, CDCl₃) δ 179.5, 179.1, 171.9, 171.2, 171.1, 169.69, 169.67, 169.6, 162.0, 161.9, 135.0, 129.0, 124.2, 57.7, 57.6, 52.34, 52.30, 52.2, 52.1, 39.01, 38.95, 31.1, 30.9, 27.8, 27.7, 27.57, 27.55, 27.3, 27.1, 19.2, 19.1, 17.8;

HRMS (ESI): Calc'd for C₂₄H₃₂NO₈ [M+H]⁺: 490.2184, found: 490.2184.

7b

Dimethyl 2,2'-(((S)-2-pivalamidopentanedioyl)bis(azanediyl))(2S,2'S)-bis(3methylbutanoate) (7b): A 1-dram vial was charged with carboxylic acid 5b (34.4 mg, 0.1 mmol), *L*-valine methyl ester hydrochloride (18.4 mg, 0.11 mmol), hydroxybenzotriazole (HOBt; 13.5 mg, 0.1 mmol), and dry CH_2Cl_2 (1.5 mL) and cooled to 0 °C in an ice bath. iPr₂Net (23 µL, 0.13 mmol) was added to the mixture dropwise over 5 min, and the resulting mixture was stirred at 0 °C for 10 min. To this mixture was added 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDC; 21.1 mg, 0.11 mmol), and the mixture was allowed to stir and warm to room temperature over 16 h. The reaction mixture was cooled to 0 °C and quenched with 1 M HCl (1 mL). The phases were separated, and the aqueous phase was extracted with CH_2Cl_2 (3 mL × 3). The combined organic layers were washed with brine (1 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting crude material was purified by column chromatography (1:2 Hexanes/EtOAc) to provide the title compound 7b (22.9 mg, 50%, mixture of rotamers) as a white amorphous solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (d, J = 8.3 Hz), 7.81 (d, J = 8.8 Hz), 7.30 (d, J = 8.5 Hz), 7.11 (d, J = 9.0 Hz), 6.86 (d, J = 6.8 Hz), 6.46 (d, J = 7.1 Hz), 4.82 (dddd, J = 8.1, 6.9, 2.5, 1.3 Hz), 4.55 (dddd, J = 8.8, 6.4, 5.3, 1.1 Hz), 4.48 – 4.40 (m), 4.28 (ddd, J = 9.3, 7.1, 5.6 Hz), 3.74 (d, J = 0.9 Hz), 3.73 (d, J = 0.8 Hz), 3.73 (d, J = 0.8 Hz), 3.71 (d, J = 0.9 Hz), 2.46 (dd, J = 6.1, 4.3 Hz), 2.43 (dd, J = 6.0, 4.3 Hz), 2.40 – 1.87 (m), 1.18 (d, J = 0.9 Hz), 1.15 (d, J = 0.9 Hz), 1.07 – 0.86 (m); ¹³**C NMR** (126 MHz, CDCl₃) δ 179.6, 178.3, 174.7, 173.9, 173.8, 173.3, 173.0, 172.4, 172.1, 58.6, 57.7, 57.63, 57.58, 52.7, 52.6, 52.42, 52.41, 52.24, 52.22, 38.8, 38.7, 32.6, 32.4, 30.8, 30.5, 30.4, 29.7, 28.9, 27.53, 27.52, 19.5, 19.3, 19.2, 19.1, 18.1, 18.0, 17.93, 17.90. **HRMS** (ESI): Calc'd for C₂₄H₃₂NO₈ [M+H]⁺: 458.2861, found: 458.2864.

2.10 Procedure for Deconstructive Minisci Reaction

A 1-dram vial was charged with **1a** (33.9 mg, 0.20 mmol), **8a** (88.3 mg, 0.60 mmol), and 2.0 mL of a 1:9 acetone:H₂O solution by volume. Trifluoroacetic acid (46 μ L, 0.60 mmol) was added to the mixture, and the contents were allowed to stir for 5 min. Potassium persulfate (162 mg, 0.60 mmol) and silver tetrafluoroborate (78 mg, 0.40 mmol) were added and the mixture was allowed to stir at 40 °C. After 1 h, CH₂Cl₂ (2.0 mL) was added and the phases were separated. The aqueous layer was extracted with CH₂Cl₂ (2.0 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting crude mixture was purified by preparative thin-layer chromatography (50% EtOAc/hexanes) to provide *N*-(4-(4-(trifluoromethyl)pyridin-2-yl)butyl)pivalamide (**9a**) (29 mg, 48%) as a yellow oil.

¹**H NMR** (700 MHz, CDCl₃) δ 8.71 (d, *J* = 5.2 Hz, 1H), 7.40 (s, 1H), 7.37 (d, *J* = 5.2 Hz, 1H), 5.84 (s, 1H), 3.28 (td, *J* = 7.0, 5.7 Hz, 2H), 2.92 (t, *J* = 7.7 Hz, 2H), 1.84 – 1.75 (m, 2H), 1.57 (p, *J* = 7.2 Hz, 2H), 1.17 (s, 9H).

¹³**C NMR** (176 MHz, CDCl₃) δ 178.7, 163.4, 149.8, 139.3 (q, *J* = 34.2 Hz), 122.9 (q, *J* = 273.3 Hz), 118.9 (q, *J* = 3.7 Hz), 117.2 (q, *J* = 3.4 Hz), 39.3, 38.8, 37.4, 29.2, 27.7, 26.9. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.07 (s, 3F).

HRMS (ESI): Calc'd for C₁₅H₂₂F₃N₂O [M+H]⁺: 303.1679, found: 303.1687.

N-(4-(4-Methoxypyridin-2-yl)butyl)pivalamide (**9b**): The title compound was prepared according to the representative procedure using **1a** and **8b**. Purification by preparative thinlayer chromatography (8% MeOH/CH₂Cl₂) provided the title compound (35.7 mg, 67%) as a yellow oil. ¹**H NMR** (700 MHz, CDCl₃) δ 8.4 (d, *J* = 5.6 Hz, 1H), 6.7 (dt, *J* = 8.1, 2.4 Hz, 2H), 5.9 (s, 1H), 3.9 (s, 3H), 3.3 (td, *J* = 6.9, 5.5 Hz, 2H), 2.8 (t, *J* = 7.6 Hz, 2H), 1.8 – 1.8 (m, 2H), 1.6 (p, *J* = 7.2 Hz, 2H), 1.2 (s, 9H);

¹³**C NMR** (126 MHz, CDCl₃) δ 178.6, 166.3, 163.5, 150.3, 108.9, 107.7, 55.2, 39.5, 38.8, 37.8, 29.0, 27.8, 27.1;

HRMS (ESI): Calc'd for C₁₅H₂₅N₂O₂ [M+H]⁺: 265.1911, found: 265.1910.

N-(4-(4-cyanopyridin-2-yl)butyl)pivalamide (9c): The title compound was prepared according to the representative procedure using 1a and 8c. Purification by preparative thinlayer chromatography (5% MeOH/CH₂Cl₂) provided the title compound (26.7 mg, 51%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (dd, *J* = 5.1, 0.9 Hz, 1H), 7.43 (s, 1H), 7.39 (dd, *J* = 5.0, 1.5 Hz, 1H), 5.88 (s, 1H), 3.30 (td, *J* = 6.9, 5.6 Hz, 2H), 2.91 (t, *J* = 7.6 Hz, 2H), 1.79 (tt, *J* = 8.9, 6.9 Hz, 2H), 1.64 – 1.39 (m, 2H), 1.21 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 178.8, 163.6, 150.1, 124.7, 122.7, 121.0, 116.7, 39.2, 38.7, 37.5, 29.1, 27.7, 26.7.

HRMS (ESI): Calc'd for C₁₅H₂₂N₃O [M+H]⁺: 260.1758, found: 260.1758.

N-(3-(4-(trifluoromethyl)pyridin-2-yl)propyl)pivalamide (**9d**): The title compound was prepared according to the representative procedure using **1m** and **8a**. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the title compound (35.8 mg, 62%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃): δ 8.69 (d, J = 5.2 Hz, 1H), 7.37 (s, 1H), 7.34 (d, J = 5.2 Hz, 1H), 6.11 (s, 1H), 3.31 (q, J = 6.6 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H), 1.99 (p, J = 7.1 Hz, 2H), 1.17 (s, 9H); ¹³**C NMR** (126 MHz, CDCl₃) δ 178.7, 163.1, 150.3, 138.9 (q, J = 33.9 Hz), 122.9 (q, J = 273.1 Hz), 118.7 (q, J = 3.6 Hz), 117.0 (q, J = 3.5 Hz), 39.2, 38.8, 35.7, 28.9, 27.7. ¹⁹**F NMR** (470 MHz, CDCl₃) δ -64.85 (s, 3F); **HRMS** (ESI): Calc'd for C₁₄H₂₀F₃N₂O [M+H]⁺: 289.1522, found: 289.1531.

N-(5-(4-(Trifluoromethyl)pyridin-2-yl)pentyl)pivalamide (**9e**): The title compound was prepared according to the representative procedure using **1n** and **8a**. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the title compound (32.8 mg, 52%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.68 (d, *J* = 5.1 Hz, 1H), 7.34 (s, 1H), 7.32 (dd, *J* = 5.1, 1.6 Hz, 1H), 5.62 (s, 1H), 3.23 (td, *J* = 7.2, 5.7 Hz, 2H), 2.92 – 2.79 (m, 2H), 1.85 – 1.73 (m, 2H), 1.54 (p, *J* = 7.3 Hz, 2H), 1.43 – 1.33 (m, 2H), 1.16 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 178.5, 163.8, 150.3, 138.7 (q, J = 33.7 Hz), 123.0 (q, J = 273.1 Hz), 118.4 (q, J = 3.6 Hz), 116.8 (q, J = 3.6 Hz), 39.4, 38.8, 38.3, 29.6, 29.3, 27.7, 26.6.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -64.82 (s, 3F).

HRMS (ESI): Calc'd for C₁₆H₂₄F₃N₂O [M+H]⁺: 317.1836, found: 317.1835.

N-(6-(4-(Trifluoromethyl)pyridin-2-yl)hexyl)pivalamide (**9f**): The title compound was prepared according to the representative procedure using **1o** and **8a**. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the title compound (26.1 mg, 39%) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.71 (d, J = 5.2 Hz, 1H), 7.37 (s, 1H), 7.34 (d, J = 4.9 Hz, 1H), 5.62 (s, 1H), 3.22 (td, J = 7.3, 5.7 Hz, 2H), 2.90 – 2.84 (m, 2H), 1.76 (p, J = 7.3 Hz, 2H), 1.51 (p, J = 7.3 Hz, 2H), 1.38 (qd, J = 9.8, 9.3, 4.1 Hz, 4H), 1.19 (s, 9H).

¹³**C NMR** (151 MHz, CDCl₃) δ 178.5, 164.0, 150.2, 138.8, 126.2 – 119.8 (m), 118.5 (q, *J* = 4.0, 3.5 Hz), 116.9 (q, *J* = 3.4 Hz), 39.6, 38.8, 38.3, 31.1, 29.6, 29.0, 27.8, 26.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.01 (s, 3F). **HRMS** (ESI): Calc'd for C₁₇H₂₆F₃N₂O [M+H]⁺: 331.1992, found: 331.1991.

N-(5-(4-(Trifluoromethyl)pyridin-2-yl)pentan-2-yl)pivalamide (**9g**): The title compound was prepared according to the representative procedure using **1g** and **8a**. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the title compound (31.8 mg, 50%) as a yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 8.61 (d, J = 5.2 Hz, 1H), 7.27 (s, 1H), 7.24 (dd, J = 5.2, 1.6 Hz, 1H), 5.42 – 5.32 (m, 1H), 3.95 (dq, J = 8.4, 6.6 Hz, 2H), 2.80 (qdd, J = 13.9, 8.7, 6.6 Hz, 2H), 1.68 (dddt, J = 18.3, 13.9, 8.9, 6.6 Hz, 2H), 1.47 – 1.35 (m, 2H), 1.09 (s, 9H), 1.03 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.9, 163.6, 150.2, 138.8 (q, J = 33.6 Hz), 123.0 (q, J = 273.1 Hz), 118.6 (q, J = 3.5 Hz), 116.9 (q, J = 3.5 Hz), 44.8, 38.7, 38.0, 36.6, 27.7, 26.2, 21.1. ¹⁹F NMR (470 MHz, CDCl₃) δ -64.84 (s, 3F).

HRMS (ESI): Calc'd for C₁₆H₂₄F₃N₂O [M+H]⁺: 317.1835, found: 317.1836.

2.11 Procedure for Autocyclization Reaction

2-(tert-Butyl)-5,6-dihydro-4H-1,3-oxazine (10m): To a 1-dram vial was added, sequentially, cyclic amine **1m** (31.1 mg, 0.20 mmol, 1 equiv), silver nitrate (136 mg, 0.80 mmol, 4 equiv), copper(II) tetrafluoroborate (190 mg, 0.80 mmol, 4 equiv), ammonium persulfate (183 mg, 0.80 mmol, 4 equiv) and 1 ml of a 1:1 acetone:H₂O solution. The resulting mixture was then stirred at 40 °C for 2 h. The reaction mixture was diluted with water (0.5 mL) and extracted with 3 x 3 mL of diethylether and the organic layers were discarded. The aqueous layer was then extracted with DCM (3 x 3 mL) and the combined DCM layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure, affording the title compound as a white solid (26.5 mg, 65%).

¹H NMR (500 MHz, CDCl₃) δ 10.1 (s, 1H), 4.7 (t, J = 5.5 Hz, 2H), 3.7 (d, J = 5.9 Hz, 2H), 2.2 (p, J = 5.7 Hz, 2H), 1.3 (d, J = 1.3 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 182.0, 70.0, 39.4, 39.1, 26.3, 18.7. HRMS (ESI): Calc'd for C₈H₁₆NO [M+H]⁺: 142.1226, found: 142.1227.

10v

2-phenyl-5,6-dihydro-4H-1,3-oxazine (10v): The title compound was prepared according to the representative procedure using phenyl(piperidin-1-yl)methanone. Preparative TLC (1:1 Et_2O/DCM) afforded the title compound **10v** (18.0 mg, 40%) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 11.54 (s, 1H), 8.01 – 7.93 (m, 2H), 7.67 (td, J = 7.4, 1.2 Hz, 1H), 7.51 (t, J = 8.0 Hz, 2H), 4.81 (t, J = 5.4 Hz, 2H), 3.83 (t, J = 6.0 Hz, 2H), 2.30 (p, J = 5.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 135.7, 129.5, 128.5, 125.4, 70.2, 39.6, 19.1. HRMS (ESI): Calc'd for C₁₀H₁₂NO [M+H]⁺: 162.0913, found: 162.0914.

2.12 Counterion Effect for Autocyclization Reaction

The autocyclization reaction was conducted according to the representative procedure above but instead using copper salts with different counter-anions to determine whether other products, such as the expected olefin or ligand-transfer products⁸, might be formed. The only materials observed were the open chain aldehyde, carboxylic acid, cyclization product, and unreacted substrate.

[Cu]	recovered 1m [%] [#]	3m yield [%] [#]	4m yield [%] [#]	10m yield [%] [#]
CuCl ₂	33	3	5	—
CuBr ₂	69	3	3	—
Cu(OAc) ₂ · H ₂ O	16	9	15	3
$CuSO_4 \cdot 5H_2O$	—	—	13	12
Cu(MeCN) ₄ BF ₄	_	_	46	6

[#] Yield and conversion by ¹H integration using Ph₃CH as internal standard.

3. Computational Details

3.1 General Computational Considerations for Photo- and Copper-Mediated Reactions

Optimization of all reported structures and frequency calculations for the reactions of (a) the riboflavin tetraacetate (2a), potassium persulfate, and N-Piv-piperidine (1a), as well as the reaction of (b) CuBF₄, sodium-persulfate, and N-Piv-piperidine (1a) were performed using the Gaussian-16 suite of programs⁹ at the B3LYP-D3(BJ)/[6-31G(d,p) + Lanl2dz (Cu)] level of theory with the corresponding Hay-Wadt effective core potential^{10–12} for Cu. Therefore, in the calculations described here, we used the B3LYP density functional^{13–15} with Grimme's empirical dispersion-correction (D3)¹⁶ and Becke-Johnson (BJ) damping-correction.^{17–19} Frequency analyses were used to characterize each minimum and transition state (TS) with zero and one imaginary frequency, respectively. Intrinsic reaction coordinate (IRC) calculations were performed for all TSs to ensure their true nature. Bulk solvent effects were incorporated for all calculations (including geometry optimizations and frequency calculations) using the self-consistent reaction field polarizable continuum model (IEF-PCM).^{20,21} Water was chosen as solvent. The reported thermodynamic data were computed at a temperature of 298.15 K and at 1 atm of pressure. Various spin states (including the open-shell singlet states, where that is appropriate) were considered for all key species. All UV-Vis calculations were performed at the TD-DFT [14] level of theory.²² Previously, we^{23,24} and others^{25,26} have demonstrated that the B3LYP-D3(BJ) and B3LYP are a reasonable choice for geometry optimization, frequency calculations, as well as for calculation of the relative energies. The role of intersystem crossing (ISC) was examined by locating low energy points on the singlettriplet crossing surfaces, or seams. These points, which we call minima on the seam of crossing (MSX), were searched using the MECPRO optimize [see: Hamill LA, Snyder JD, Ess DH (2016) MECPro Version 1.0.3: Minimum Energy Crossing Program] by starting from each of the triplet and singlet minima along the reaction pathway. We used the xTB's Conformer-Rotamer Ensemble Sampling Tool (CREST) software to identify possible stable conformers of **{(2.A.m)**-[K₂S₂O₈]} and {(2.A.m)–[K₂S₂O₈]}–(1a). In these calculations, conformers were sampled using the MF-MD-GC workflow. Later, we utilized the outcomes of these conformational analyses in our DFT calculations, and always have validated the related potential conformers. However, in this Article, we discussed only lowest energy structures.

3.2 Critical Interactions in {(2.A.m)–[K₂S₂O₈]} and {(2.A.m)–[K₂S₂O₈]}–(1a)

We wish to emphasize that our initial conformational analyses of $\{(2.A.m) - [K_2S_2O_8]\}$ and $\{(2.A.m)-[K_2S_2O_8]\}-(1a)$, performed using the xTB's Conformer-Rotamer Ensemble Sampling Tool (CREST) software, have enabled us to identify several critically important interactions both between (2.A.m) and $K_2S_2O_8$ as well as between the $\{(2.A.m)-[K_2S_2O_8]\}$ unit and substrate 1a (See Figure S6). Over the course of this study, we always have utilized these interactions for design of our DFT calculations. Thus, we always validated the related potential conformers, and we discuss only the lowest energy structures in this Article.

Figure S6. The validated conformers of the {(2.A.m)–[K₂S₂O₈]} and {(2.A.m)–[K₂S₂O₈]}–(1a) structures.

3.3 Verification of Photocatalyst Model

Figure S7. Validation for the use of the isoalloxazine monoacetate as a model for isoalloxazine tetraacetate.

Figure S8. The calculated geometry parameters and relative energies of isoalloxazine monoacetate, (2.A.m), substrate **1a**, iminium ion **1.A**, $Na_2S_2O_8$, and $K_2S_2O_8$.

Excited State 1, Singlet-?Sym Wavelength (nm) = 422.76, Oscillator Strength = 0.21

Excited State 1, Singlet-?Sym Wavelength (nm) = 424.76, Oscillator Strength = 0.168

Figure S9. The calculated UV-vis spectra of isoalloxazine monoacetate, (2.A.m, isoalloxazine - persulfate (2.A.m)– $[K_2S_2O_8]$, and {(2.A.m)– $[K_2S_2O_8]$ –(1a)} systems.

Table S9. Excitation energies (in eV and nm), oscillator strengths (f) for the isoalloxazine monoacetatepersulfate adduct, **{(2.A.m)–[K₂S₂O₈]–(1a)}**, and associated frontier molecular orbitals.

Excited State 1: Singlet-A 2.7723 eV 447.23 nm f=0.0032 (dark) HOMO -> LUMO 0.70640 Excited State 2: Singlet-A 2.9117 eV 425.81 nm f=0.2049 (bright) HOMO-3 -> LUMO 0.13122 HOMO-1 -> LUMO 0.68961 Excited State 3: Singlet-A 3.1542 eV 393.08 nm f=0.0002 (dark) HOMO-2 -> LUMO 0.70468 Excited State 4: Singlet-A 3.3778 eV 367.06 nm f=0.0065 (dark) HOMO-8 -> LUMO 0.45939 HOMO-6 -> LUMO -0.23666 HOMO-5 -> LUMO 0.45320 Excited State 5: Singlet-A 3.5251 eV 351.72 nm f=0.2539 (bright) HOMO-3 -> LUMO 0.66806 -0.11662 HOMO-1 -> LUMO HOMO-1 -> LUMO -0.12354

-----MOs-----

LUMO+1 energy = -0.045754 a.u.

HOMO -0.234451 a.u.

HOMO-1-0.235775 au.u

To validate that $K_2S_2O_8$ is not the photocatalyst under blue light irradiation, we have calculated the several lower-lying excited states of $K_2S_2O_8$ at the TD-DFT level. These calculations (see Figure S10) show that the first feasible excited transition of its UV-Vis spectra is the S_0/S_4 transition at 201.1 nm with a transition dipole of f = 0.0102. This is the HOMO-3 \rightarrow LUMO transition, where the LUMO is the antibonding orbital of the peroxy O–O bond. Indeed, at 450 nm irradiation, flavin catalysis should lead to substrate oxidation rather than the persulfate homolysis.

Figure S10. The calculated UV-Vis spectrum of the $K_2S_2O_8$ oxidant and associated frontier molecular orbitals with their energies (in a.u.). Here, we also show the character of the first four transitions as well as their energies and dipole moments (f).

3.4 Computed Reaction Mechanism for Photo-Mediated Reaction

Figure S11. Computed reaction mechanism for the photocatalytic transformation of *N*-Piv-piperidine (1a) to iminium ion 1.A by the reaction of riboflavin monoacetate (2.A.m), 1a, and $K_2S_2O_8$. All energies are listed in kcal/mol, and energy differences are shown in parentheses. Here, the energies given for the reaction $T_1 \rightarrow [(S)-3]$ are Gibbs free energies (calculated relative to the T_1 state), except the energy of the MSX-2 which is an electronic energy (E) calculated relative to that of the (T)-1 intermediate. The presented energies for the $S_0 \rightarrow T_1$ are electronic energies, calculated relative to the S_0 state.

The processes leading to the formation of iminium ion and (S)–2 intermediate were presented in main text. From the byproduct (S)–2 (i.e.,{(2.F.m)–[K₂S₂O₈]}), the reaction undergoes *SET*, *HAT*, and *O–O* homolysis to form the singlet state complex {(2.A.m)–[K₂SO₄]– [HOSO₃[–]], (S)-3. This process may proceed in a stepwise or concerted fashion. The conversion (S)–2 \rightarrow (S)–3 is calculated to be highly exergonic (by 77.4 kcal/mol). Because of the multicomponent nature of this reaction, we failed to locate the associated transition state(s). However, we have established that the first step of this multi-step process is a SET from the fully reduced isoalloxazine-acetate, (2.F.m), to the potassium-persulfate.

3.5 Optimized Structure Energy Components for Photo-Mediated Reaction

Table S10. Calculated total electronic (E_{tot}), E_{tot} with zero-point energy corrections (E_{tot} + ZPEC), enthalpy (H), and Gibbs free energies (in Hartrees; all values are negative) of all reported structures for the reaction of the isoalloxazine-acetate, potassium persulfate, and N-Piv-piperidine (**1a**)

Str	-E _{tot}	-E _{tot} + ZPEC	-H	–G
(2.A.m)_sing	1139.423323	1139.110825	1139.088549	1139.16196
(2.A.m)_trip	1139.351508	1139.042038	1139.019378	1139.094658
(2.A.m)_1min	1139.540237	1139.230171	1139.20776	1139.281876
(2.A.m)_1plus	1139.200118	1138.88866	1138.866161	1138.940735
$K_2S_2O_8$	2598.037921	2598.003612	2597.988744	2598.048963
K ₂ SO ₄	1899.058273	1899.041357	1899.032089	1899.078054
(2.A.t), sing	1406.636299	1406.253586	1406.225075	1406.31546
(2.A.th), sing	1673.850366	1673.396492	1673.362321	1673.465634
(2.A.f), sing	1941.066384	1940.541517	1940.501644	1940.618886
1a , singlet	522.575576	522.29325	522.279314	522.331989
1a , triplet	522.4478571	522.169834	522.155278	522.211105
1a_ 1plus	522.3498876	522.069779	522.055457	522.110236
1a _1minus	522.5861193	522.309523	522.295276	522.349493
1.A	521.7908303	521.52002	521.506158	521.558656
(2.A.m)_ K ₂ S ₂ O ₈ S ₀ '	3737.498766	3737.150155	3737.112509	3737.2236
(2.B*.m)_ K ₂ S ₂ O ₈ , T ₁ '	3737.426034	3737.080619	3737.042464	3737.156538
$(2.A.m)_K_2S_2O_8_1a, T_1$	4260.038301	4259.408437	4259.355687	4259.49964
sing	4260.100542	4259.467873	4259.415338	4259.558948
[2.C.m]_ K ₂ S ₂ O ₈ _1min, doub	3737.618466	3737.272547	3737.234512	3737.348769
quartet	3737.489247	3737.148696	3737.109624	3737.224997
(T)-1	4260.055298	4259.42552	4259.372532	4259.517803
(S)-1	4260.060305	4259.428837	4259.376186	4259.518369
$[2.F.m]_K_2S_2O_8_1min$				
Singlet	3738.225214	3737.867193	3737.828621	3737.943193
Triplet	3738.150189	3737.795498	3737.756296	3737.873933
[2.A.m]_HOSO ₃ _K ₂ SO ₄ _1min				
	3738.352924	3737.993242	3737.955312	3738.066452

3.6 Optimized Structures and Energy Components for Copper-Mediated Reaction

Figure S12. Computed relevant intermediates along with their geometry parameters (in Å) and relative energies (in kcal/mol) for the reaction of CuBF₄, N-Piv-piperidine (**1a** or **LH**) and sodium persulfate (Na₂S₂O₈).

Table S11. Calculated total electronic (E_{tot}), E_{tot} with zero-point energy corrections (E_{tot} + ZPEC), enthalpy (H), and Gibbs free energies (in Hartrees; all values are negative) of all reported structures for the reaction of CuBF₄, sodium-persulfate, and N-Piv-piperidine **1a**.

Str	-E _{tot}	–(E _{tot} + ZPEC)	-H	—G
SO ₄ _min	699.1222694	699.108177	699.102801	699.13656
HOSO ₃ , 1min	699.7899769	699.76346	699.757571	699.791896
H ₂ O	76.4257436	76.40442	76.400641	76.422735
H ₂ SO ₄	700.228991	700.190672	700.184452	700.219072
Na ₂ SO4	1023.859253	1023.84169	1023.832966	1023.875261
LH, chair	522.575576	522.29325	522.279314	522.331989
CuBF4	620.6138319	620.598672	620.591333	620.630662
$Na_2S_2O_8$	1722.821866	1722.786712	1722.772502	1722.828513
LH_CuBF ₄	1143.251625	1142.951678	1142.92987	1143.004439
Na ₂ S ₂ O ₈ _CuBF ₄	2343.502843	2343.451628	2343.429223	2343.505589
[(LH)–(NaSO ₄)]–[NaSO ₄	₄−CuBF₄]			

triplet	2866.165074	2865.829466	2865.792933	2865.899653
singlet	2866.134761	2865.798742	2865.761898	2865.871906
TS(H-transf)	2866.152814	2865.823397	2865.787345	2865.893068
[L–OSO ₃ Na]–[NaHSC	D ₄ –CuBF ₄]			
singlet	2866.259207	2865.920586	2865.884829	2865.988907
[(LOH)-CuBF ₄]-NaH	SO ₄] ₂			
	2942.705094	2942.340241	2942.302495	2942.411233
[(LNHCO)-CuBF ₄]-[N	laHSO ₄] ₂			
singlet	2942.703819	2942.342931	2942.303953	2942.415055
LNHCO	597.8048282	597.521264	597.50508	597.563274
[(NaHSO ₄) ₂ –CuBF ₄]				
	2344.846166	2344.771362	2344.748954	2344.824479

3.7 General Computational Considerations for Computations in Figure 13

All calculations were conducted using DFT²⁷ implemented in the Gaussian 09 suite²⁸ of ab initio quantum chemistry programs with Becke's three-parameter exchange functional B3LYP including Grimme's D3 dispersion correction with Becke-Johnson damping levels of theory.^{13,14,16,29-32} Geometry optimizations were conducted using Pople's 6-31G(d,p) basis set for main group elements.^{33–38} Copper was modeled using the Los Alamos ECP plus DZ basis (LANL2DZ) that includes relativistic effective core potentials.¹⁰ The energies of the optimized structures were reevaluated by additional single-point calculations on each optimized geometry using the same functional and Pople's 6-311++G(d,p) basis set.^{39–42} Copper was remodeled for single-point calculations using Stuttgart group effective core potential SDD.⁴³ Solvation effects were adopted at the same level of single-point calculations and at the self-consistent reaction field polarizable continuum model (IEF-PCM) with a dielectric constant of 78.3553 for water.⁴⁴ The Gibbs free energies were computed with the following equations.

$G(sol) = \epsilon(sol) + G(corr)$	(1)
G(corr) = H(corr) – TS(tot)	(2)
$H(corr) = E(tot) + k_BT$	(3)
E(tot) = E(t)+E(r)+E(v)+E(e)	(4)
S(tot) = S(t)+S(r)+S(v)+S(e)	(5)
$\Delta E(SCF) = \Sigma E(SCF)$ for products – $\Sigma E(SCF)$ for reactants	(6)
$\Delta G(sol) = \Sigma G(sol)$ for products – $\Sigma G(sol)$ for reactants	(7)

E(sol) is the electronic energy in solution phase computed from the SCF (self-consisted field) procedure with the IEF-PCM calculations; G(sol) is the free energy in solution phase; G(corr) is the thermal correction to the free energy; T is the temperature (298.15 K); S(tot) is the entropy; E(tot) is the total internal thermal energy; E(t), E(r), E(v), and E(e) are the internal thermal energies from translation, rotation, vibration, and electronic motions, respectively; S(t), S(r), S(v), and S(e) are the entropy we refer to is specifically of the solute(s), and the entropy of the solvent is implicitly comprised in the continuum solvation model.

3.8 Reaction Rate Comparison Between 11-TS and 11-TS'.

Figure S13. Electronic energy surface plot for the cyclization of **11** toward dihydro-oxazine (**10m**) with respect to the O1–C6 distance.

To investigate the reaction rate for the cyclization of **11** toward the cyclized product, dihydro-oxazine (**10m**), we have conducted a potential energy surface scan from **11** to **10m** with respect to the O1–C6 bond length as shown in Figure S13. However, despite our efforts with various methods, the transition state calculations for the cyclization did not converge. Instead, we assumed that the transition might require free energy of about 0.5 kcal/mol, which is the electronic energy difference between two points at r(O1-C6) = 2.68 Å (**11**) and at r(O1-C6) = 2.48 Å (**11-TS** in Figure S13). Because of this uncertainty, we denoted the Δ G(sol) for **11-TS** as ~–0.8 in Figure S13.

More significant is the relative reaction rate for the cyclization as compared to the rate of deprotonation. On the basis of transition state theory, the equilibrium constant for the quasi-equilibrium, K^{\dagger} , can be written as,

$$K^{\dagger} = \exp(-\Delta G^{\dagger}/RT)$$

The ratio [**11-TS**]/[**11**] is then estimated to be exp($-(0.5 \times 4182 \text{ J})/(8.3145 \text{ J} \cdot \text{K}^{-1} \times 298.15 \text{ K})$)=0.43. Whereas, for the deprotonation, the ratio [**11-TS'**]/[**11**] is calculated to be [H₂O]×exp($-(9.73 \times 4182 \text{ J})/(8.3145 \text{ J} \cdot \text{K}^{-1} \times 298.15 \text{ K})$)=4.13×10⁻⁶, where [H₂O] = 55.6. The rate constant k[‡] for the bimolecular reaction is known to be generally much lower than that of the unimolecular reaction, we posit that the cyclization of **11** is at least 10⁵ times faster than the deprotonation.

3.9 Energy Components for Optimized Structures in Figure 13

	E(sol)(SCF)/(Hartree)	Thermal Correction to G/(Hartree)
	B3LYP-D3 /6-311++G(d,p)/SDD	B3LYP-D3 /6-31G(d,p)/LANL2DZ
Cu ^I (H ₂ O) ₂	-350.17225	0.01968
H ₂ O	-76.26704	0.00371
H₃O⁺	-76.85586	0.01528
со	-113.35032	-0.01411
11	-794.62020	0.23612
11-TS'	-871.08488	0.25297
12	-794.25191	0.22776
olefin	-444.04010	0.18358
10m	-444.48969	0.20236

 Table S12. Computed energy components for optimized structures.

4. X-ray Crystallographic Data

4.1 X-ray Analysis of 10m

A colorless block 0.12 x 0.08 x 0.05 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using omega scans. Crystal-to-detector distance was 30.23 mm and exposure time was 0.50 seconds per frame at low and 2.00 seconds at high angles, using a scan width of 0.5°. Data collection was 100% complete to 74.000° in 0. A total of 61459 reflections were collected covering the indices -21<=h<=21, -21<=k<=21, -8<=l<=8. 1204 reflections were found to be symmetry independent, with an R_{int} of 0.0652. Indexing and unit cell refinement indicated a primitive, tetragonal lattice. The space group was found to be P 42/m b c (No. 135). The data were integrated using the CrysAlis^{Pro} 1.171.40.68a software program and scaled using the SCALE3 ABSPACK scaling algorithm. Solution by intrinsic phasing (SHELXT-2015) produced a heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

This crystal structure has been deposited at the Cambridge Crystallographic Data Center under CCDC 2128702.

Table S13. Crystal data and structure refinement for	or JRoque_David.	
Identification code	JRoque_David	
Empirical formula	C8 H16 N2 O4	
Formula weight	204.23	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	Tetragonal	
Space group	P 42/m b c	
Unit cell dimensions	a = 17.20020(10) Å	a= 90°.
	b = 17.20020(10) Å	b= 90°.
	c = 6.94210(10) Å	g = 90°.
Volume	2053.80(4) Å ³	
Z	8	
Density (calculated)	1.321 Mg/m ³	
Absorption coefficient	0.893 mm ⁻¹	
F(000)	880	
Crystal size	0.120 x 0.080 x 0.050 mm ³	
Theta range for data collection	3.634 to 79.180°.	
Index ranges	-21<=h<=21, -21<=k<=21, -8<=l	<=8
Reflections collected	61459	

Independent reflections	1204 [R(int) = 0.0652]
Completeness to theta = 74.000°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.55325
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1204 / 0 / 99
Goodness-of-fit on F ²	1.175
Final R indices [I>2sigma(I)]	R1 = 0.0598, wR2 = 0.1451
R indices (all data)	R1 = 0.0608, wR2 = 0.1457
Extinction coefficient	n/a
Largest diff. peak and hole	0.278 and -0.359 e.Å ⁻³

Table S14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for jroque_david. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
O(1)	7080(1)	5330(1)	5000	34(1)
N(1)	8120(1)	4507(1)	5000	33(1)
N(2)	8130(2)	4606(1)	0	43(1)
O(4)	8791(1)	4837(1)	0	73(1)
O(2)	8016(1)	3891(1)	0	87(1)
C(4)	7382(1)	4630(1)	5000	28(1)
O(3)	7588(2)	5080(1)	0	83(1)
C(7)	8711(2)	5137(2)	5000	41(1)
C(2)	6768(1)	3996(2)	5000	34(1)
C(1)	7127(2)	3191(2)	5000	47(1)
C(3)	6268(2)	4101(1)	3207(5)	67(1)
C(6)	8324(2)	5882(2)	4215(6)	37(1)
C(5)	7600(2)	5995(2)	5361(10)	36(2)

 Table S15.
 Bond lengths [Å] and angles [°] for jroque_david.

O(1)-C(4)	1.310(3)
O(1)-C(5)	1.474(4)
N(1)-C(4)	1.286(3)
N(1)-C(7)	1.485(3)
N(1)-H(1)	0.88(4)
N(2)-O(4)	1.205(3)
N(2)-O(3)	1.239(3)
N(2)-O(2)	1.246(3)
C(4)-C(2)	1.518(3)
C(7)-C(6)	1.544(4)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(2)-C(1)	1.517(4)
C(2)-C(3)	1.523(3)
C(2)-C(3)#1	1.523(3)
C(1)-H(1A)	0.99(3)
C(1)-H(1B)	1.02(3)
C(3)-H(3A)	0.9800
C(3)-H(3B)	0.9800
C(3)-H(3C)	0.9800
C(6)-C(5)	1.490(6)

C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(4)-O(1)-C(5)	118.2(2)
C(4)-N(1)-C(7)	123.7(2)
C(4)-N(1)-H(1)	124(2)
C(7)-N(1)-H(1)	112(2)
O(4)-N(2)-O(3)	119.6(3)
O(4)-N(2)-O(2)	118.3(3)
O(3)-N(2)-O(2)	122.1(3)
N(1)-C(4)-O(1)	122.8(2)
N(1)-C(4)-C(2)	124.6(2)
O(1)-C(4)-C(2)	112.5(2)
N(1)-C(7)-C(6)	108.1(2)
N(1)-C(7)-H(7A)	110.1
C(6)-C(7)-H(7A)	110.1
N(1)-C(7)-H(7B)	110.1
C(6)-C(7)-H(7B)	110.1
H(7A)-C(7)-H(7B)	108.4
C(1)-C(2)-C(4)	111.9(2)
C(1)-C(2)-C(3)	109.71(16)
C(4)-C(2)-C(3)	107.95(15)
C(1)-C(2)-C(3)#1	109.71(16)
C(4)-C(2)-C(3)#1	107.95(15)
C(3)-C(2)-C(3)#1	109.6(3)
C(2)-C(1)-H(1A)	107.1(19)
C(2)-C(1)-H(1B)	110.9(13)
H(1A)-C(1)-H(1B)	109.4(16)
C(2)-C(3)-H(3A)	109.5
C(2)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
C(2)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
C(5)-C(6)-C(7)	106.3(3)
C(5)-C(6)-H(6A)	110.5
C(7)-C(6)-H(6A)	110.5
C(5)-C(6)-H(6B)	110.5
C(7)-C(6)-H(6B)	110.5
H(6A)-C(6)-H(6B)	108.7
O(1)-C(5)-C(6)	108.3(3)
O(1)-C(5)-H(5A)	110.0
C(6)-C(5)-H(5A)	110.0
O(1)-C(5)-H(5B)	110.0
C(6)-C(5)-H(5B)	110.0
H(5A)-C(5)-H(5B)	108.4
· · · · · · · · · · · · · · · · · · ·	

Symmetry transformations used to generate equivalent atoms: #1 x,y,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	26(1)	21(1)	56(1)	0	0	-2(1)
N(1)	25(1)	23(1)	51(1)	0	0	-1(1)
N(2)	41(1)	26(1)	61(2)	0	0	6(1)
O(4)	39(1)	39(1)	143(3)	0	0	-3(1)
O(2)	44(1)	26(1)	191(4)	0	0	4(1)
C(4)	26(1)	22(1)	37(1)	0	0	-2(1)
O(3)	51(2)	36(1)	162(3)	0	0	18(1)
C(7)	24(1)	28(1)	71(2)	0	0	-6(1)
C(2)	23(1)	23(1)	54(2)	0	0	-4(1)
C(1)	31(1)	23(1)	87(3)	0	0	-3(1)
C(3)	62(2)	42(1)	96(2)	11(1)	-41(2)	-18(1)
C(6)	35(2)	26(2)	49(2)	3(2)	-2(2)	-6(1)
C(5)	35(2)	21(1)	53(6)	-3(2)	0(2)	-7(1)

Table S16. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for jroque_david. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

Table S17. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^3$) for jroque_david.

	х	У	Z	U(eq)
H(7A)	9157	4989	4176	49
H(7B)	8904	5226	6325	49
H(3A)	6001	4604	3268	100
H(3B)	5883	3682	3142	100
H(3C)	6599	4084	2059	100
H(6A)	8675	6334	4370	44
H(6B)	8198	5822	2831	44
H(5A)	7727	6027	6749	44
H(5B)	7341	6485	4975	44
H(1A)	6692(19)	2813(19)	5000	40(9)
H(1B)	7459(15)	3108(13)	3810(40)	58(8)
H(1)	8330(20)	4050(20)	5000	48(10)

 Table S18.
 Torsion angles [°] for jroque_david.

C(7)-N(1)-C(4)-O(1)	0.0
C(7)-N(1)-C(4)-C(2)	180.0
C(5)-O(1)-C(4)-N(1)	-11.1(3)
C(5)-O(1)-C(4)-C(2)	168.9(3)
C(4)-N(1)-C(7)-C(6)	-21.79(18)
N(1)-C(4)-C(2)-C(1)	0.0
O(1)-C(4)-C(2)-C(1)	180.0
N(1)-C(4)-C(2)-C(3)	-120.80(18)
O(1)-C(4)-C(2)-C(3)	59.20(18)
N(1)-C(4)-C(2)-C(3)#1	120.80(18)
O(1)-C(4)-C(2)-C(3)#1	-59.20(18)
N(1)-C(7)-C(6)-C(5)	51.9(3)
C(4)-O(1)-C(5)-C(6)	44.2(5)
C(7)-C(6)-C(5)-O(1)	-63.1(4)

Symmetry transformations used to generate equivalent atoms: #1 x,y,-z+1

5. NMR Spectral Data

Pivaloyl Protected Cyclic Amines

2,2-dimethyl-1-(3-methylpiperidin-1-yl)propan-1-one

2,2-dimethyl-1-(3-phenylpiperidin-1-yl)propan-1-one

1-(4-(4-chlorophenyl)piperidin-1-yl)-2,2-dimethylpropan-1-one

1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1*H*)-yl)-2,2-dimethylpropan-1-one

2,2-dimethyl-1-(piperidin-1-yl-d₁₀)propan-1-one

NMR Spectra – Photocatalyst Screening

S69

5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 f1 (ppm)

NMR Spectra – Reaction Optimization

Optimization of Reaction Time

For spectra of catalyst **S9** and **2a** for 60 min reaction time, see pg. S69.

S71

Optimization of Catalyst Loading

For spectrum of catalyst 2a for 5 mol% catalyst loading, see pg. S71.

Optimization of Oxidant and Solvent

For spectrum of catalyst 2a and 3 equiv. $K_2S_2O_8$, see pg. S71.

S73

NMR Spectra – Variation of Reaction Parameters

NMR Spectra – N-Protecting Groups

For spectrum of N-Piv piperidine, see pg. S71.

NMR Spectra – Aldehyde Products

N-(5-oxopentyl)pivalamide

5-pivalamidopentanoic acid

N-(4-oxobutyl)pivalamide

4-pivalamidobutanoic acid

N-(6-oxohexyl)pivalamide

6-pivalamidohexanoic acid

N-(7-oxoheptyl)pivalamide

N-((15,2R)-2-(3-oxopropyl)cyclohexyl)pivalamide

N-(3-(4-chlorophenyl)-5-oxopentyl)pivalamide

S84

N-(5-oxo-3-phenylpentyl)pivalamide

N-(3-methyl-5-oxopentyl)pivalamide

Methyl 5-oxo-3-(2-pivalamidoethyl)pentanoate

Ethyl 4-oxo-2-(2-pivalamidoethyl)butanoate

N-(7-oxoheptan-3-yl)pivalamide

Contraction of the second seco

N-(6-oxohexan-2-yl)pivalamide

3g

N-(2-methyl-5-oxopentyl)pivalamide (3i.a) and *N*-(4-methyl-5-oxopentyl)pivalamide (3i.b)

N-(5-oxo-2-phenylpentyl)pivalamide and N-(5-oxo-4-phenylpentyl)pivalamide

N-(2-formylphenethyl)pivalamide

N-(2-formyl-4,5-dimethoxyphenethyl)pivalamide

NMR Spectra – Acid Products

5-pivalamidohexanoic acid

3-phenyl-5-pivalamidopentanoic acid

3-methyl-5-pivalamidopentanoic acid

S99

5-methoxy-5-oxo-3-(2-pivalamidoethyl)pentanoic acid

3-(2-pivalamidocyclohexyl)propanoic acid

(S)-6-methoxy-6-oxo-5-pivalamidohexanoic acid

(S)-5-methoxy-5-oxo-4-pivalamidopentanoic acid

N-(5-oxo-5-phenylpentyl)pivalamide

5-oxo-5-phenylpentanoic acid

5-oxo-5-phenylpentanoic acid

(4*S*)-5-(((3*R*)-3-(*tert*-butoxy)-1-methoxy-1-oxobutan-2-yl)amino)-5-oxo-4-pivalamidopentanoic acid

(S)-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-5-oxo-4-pivalamidopentanoic acid

1,3-dioxoisoindolin-2-yl (S)-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-5-oxo-4pivalamidopentanoate

Dimethyl 2,2'-(((S)-2-pivalamidopentanedioyl)bis(azanediyl))(2S,2'S)-bis(3-methylbutanoate)

NMR Spectra – Minisci Products

S114

S115

N-(3-(4-(trifluoromethyl)pyridin-2-yl)propyl)pivalamide

					n al est-tautures				- Liden de vien et ret	Persona (1997) 1997	Maro,

N-(5-(4-(trifluoromethyl)pyridin-2-yl)pentyl)pivalamide

			-64								

N-(6-(4-(trifluoromethyl)pyridin-2-yl)hexyl)pivalamide

NMR Spectra – Autocyclization Products

2-(tert-butyl)-5,6-dihydro-4H-1,3-oxazine

80 70 60 50 40 30 20 10 0 -10

90

140 130 120 110 100 f1 (ppm)

210 200 190

180

170 160 150

2-phenyl-5,6-dihydro-4H-1,3-oxazine

6. Computational Coordinates and Vibrational Frequencies

Table S19. Cartesian coordinates (in Å) of all calculated structures for the riboflavin and copper(I) oxidation reactions.

Na₂SO₄

O -0.83724700 -2.60478100 -1.19689300 Na -4.09655100 -4.68065400 -0.44750400 S -2.02264500 -3.30178700 -1.84032300 O -2.02830200 -4.77595300 -1.47741600 O -3.32385800 -2.69881300 -1.34213100 O -1.90034800 -3.12796100 -3.34366900 Na 0.06257000 -1.92300200 -3.21157100

HSO₄_1min

O -1.56928000 -2.19594600 -0.93216000 S -2.09534900 -3.24272600 -2.12780700 O -2.09854800 -4.58211600 -1.49366100 O -3.43360800 -2.69149400 -2.42267400 O -1.10820900 -3.10375100 -3.22448000 H -0.68275500 -2.49111700 -0.66877800

SO₄_minus

O -1.67668000 -2.32464200 -0.91454800 S -2.02818900 -3.28715100 -2.06255000 O -2.20590400 -4.67250300 -1.57908200 O -3.37715400 -2.61451100 -2.37014800 O -1.08387400 -3.15906300 -3.19227200

NaHSO₄

O -0.84364300 -2.71477400 -1.16892100 S -1.93361200 -3.45523600 -1.86965300 O -2.07257200 -4.86392000 -1.46080900 O -3.34513700 -2.70345500 -1.44001300 O -1.89945700 -3.20572300 -3.33515400 Na -0.03018500 -1.71982800 -3.16793500 H -3.52334700 -2.91757700 -0.50889600

1a

N -1.48973100 1.18530800 0.57649100 C -0.50213800 1.37469200 -0.50409900 C -0.42329800 2.84673300 -0.93089900 C -1.82708600 3.45952300 -0.95637200 C -2.42978800 3.47251000 0.46687200 C -1.77629300 2.39468800 1.34908000 H 0.47962400 0.99882600 -0.18708000 H 0.21996300 3.41698200 -0.25056400 H -1.80591100 4.47012400 -1.37486400 H -2.27317800 4.44497900 0.94634000 H -2.39994600 2.16309800 2.20372100 H -3.51114000 3.30834800 0.41857500 H -0.82709100 2.76720400 1.75332600 H -2.45830300 2.85608400 -1.61956500 H 0.04794500 2.89425600 -1.91746500 H -0.82178200 0.75634200 -1.34577200 C -1.95376700 -0.08535900 0.76395100 O -1.49696500 -1.00064400 0.06410400 C -3.04754500 -0.40437800 1.81883600

C -4.31900700 0.44757100 1.61257100 H -5.11084200 0.07763400 2.27190100 H -4.18403000 1.50658100 1.83274500 H -4.67571400 0.36217800 0.58118100 C -3.44869800 -1.87991800 1.63016100 H -2.59087300 -2.54288600 1.75684200 H -4.20983300 -2.14429500 2.37101300 H -3.86050800 -2.05305500 0.63275000 C -2.48566500 -0.25634800 3.25057000 H -1.60178100 -0.88904900 3.37993700 H -2.20378000 0.76591500 3.50835300 H -3.24105000 -0.58240400 3.97294300

1.A

N -1.68274700 1.30592400 0.51590600 C -1.29523400 1.41346600 -0.71435500 C -1.10977000 2.69185200 -1.43211000 C -1.16029700 3.92986800 -0.53429800 C -2.22823400 3.73919000 0.54275100 C -1.93726100 2.49881000 1.37731500 H -0.17319800 2.60954300 -1.99667600 H -0.18289100 4.08017800 -0.06483100 H -2.26292800 4.59497400 1.22112300 H -2.77056900 2.26244300 2.03018800 H -3.21835900 3.64381400 0.08392100 H -1.04347800 2.61971500 1.99584200 H -1.37040700 4.81354700 -1.13982300 H -1.89728900 2.70733900 -2.20212800 H -1.10984100 0.48012000 -1.23902600 C -1.75415900 -0.10105200 1.06809200 O -0.84080000 -0.81771100 0.76562500 C -2.98320400 -0.50919500 1.87242300 C -4.27047200 0.09378800 1.27429800 H -5.12491200 -0.30871600 1.82412900 H -4.32177600 1.18115100 1.34739000 H -4.38350000 -0.18500800 0.22307200 C -3.06290000 -2.04783000 1.79226000 H -2.16960500 -2.51333300 2.21223200 H -3.93301000 -2.38325000 2.36166700 H -3.17479800 -2.38379800 0.75819700 C -2.79842300 -0.11179300 3.35964100 H -1.87121700 -0.52984500 3.75979700 H -2.79116400 0.96567800 3.52835200 H -3.63539000 -0.52958000 3.92533500

1a_OH

N -1.43566600 1.18260000 0.61171800 C -0.44309000 1.38299000 -0.43627200 C -0.48712000 2.82941900 -0.95774700 C -1.92201500 3.36421200 -0.93393200 C -2.42296000 3.44867200 0.52266500 C -1.71673300 2.39061800 1.39206200 H 0.15920500 3.45176200 -0.32765800

```
H -1.98172600 4.34085800 -1.42234700
H -2.21300000 4.43672700 0.94640300
H -2.29544400 2.15354700 2.27627000
H -3.50733000 3.30575800 0.55727500
H -0.75467800 2.77528600 1.74668700
H -2.56229900 2.68410700 -1.50774400
H -0.06703600 2.85112400 -1.96808900
H -0.69153400 0.68408700 -1.23933200
C -1.97553200 -0.07657400 0.73729900
O -1.58566300 -0.98149900 -0.00709100
0 0.83368300 1.05735700 0.11607400
H 1.49422300 1.22650200 -0.57068700
C -3.06505400 -0.38230100 1.79918500
C -4.30131800 0.53151000 1.65089900
H -5.10474300 0.15118500 2.28957200
H -4.12402000 1.56714300 1.93946100
H -4.66475000 0.52594600 0.61836900
C -2.46706900 -0.30933000 3.22202600
H -2.12506300 0.68781900 3.50378500
H -3.22524300 -0.61661800 3.94942800
H -1.61669600 -0.99236000 3.31344100
C -3.53521900 -1.83106200 1.56700800
H -2.70531800 -2.53529500 1.64832000
H -4.28943400 -2.08867100 2.31698600
H -3.97852200 -1.94869300 0.57502400
```

$Na_2S_2O_8$

S 1.62960000 2.08771400 -5.89558900 O 0.70032800 3.10867100 -5.35698100 O 0.99701800 1.19925700 -6.89813400 O 2.98644100 2.54504200 -6.21053600 S 0.74807400 -0.96887500 -3.54144200 O 0.92503700 -1.68173200 -4.82869500 O -0.60581200 -1.02156300 -2.97171900 O 1.87546000 -1.11171200 -2.61362200 Na 0.99865200 -1.05055800 -6.98683900 Na -0.53182400 2.63685500 -3.44496800 O 0.71857600 0.70894400 -3.95828500 O 1.99911100 1.09863500 -4.54952800

$K_2S_2O_8$

S 1.64186700 2.07693400 -5.78680500 O 1.48475300 3.36651800 -5.09729700 O 0.35345100 1.45584300 -6.19332100 O 2.72063300 1.96051700 -6.78334300 S 0.78866500 -0.81056400 -3.45713200 O 0.75815500 -1.33886600 -4.83427100 O -0.53809100 -0.54550700 -2.85607300 O 1.78575100 -1.43231100 -2.57526600 K 1.30854200 -0.87143400 -7.37190400 K -1.42993200 1.83622800 -4.10374900 O 1.27506600 0.85089300 -3.58518500 O 2.29180000 1.00242800 -4.61199200

(2.A.m), SINGLET

C -10.49493900 -0.18817900 -0.06030800 C -9.84257500 -0.75029700 1.01751500 C -8.71001000 -0.14349700 1.60353200

```
C -8.21474500 1.07891900 1.06822100
C -8.88376900 1.65262100 -0.02571700
C -10.00036800 1.04334200 -0.58563600
N -8.13298200 -0.74466000 2.68157400
N -7.10245100 1.65099800 1.66874700
C -6.52211900 1.08036100 2.77675400
C -7.10175100 -0.16840600 3.23345200
C -6.47482900 -0.81446600 4.42076800
0 -6.85001400 -1.87087300 4.91094400
N -5.41454000 -0.09456600 4.92288900
C -4.90299300 1.12765600 4.43558000
N -5.50368200 1.69430600 3.33913400
H -10.18548400 -1.68105100 1.45700100
H -8.56250700 2.60045900 -0.43258600
H -4.94211900 -0.47904800 5.73317900
O -3.94593500 1.63285500 5.01240800
C -10.69498500 1.69711400 -1.74820300
H -10.20465300 2.63001600 -2.03172500
H -10.70662400 1.03446000 -2.62065700
H -11.74065900 1.91707500 -1.50596400
C -11.70438000 -0.84945500 -0.66486700
H -12.58184600 -0.19518500 -0.61576100
H -11.54253100 -1.08470600 -1.72265300
H -11.94276300 -1.77795900 -0.14232100
C -6.57600600 2.95405400 1.22762400
H -5.49959700 2.94150700 1.39285400
H -6.76442200 3.06663200 0.16309300
C -7.17870200 4.10004000 2.03320700
H -6.95878900 3.97674500 3.09305000
H -6.77302800 5.04642100 1.67268000
O -8.60525700 4.17908500 1.83667900
C -9.39331700 3.53926400 2.73580100
O -8.96363400 2.92890800 3.69461200
C -10.84315300 3.65912900 2.35484100
H -11.04351900 2.96495200 1.53212100
H -11.46948200 3.39361100 3.20570800
H -11.07344500 4.66720600 2.00537900
```

(2.A.m), TRIPLET

C -10.50250400 -0.13931500 -0.05930700 C -9.86745100 -0.71114800 1.04071600 C -8.72554000 -0.15434700 1.63562800 C -8.20453900 1.06928500 1.05326100 C -8.85741900 1.64427700 -0.05827500 C -9.98540300 1.07257900 -0.62122500 N -8.18764100 -0.77193700 2.72077700 N -7.08997600 1.63959600 1.63231600 C -6.52812100 1.03479200 2.77780400 C -7.10995000 -0.15880800 3.26847000 C -6.49052800 -0.75868400 4.45064700 O -6.86617900 -1.79154100 5.00265700 N -5.39646600 -0.04619200 4.94233200 C -4.87414700 1.12733400 4.42512200 N -5.47907900 1.65374500 3.28991400 H -10.25503300 -1.62294500 1.48163300 H -8.49470000 2.57161300 -0.47757000 H -4.94458200 -0.42296800 5.76738400 O -3.90915700 1.68171000 4.94813000

```
C -10.65982100 1.71919400 -1.79890200
H -10.14196600 2.63412900 -2.09290200
H -10.68196500 1.04671200 -2.66394600
H -11.70056700 1.97508300 -1.57015300
C -11.72197300 -0.78274500 -0.64554100
H -12.57798200 -0.09855200 -0.61138200
H -11.56433700 -1.02920300 -1.70205800
H -11.98636600 -1.69636600 -0.11118100
C -6.57509000 2.94964300 1.21621900
H -5.50232300 2.95895000 1.39811700
H -6.74244500 3.06908600 0.14885300
C -7.20805100 4.08920600 2.01479500
H -6.97244700 3.98526600 3.07389700
H -6.83379000 5.04199700 1.63729600
O -8.63635700 4.12336400 1.83605900
C -9.39122800 3.46673800 2.75286700
O -8.92625100 2.88153800 3.71069700
C -10.84893500 3.53644200 2.39193900
H -11.03208100 2.86068300 1.55025000
H -11.45299400 3.22255600 3.24226400
H -11.12322300 4.54462100 2.07535100
```

(2.A.m)_1plus

C -10.48532200 -0.16990300 -0.07289600 C -9.85009100 -0.72774600 1.03532200 C -8.72488500 -0.13787200 1.60776600 C -8.19537600 1.08423400 1.02907600 C -8.85292900 1.65134100 -0.09292800 C -9.96696500 1.05543400 -0.64036100 N -8.17695300 -0.71864700 2.71281200 N -7.10708800 1.64765900 1.61005700 C -6.53764800 1.07079800 2.74506600 C -7.14462300 -0.14433100 3.25198700 C -6.53323900 -0.75787400 4.47382200 O -6.94809800 -1.77518100 4.99420400 N -5.44974900 -0.04899300 4.95451700 C -4.91133900 1.12061800 4.42228200 N -5.50504200 1.66277900 3.27079900 H -10.22411500 -1.63779300 1.48910500 H -8.49936700 2.57572600 -0.52337700 H -4.99376900 -0.41335600 5.78500100 O -3.95109900 1.66308800 4.93689800 C -10.64878400 1.67668900 -1.82066900 H -10.14937400 2.59602700 -2.12727000 H -10.65827900 0.98448700 -2.66936200 H -11.69328200 1.90772300 -1.58621200 C -11.69091100 -0.82175700 -0.66126400 H -12.55046400 -0.14177500 -0.62604800 H -11.52593900 -1.05669600 -1.71924700 H -11.94675300 -1.73936200 -0.13176900 C -6.57734000 2.96084900 1.18111900 H -5.50339200 2.95121500 1.35371900 H -6.75961600 3.07771600 0.11798100 C -7.20431500 4.08915300 2.00301500 H -6.94495600 3.98268500 3.05630300 H -6.83246300 5.03887100 1.61762700 0-8.63304900 4.12838900 1.85176500 C -9.36914500 3.43614100 2.76156600

O -8.87052400 2.73753700 3.62271700 C -10.83886600 3.62195600 2.52018900 H -11.11666100 3.10588500 1.59581400 H -11.40111900 3.19946700 3.35146300 H -11.07567400 4.68020500 2.39236500

(2.A.m)_1minus

C -10.50883600 -0.17275400 -0.06763700 C -9.84799600 -0.75458200 1.00631100 C -8.71103500 -0.17647100 1.61912400 C -8.23062400 1.05928500 1.08748100 C -8.89915100 1.64485500 0.00830300 C -10.02688000 1.05559800 -0.57638700 N -8.14185600 -0.80945500 2.68138500 N -7.09605100 1.63434600 1.68861100 C -6.51917400 1.03930100 2.80545200 C -7.07120200 -0.18953300 3.25357300 C -6.44583800 -0.80662100 4.40973100 O -6.78235300 -1.87286600 4.94808200 N -5.36933800 -0.07992700 4.91652100 C -4.86959800 1.13718300 4.43616600 N -5.48580900 1.68553400 3.35338000 H -10.20006900 -1.69393100 1.42353600 H -8.57631300 2.60268200 -0.37720100 H -4.90408000 -0.47200500 5.72536200 O -3.90058300 1.65521800 5.01324700 C -10.71775900 1.73961900 -1.72856800 H -10.21979900 2.67782200 -1.98602600 H -10.73090300 1.10893200 -2.62607000 H -11.76460800 1.96875400 -1.49419300 C -11.72195200 -0.83403600 -0.67253700 H -12.60553400 -0.18717500 -0.61322900 H -11.57109700 -1.05949500 -1.73511100 H -11.95553100 -1.77029600 -0.15960400 C -6.57699900 2.92902600 1.25339000 H -5.50113200 2.93044800 1.42705600 H -6.75372000 3.04369700 0.18457800 C -7.17626400 4.09194400 2.03776800 H -6.97287800 3.97138900 3.10119600 H -6.76379900 5.03765700 1.67980600 O -8.60230200 4.17676100 1.82304300 C -9.40901000 3.58806000 2.73547000 O -9.01560900 3.08789200 3.77092800 C -10.84160200 3.61388400 2.27435400 H -10.97400500 2.81824600 1.53350900 H -11.50527100 3.43284300 3.11950100 H -11.08204300 4.56355900 1.79265000

(2.A.t), with two acetates

C -10.88276600 -0.48173900 -0.00614700 C -9.88349300 -0.96896800 0.81092200 C -8.68674500 -0.25326900 1.03385800 C -8.49372500 1.00365600 0.39458000 C -9.51389300 1.50051600 -0.43288900 C -10.68751500 0.78410000 -0.63583600 N -7.75522200 -0.78593500 1.87394500 N -7.30787700 1.68303000 0.63719000 C -6.36737700 1.18205900 1.50650300

C -6.66281700 -0.10989500 2.09585600 C -5.64773700 -0.68035800 3.02546600 0-5.75727100-1.761323003.58770100 N -4.55666000 0.14166500 3.19460300 C -4.33322300 1.40065600 2.59677200 N -5.28836400 1.89562400 1.74325900 H -9.98878900 -1.92249800 1.31754600 H -9.42013400 2.46924200 -0.90167200 H -3.82703100 -0.18670500 3.81703900 O -3.29803600 2.00050400 2.86515500 C -11.76063400 1.35727200 -1.51966800 H -11.46829100 2.32857800 -1.92239500 H -11.97629100 0.68664800 -2.35888200 H -12.69832600 1.48133100 -0.96667000 C -12.15331900 -1.25873700 -0.22396700 H -13.02958100 -0.68785900 0.10270900 H -12.30196200 -1.48939200 -1.28467100 H -12.13457400 -2.19956500 0.32958700 C -7.05629800 3.01695000 0.07386300 H -5.98570600 3.10461300 -0.09827300 H -7.57481000 3.10702100 -0.87800800 C -7.48298900 4.11654700 1.04760600 H -6.95272800 3.98848100 1.99177700 O -8.90353400 4.04483100 1.28517900 C -9.32416300 3.36980700 2.38816700 O -8.56998200 2.83182300 3.17217700 C -10.82503600 3.35481900 2.45979000 H -11.20090800 2.63976400 1.72079600 H-11.14142200 3.04200300 3.45402300 H -11.23567700 4.33596700 2.21427600 C -7.23604300 5.50423700 0.47647600 H -7.58377700 6.26832200 1.17598500 H -7.75427700 5.64277700 -0.47665700 O -5.81581600 5.61152300 0.28632600 C -5.38108900 6.75565800 -0.29192700 0 -6.13070900 7.65087300 -0.62367500 C -3.88508000 6.74278200 -0.45229200 H -3.55683800 7.67647500 -0.90673800 H -3.40725600 6.61337000 0.52274900 H -3.58661500 5.89780900 -1.07921300

(2.A.th), with three acetates

C -10.78353500 -0.43055800 -0.54791100 C -9.94942500 -0.82210900 0.47874800 C -8.82364700 -0.05825600 0.85789700 C -8.52954000 1.14780700 0.16126900 C -9.38035600 1.54547300 -0.88280200 C -10.48679900 0.78325200 -1.23795100 N -8.06110900 -0.49471100 1.89982100 N -7.42143900 1.88030900 0.56653600 C -6.65241200 1.47422700 1.63299000 C -7.03769000 0.22638000 2.26349700 C -6.21097700 -0.23590800 3.41376900 O -6.41015900 -1.27065000 4.03503700 N -5.18545500 0.63073600 3.71748400 C -4.86862000 1.84268200 3.06754700 N -5.64783300 2.23560900 2.00700600 H -10.13694200 -1.73328700 1.03691100

H -9.21018700 2.47291000 -1.41003300 H -4.58540000 0.37637500 4.49391500 O -3.91383700 2.49448200 3.47539000 C -11.38068900 1.25113000 -2.35286800 H -11.02756300 2.19193200 -2.77854700 H -11.42919300 0.50601900 -3.15467300 H -12.40635900 1.39736600 -1.99642200 C -11.98340600 -1.25538000 -0.92909000 H -12.91036700 -0.68072100 -0.82423900 H -11.92751000 -1.58001000 -1.97404600 H -12.06103100 -2.14418500 -0.29987300 C -7.09069300 3.18121800 -0.03490700 H -6.00906000 3.28191500 -0.02841900 H -7.44012900 3.20439800 -1.06361400 C -7.70542700 4.30527200 0.80308400 H -7.31031300 4.24447200 1.81724200 O -9.13830200 4.12411200 0.84190400 C -9.68483300 3.55440900 1.94383400 O -9.03646100 3.20225700 2.90955000 C -11.17236200 3.42048400 1.78479000 H -11.38427200 2.73274800 0.96073100 H -11.60719900 3.03787800 2.70679900 H -11.61073200 4.38858500 1.53012300 C -7.48897900 5.69500500 0.19250400 H -8.26469200 5.87725000 -0.55365000 O -6.20279500 5.69443200 -0.45641500 C -6.06414700 6.49118500 -1.55127000 O -6.94928100 7.21061400 -1.96211200 C -4.69205300 6.33744600 -2.14483700 H -4.58199400 7.01043000 -2.99381600 H -3.93314600 6.55749300 -1.38934100 H -4.54515400 5.30259200 -2.46717200 C -7.45967500 6.81216300 1.23832700 H -6.55225700 6.72565300 1.83696100 H -7.49257600 7.78386500 0.74374100 0 -8.61412300 6.73258700 2.09214100 C -8.40983500 6.37097500 3.38551900 O -7.31780300 6.11292600 3.84946200 C -9.70515100 6.31380600 4.14909400 H -10.53775800 6.70706000 3.56678700 H -9.90055600 5.26951300 4.40775000 H -9.59682900 6.87444700 5.08019700

(2.A.f), with four acetates

C -10.66493300 -0.19968400 -0.70290900 C -9.92297400 -0.66203900 0.36436200 C -8.80622100 0.04676600 0.85939400 C -8.42338900 1.26927500 0.23905600 C -9.18135500 1.74040600 -0.84488000 C -10.28131000 1.03219100 -1.31371600 N -8.13913900 -0.45625600 1.93625200 N -7.32412200 1.94372900 0.75359300 C -6.65267400 1.47139200 1.85784700 C -7.12515900 0.21503200 2.40646400 C -6.40489800 -0.31805800 3.59696700 O -6.68388900 -1.36760100 4.15987200 N -5.37914800 0.50104200 4.01229200 C -4.97463200 1.72459500 3.43729600

N -5.65569700 2.18257300 2.33592700 H -10.17994700 -1.58877100 0.86642600 H -8.94383000 2.68345400 -1.31534800 H -4.84992500 0.19765200 4.82192500 O -4.03558200 2.32867800 3.94339200 C -11.07488800 1.57810600 -2.46840700 H -10.66200900 2.52385000 -2.82378700 H -11.08641700 0.87064600 -3.30494800 H-12.11927600 1.74383300 -2.18167100 C -11.85667500 -0.96750200 -1.20855200 H -12.77186500 -0.36844200 -1.14515200 H -11.73255000 -1.24746700 -2.26050400 H -12.00692700 -1.88037000 -0.62885900 C -6.90391300 3.25030000 0.22884100 H -5.82271600 3.30701300 0.32359400 H -7.17387700 3.32303200 -0.82172700 C -7.53764500 4.36966900 1.05939800 H -7.21090400 4.26468400 2.09321500 O -8.97351600 4.24589700 0.99080800 C -9.61482900 3.66137700 2.03132000 O -9.04278300 3.23203800 3.01439100 C -11.09485300 3.61843300 1.78328600 H -11.29446200 3.02442000 0.88675200 H -11.59837500 3.17697800 2.64181000 H -11.46986900 4.62913800 1.60232400 C -7.22661700 5.75913000 0.49557000 H -7.87273000 5.93082800 -0.36742800 O -5.85441600 5.78536300 0.05981800 C -5.60934000 5.99229800 -1.26163600 O -6.48027600 6.04821700 -2.10477400 C -4.13600600 6.15389200 -1.50104600 H -3.93338700 6.14775400 -2.57097700 H -3.81174500 7.10665400 -1.07098900 H -3.57820700 5.35869500 -1.00108300 C -7.35500900 6.89609400 1.52985700 H -6.39948200 6.97981100 2.04968200 O -8.38718900 6.62147900 2.49516700 C -7.99359600 6.25953300 3.74940900 0 -6.83520400 6.06654700 4.05312300 C -9.17585600 6.10320300 4.66365900 H -10.00828400 6.73306400 4.34902400 H -9.49473700 5.05719000 4.63021700 H -8.87495800 6.34126700 5.68433200 C -7.76408200 8.21948400 0.89516700 H -8.75583900 8.14000900 0.44545500 H -7.77947600 9.01305900 1.64699800 O -6.79171800 8.53394700 -0.11564300 C -7.22060800 9.28419900 -1.16113800 O -8.34694000 9.72861500 -1.24135500 C -6.13292200 9.44947100 -2.18658400 H -6.04752100 8.51680500 -2.75286000 H -6.38891700 10.26231900 -2.86518500 H -5.17139700 9.64117500 -1.70597200

(2.A.m)-[K₂S₂O₄], SINGLET

S -0.08250500 -0.95435300 -4.71253200 O -0.60439500 -1.62436400 -5.91212700 O 0.37494200 -1.86710200 -3.64568600 O 0.76060200 0.23392500 -4.93787600 S -2.96104000 -0.61743800 -2.06519700 O -1.76556600 -0.73168600 -1.18729400 O -3.98117700 -1.65218100 -1.85916600 O -3.44209100 0.76787200 -2.23199200 K -0.27682600 -3.01647300 -1.34865600 K -2.42355500 2.47062100 -4.11380600 0 -2.44044900 -1.09078500 -3.62312900 0 -1.43811400 -0.11473100 -4.04814700 C 5.38628900 0.58780300 -3.19281400 N 4.26202200 1.50620500 -3.44311200 H 6.06648900 0.62647000 -4.03960400 C 6.09265200 0.91951400 -1.88243800 C 4.42844000 2.67032200 -4.18096600 C 3.07157000 1.22994000 -2.81988700 H 5.39766700 0.84423200 -1.04682900 H 6.92881000 0.23357300 -1.73947700 0 6.66621100 2.24215400 -1.92229300 C 3.31653200 3.55084700 -4.30223900 C 5.64055100 3.03050700 -4.79293900 C 2.00024800 2.18306700 -3.02443000 N 2.98135000 0.14354200 -2.08027600 C 5.91966900 3.25912000 -1.42499000 C 3.45647800 4.74822600 -5.03735700 N 2.11537400 3.28052500 -3.71725000 C 5.76019500 4.21508800 -5.50939300 H 6.51690500 2.40751800 -4.68863900 C 0.69070200 1.86133000 -2.40193300 C 1.78406000 -0.16066400 -1.49483600 O 4.81730700 3.10948600 -0.93594800 C 6.62357200 4.57585600 -1.60392600 C 4.64656300 5.09807600 -5.64137700 H 2.58468700 5.39079300 -5.10375900 C 7.07919300 4.56891500 -6.13923200 O -0.31252800 2.56351200 -2.52541900 N 0.69213900 0.70602200 -1.67296800 O 1.62149500 -1.17009400 -0.80279600 H 6.51523000 4.88680800 -2.64823800 H 6.16678600 5.32648400 -0.95992200 H 7.69002000 4.48178000 -1.39162100 C 4.77405900 6.38333900 -6.41427300 H 7.82973500 3.79952500 -5.94990500 H 6.97593700 4.69041600 -7.22321100 H 7.45612000 5.52114400 -5.74972200 H -0.21648700 0.35945400 -1.34909700 H 5.54820900 7.02975200 -5.98614800 H 5.05759100 6.19542000 -7.45575000 H 3.83154300 6.93436700 -6.41229500 H 4.97433100 -0.41779100 -3.12185800

(2.B*.m)-[K₂S₂O₄], TRIPLET, T₁'

S -0.27200200 -1.02571700 -4.75667500 O -0.87859100 -1.75342900 -5.88082700 O 0.28618500 -1.88861200 -3.69492200 O 0.52695900 0.16492600 -5.09436200 S -2.97544500 -0.61432700 -1.92989000 O -1.73206600 -0.72647700 -1.11940300 O -3.99783300 -1.62411500 -1.63257400 O -3.44110400 0.77392900 -2.11116400 K -0.32986500 -3.05919000 -1.39646800 K -2.43164300 2.44439100 -4.04321700 O -2.55020800 -1.14494600 -3.49791100 O -1.58334100 -0.17879100 -4.01789000 C 5.43331300 0.60940700 -3.19118500 N 4.31099700 1.50360600 -3.49950300 H 6.13856300 0.63263900 -4.01787300 C 6.10480500 0.97917400 -1.86841000 C 4.47307500 2.67110600 -4.21433400 C 3.06355500 1.24197300 -2.89177100 H 5.39761400 0.88076000 -1.04484900 H 6.96374000 0.32593600 -1.70777700 0 6.62553500 2.32101100 -1.90362400 C 3.33626900 3.56796700 -4.32638800 C 5.70255300 3.02769700 -4.81059100 C 2.01529800 2.17722900 -3.06370400 N 2.98455100 0.11574800 -2.20811200 C 5.82587200 3.30860300 -1.42725800 C 3.52783700 4.75798600 -5.04111700 N 2.11838500 3.32791100 -3.76849200 C 5.86174700 4.21176000 -5.50880000 H 6.56104300 2.38016500 -4.70615800 C 0.73594000 1.83962500 -2.45054200 C 1.78216200 -0.21505700 -1.60140600 O 4.72053100 3.11209800 -0.96254300 C 6.47992800 4.65167900 -1.59477100 C 4.74463900 5.09994900 -5.62999300 H 2.67849800 5.42801100 -5.11779200 C 7.18875600 4.56155700 -6.12232300 O -0.28225900 2.53939300 -2.52745600 N 0.71788000 0.64932200 -1.74408200 O 1.67366500 -1.25970600 -0.94862400 H 6.43915500 4.92953000 -2.65296300 H 5.94493400 5.39640900 -1.00690200 H 7.53077600 4.61123000 -1.30149800 C 4.88373300 6.39051800 -6.37728100 H 7.92507500 3.77768300 -5.93532700 H 7.10297600 4.69740600 -7.20631300 H 7.57983800 5.50071800 -5.71487800 H -0.19476600 0.32001700 -1.41201400 H 5.66730700 7.01544600 -5.93286600 H 5.18402800 6.20980800 -7.41609100 H 3.94926000 6.95330300 -6.37849900 H 5.03969000 -0.40136800 -3.10536200

(2.A.m)-(1a)_1plus,

C -10.53619500 -1.38696200 2.30897800 C -9.24832400 -1.06709300 2.70508200 C -8.42437500 -0.23383800 1.93381000 C -8.93684500 0.33189500 0.71065200 C -10.26264900 0.03375600 0.33136000 C -11.05094500 -0.81108400 1.09109900 N -7.16190300 0.02195800 2.37813500 N -8.11044900 1.13849300 -0.02528700 C -6.80754600 1.38430800 0.39513000 C -6.38783200 0.75039600 1.63419500 C -4.97598200 0.97277200 2.06905000

O -4.48968800 0.46841200 3.06680800 N-4.27277600 1.79848600 1.22164200 C -4.74768300 2.40930100 0.05434300 N -6.06556800 2.16746000 -0.32972900 H -8.83387700 -1.46528700 3.62331200 H -10.69095000 0.47038400 -0.55821200 H -3.30463500 1.98604200 1.46022000 O -4.01398700 3.12775900 -0.60246100 C -12.44578600 -1.13109600 0.64620100 H -12.69413300 -0.61641000 -0.28239800 H -12.56177100 -2.20897900 0.48913400 H -13.17295800 -0.84202100 1.41238900 C -11.38743100 -2.29965000 3.13605300 H -12.29340400 -1.78453800 3.47487500 H -11.71657000 -3.16473800 2.55047700 H -10.84369000 -2.65809700 4.01065700 C -8.60565300 1.92781700 -1.17383400 H -7.78151400 2.03424100 -1.87638400 H -9.40922700 1.38177500 -1.65790300 C -9.05701900 3.31451500 -0.71899100 H -8.22461300 3.86370400 -0.27963500 H -9.44852000 3.85387600 -1.58210900 O -10.14073500 3.22958800 0.22395000 C -9.81644600 3.21915200 1.54259600 O -8.67015400 3.22448500 1.94767300 C -11.05102100 3.16151700 2.39609800 H -11.55128900 2.20118500 2.23746200 H -10.77596300 3.26056300 3.44493700 H -11.75045000 3.94937600 2.10736500 O -5.58028400 -1.30457900 -0.00643300 C -6.20850200 -2.29906300 0.37311500 N -7.42810600 -2.53946800 -0.25055800 C -7.65081100 -1.84595900 -1.53517100 C -8.46801300 -3.46802500 0.17190200 C -8.96518900 -2.26249600 -2.18089000 H -7.59363600 -0.76736200 -1.37542500 H -6.80564900 -2.09339900 -2.18791000 C -8.82979700 -4.47645500 -0.93237300 H -8.16807000 -3.97022200 1.08264800 H -9.35683400 -2.87190800 0.42235000 C -9.05034000 -3.78985800 -2.30249100 H -9.81217100 -1.87690200 -1.60378600 H -9.01845200 -1.78952500 -3.16512300 H -9.73007700 -4.99983800 -0.59922000 H -8.03034500 -5.21901900 -1.00092600 H -10.01792900 -4.07332100 -2.72406200 H -8.28454200 -4.12462300 -3.00966600 C -5.60991500 -3.26319600 1.42130100 C -6.33133600 -3.17953600 2.78518400 H -7.37680100 -3.49110700 2.75187500 H -5.81684500 -3.84132200 3.48801900 H -6.28899500 -2.16185900 3.17864600 C -5.59611100 -4.71143300 0.88086400 H -4.99493700 -5.32805700 1.55479500 H -6.58398900 -5.16900600 0.82243300 H -5.13913900 -4.75554300 -0.11230200 C -4.14819900 -2.82571100 1.64466800 H -4.09369700 -1.81589800 2.05322200

H -3.68212800 -3.51368800 2.35565100 H -3.57819800 -2.85258600 0.71280200

(2.A.m)–(1a), singlet

C -10.78948900 -1.29715400 2.36253700 C -9.47990800 -1.06581100 2.73505900 C -8.62058300 -0.25145500 1.96798500 C -9.10841500 0.36170400 0.78238800 C-10.44430700 0.13732900 0.41195800 C -11.27539300 -0.67745000 1.17379100 N -7.33217900 -0.08844300 2.38534500 N -8.23379300 1.15592400 0.05087200 C -6.92583700 1.31677000 0.44122900 C -6.52903500 0.62496800 1.65308200 C -5.10525900 0.74757400 2.06901700 O -4.62351000 0.19436900 3.04971200 N -4.37045400 1.55502600 1.23535900 C -4.81957400 2.20774100 0.06851300 N -6.13967700 2.07643300 -0.28684500 H -9.06362500 -1.51653200 3.62958400 H -10.86163100 0.61359400 -0.46328400 H -3.38743900 1.66825100 1.45472800 O -4.01504400 2.87002600 -0.57790300 C -12.69575100 -0.90207300 0.73428300 H -12.91828300 -0.35815100 -0.18532600 H -12.88594100 -1.96681500 0.55917900 H -13.40182500 -0.57799400 1.50667900 C -11.68242500 -2.18579600 3.18578400 H -12.56775700 -1.64533400 3.53838900 H -12.04274300 -3.03821400 2.59926200 H -11.15012400 -2.57304100 4.05677600 C -8.68967600 1.92187400 -1.12085200 H -7.85013800 1.99088700 -1.81113500 H -9.49641800 1.37892800 -1.60632700 C -9.11493400 3.33083100 -0.72221100 H -8.28119800 3.86636600 -0.26892300 H -9.47090400 3.86622100 -1.60348400 O -10.22593100 3.29128500 0.19623800 C -9.93926600 3.32980100 1.52127400 O -8.81216600 3.42652800 1.96479200 C -11.19196800 3.19285600 2.34192700 H -11.49380300 2.14017800 2.33918600 H-10.99524300 3.50431700 3.36713400 H -12.00793000 3.77562000 1.91079000 0 -5.25243200 -1.43846400 -0.19360300 C -5.94270000 -2.37707400 0.23578700 N -7.16534600 -2.59904900 -0.33070300 C -7.47841300 -1.79986400 -1.53361700 C -8.26453500 -3.42282900 0.17728400 C -8.78930100 -2.25434400 -2.17809700 H -7.50731000 -0.73801700 -1.28569600 H -6.65109800 -1.92994000 -2.23907800 C -8.75788600 -4.42574400 -0.87480100 H -7.95789500 -3.93409700 1.08170100 H -9.08313700 -2.75460200 0.46776900 C -8.82680100 -3.78205600 -2.28140100 H -9.64742000 -1.89067100 -1.60140800 H -8.86049700 -1.79110100 -3.16709800

H -9.74509900 -4.78003700 -0.55943000 H -8.09604300 -5.29746900 -0.89229300 H -9.72402200 -4.11227400 -2.81314400 H -7.96836300 -4.10840600 -2.88026400 C -5.36682400 -3.32346500 1.32415800 C -6.05266800 -3.13339400 2.69523300 H -7.11477300 -3.38578700 2.69377700 H -5.56206200 -3.78330300 3.42792500 H-5.95567400-2.09900200 3.03016500 C -5.43498200 -4.79528900 0.86097400 H -4.88146100 -5.42051300 1.56889900 H -6.44977600 -5.19052200 0.80416000 H -4.97247700 -4.91388500 -0.12419600 C -3.87991800 -2.95883900 1.50437900 H -3.76659400 -1.93084500 1.85073500 H -3.43635700 -3.62911400 2.24787900 H -3.32815300 -3.06868600 0.56732500 (2.B*.m)-(1a) triplet C -10.54261300 -1.32573900 2.32149500 C -9.25602200 -1.00021100 2.72514300 C -8.39972900 -0.18345500 1.96090200 C -8.92823800 0.35950100 0.72424000 C -10.24299000 0.04311200 0.33461200 C -11.05135000 -0.79098200 1.09147000 N -7.14927100 0.05826500 2.41977600 N -8.10793500 1.18293600 -0.02605200 C -6.78242900 1.40363600 0.40093900 C -6.35611800 0.80359600 1.61136400 C -4.95840100 0.98997400 1.98630100 O -4.42053700 0.51333400 2.98687400 N -4.23388900 1.78207700 1.09925700 C -4.71367400 2.37805300 -0.05662400 N -6.04094600 2.15159500 -0.39245700 H -8.86016900 -1.39021200 3.65558200 H -10.65467700 0.46051400 -0.57302800 H -3.25962900 1.94269300 1.32608100 O -3.98407500 3.07649200 -0.75897300 C -12.43958200 -1.12962100 0.62648500 H -12.66746500 -0.63447100 -0.31932700 H -12.55571400 -2.20991200 0.48215500 H -13.19296700 -0.82578600 1.36200000 C -11.39559600 -2.22873000 3.16187100 H -12.31966100 -1.72440700 3.46716500 H -11.69695300 -3.11802500 2.59657000 H -10.86491200 -2.55256500 4.05853500 C -8.61852700 1.98307000 -1.14564000 H -7.80036700 2.13336100 -1.84711000 H -9.40445600 1.42733100 -1.65072800 C -9.11538000 3.34956700 -0.67683200 H -8.29929000 3.91912600 -0.23182100 H -9.53419000 3.89318800 -1.52508700 O -10.18591100 3.21012000 0.27661000 C -9.85095200 3.22128400 1.59092900 O -8.71596300 3.37940000 1.99495100 C -11.05969300 2.97439600 2.45046400 H -11.33482200 1.91770200 2.37070600 H -10.82651700 3.20817700 3.48842200

H -11.90958700 3.56589300 2.10414700 O -5.45428400 -1.44510900 -0.11420300 C -6.16784400 -2.36057600 0.32153200 N -7.38480200 -2.56493800 -0.27731900 C -7.61998600 -1.81598100 -1.52888700 C -8.46316300 -3.45819600 0.14470300 C -8.92436600 -2.24133300 -2.19843200 H -7.60454400 -0.74357700 -1.32693300 H -6.77466100 -2.01311800 -2.19784000 C -8.84509100 -4.45661500 -0.95681900 H -8.17594400 -3.97941300 1.04919600 H -9.33225600 -2.84362700 0.40670400 C -8.98459100 -3.76645800 -2.33792100 H -9.78350200 -1.87581300 -1.62574800 H -8.97525200 -1.75805100 -3.17898500 H -9.78491500 -4.93239400 -0.65856000 H -8.08874900 -5.24618400 -1.00440000 H -9.91590400 -4.06604700 -2.82722300 H -8.16765100 -4.08580100 -2.99495000 C -5.63052300 -3.29507600 1.43861300 C -6.40794800 -3.16739000 2.76656200 H -7.44466200 -3.50216000 2.70489700 H -5.91160900 -3.78223600 3.52482000 H -6.41114800 -2.12805300 3.10132500 C -5.60650000 -4.75806800 0.94127700 H -5.07950000 -5.37673500 1.67454900 H -6.59897600 -5.18983600 0.80543900 H -5.07130600 -4.83671200 -0.01055600 C -4.17586100 -2.87101900 1.72214400 H -4.12882900 -1.84577900 2.09279000 H -3.75364900 -3.53770100 2.48100800 H -3.56038000 -2.93782300 0.82173000

(2.A.m)-[K₂S₂O₈]-(1a), Singlet, S₀

S 2.06451200 -0.68474600 -5.86102100 0 0.97567600 -1.33129000 -6.60835200 0 2.31413900 -1.26774100 -4.52214900 0 3.27854900 -0.35611100 -6.63045500 S 0.15733800 1.80695100 -3.57989000 0 1.14613500 1.22174300 -2.64539700 O -1.25416600 1.58013400 -3.23444600 0 0.50475700 3.17375500 -4.02445500 K 1.75973100 -1.30308600 -1.96109500 K 0.90805500 5.46078600 -2.68090400 O 0.19989800 0.85093700 -4.98925200 0 1.53356400 0.92643400 -5.58566100 C 5.22355900 0.14133500 -4.18954600 N 4.54378300 1.42823200 -3.94445200 H 5.13375800 -0.10076900 -5.24271000 C 6.66853500 0.19939800 -3.71226300 C 4.50165600 2.41861500 -4.91486100 C 4.05468600 1.65701500 -2.68875100 H 6.71785700 0.41671900 -2.64530800 H 7.15615500 -0.75374700 -3.92225100 07.414140001.19563500-4.44451700 C 3.95129800 3.68446500 -4.56179600 C 4.99478700 2.24274500 -6.21801600 C 3.56060200 2.98566500 -2.41805200

N 4.05763500 0.66962000 -1.80838500 C 7.50204100 2.43313600 -3.90073600 C 3.88920800 4.71274900 -5.52857400 N 3.50413600 3.94265900 -3.30367200 C 4.92613600 3.26398300 -7.15513500 H 5.43276600 1.30289400 -6.51472100 C 3.07943200 3.27100800 -1.04271700 C 3.51980000 0.88343300 -0.57348600 07.020677002.73427800-2.82549600 C 8.22758500 3.37237600 -4.82435500 C 4.35782100 4.53000600 -6.81196900 H 3.46463200 5.66181300 -5.21787100 C 5.45721200 3.03063400 -8.54248000 O 2.65079400 4.36504500 -0.68315200 N 3.14769600 2.18922600 -0.20404800 O 3.31929100 -0.03216600 0.23155500 H 7.54172400 3.66616200 -5.62597600 H 8.53715400 4.26131100 -4.27591300 H 9.08807500 2.88261400 -5.28371900 C 4.28235400 5.63694600 -7.82855700 H 5.86100200 2.02226300 -8.64830200 H 4.66908000 3.16650000 -9.29144700 H 6.24983700 3.74699900 -8.78536600 H 2.76775200 2.30350000 0.72879300 H 5.27811900 5.90793500 -8.19640200 H 3.69254400 5.33526500 -8.70114400 H 3.82311200 6.52975100 -7.39930000 H 4.68472800 -0.62019600 -3.63181700 O -0.45661700 4.64002400 -0.59977500 C -0.36774200 4.39887400 0.61918700 N -0.59617900 3.12980700 1.04645600 C 0.02019100 5.53947000 1.59621200 C -0.87306500 2.13365800 -0.01181900 C -0.76293900 2.64872300 2.42021300 C -1.18090600 5.92904900 2.48757800 C 1.26968700 5.17286100 2.42824400 C 0.38935100 6.77594600 0.75330900 C -1.05744300 0.73205500 0.56791200 H -1.74949600 2.44281300 -0.58907200 C 0.13706800 1.43846600 2.69672100 H -0.55036800 3.44238000 3.12506300 H -1.81546200 2.37568300 2.56594900 H -1.50809800 5.13238800 3.15726200 H -0.90772800 6.78969200 3.10647200 H -2.03681500 6.21805500 1.86895800 H 1.59140000 6.05120200 2.99741300 H 1.10774500 4.36622300 3.14408800 H 2.08291900 4.87915300 1.75969900 H -0.43177900 7.07409600 0.09814500 H 0.61924200 7.61004200 1.42360700 H 1.27256800 6.57987300 0.14098200 C 0.06646000 0.39215900 1.55305300 H -2.03214800 0.64338500 1.06176500 H -1.07036600 0.02624300 -0.26849800 H -0.17469400 1.00096100 3.65078900 H 1.16748500 1.78588200 2.83248600 H -0.08221600 -0.61238500 1.96166400 H 1.01961700 0.36822800 1.01630900

C 0.57738300 5.59685100 -1.24917500 C -0.66927600 2.17500800 0.05873600 C 1.55464400 3.22859500 0.50079700 C 0.95966000 6.30643100 0.06751500 C 1.81730500 5.32312600 -2.12949100 C -0.34606600 6.54785300 -2.03553600 C -0.22648000 1.32139800 1.24017000 C 2.11197400 1.80723500 0.38207600 H 2.25141000 3.91101000 0.03020600 H 1.46150200 3.51650500 1.55590000 H 1.69850400 5.76498800 0.65776400 H 1.38339400 7.28859000 -0.16566100 H 0.07565700 6.46432200 0.69433700 H 2.28144800 6.27840800 -2.39892100 H 2.58136300 4.71318000 -1.64645900 H 1.53023800 4.81318600 -3.05276500 H -1.25214600 6.78262700 -1.47070200 H 0.18919900 7.48147000 -2.23519600 H -0.64731300 6.10809000 -2.98827500 C 1.18121100 0.74901200 1.01803000 H -0.25421600 1.92384600 2.15583900 H -0.95348500 0.51498300 1.36966400 H 3.10731600 1.78979400 0.83365100 H 2.25979400 1.60643800 -0.68076200 H 1.59027100 0.39976400 1.97194600 H 1.11595400 -0.12445800 0.36182300 H -1.67786700 2.56292600 0.20906700 H -0.69917300 1.55736900 -0.84163100

(2.C.m)-[K₂S₂O₈]_1min, doublet

S -0.83257000 -1.26260000 -4.88232000
O -1.43624800 -2.22308300 -5.81903300
O -0.04499700 -1.87658300 -3.79572100
O -0.26175000 -0.03766300 -5.47513700
S -3.09195000 -0.64078600 -1.75320400
O -1.74939300 -0.68733500 -1.11861200
O -4.08012600 -1.55893500 -1.17258300
O -3.55496900 0.72471300 -2.06872600
К -0.29058000 -2.97482300 -1.40560300
K -2.38641200 2.22512700 -4.10571300
O -2.91113700 -1.40697800 -3.27835300
0 -2.16744700 -0.48099800 -4.12215700
C 5.52440600 0.66571000 -3.17233900
N 4.39483300 1.54008500 -3.48410700
H 6.25131700 0.71972200 -3.98133200
C 6.16562000 1.00588400 -1.83038800
C 4.57003000 2.73522800 -4.20671200
C 3.15982400 1.23913400 -2.92837800
H 5.43323900 0.91212000 -1.02923300
H 7.01544700 0.34628000 -1.64324300
0 6.70065800 2.34724700 -1.84264900
C 3.43146500 3.57835600 -4.38930400
C 5.80197000 3.12726400 -4.73907500
C 2.09087200 2.14222900 -3.16653900
N 3.08097100 0.11069600 -2.21356000
C 5.91908500 3.33629800 -1.35075600
C 3.61260600 4.77641700 -5.11953400
N 2.19820200 3.29343000 -3.88735000

H -0.02819100 2.13329100 -0.70263500

(2.B*.m)-[K₂S₂O₈]-(1a), triplet, T₁ S -2.21606500 -1.27804600 -4.75422700 O -3.06938700 -2.38223000 -5.21780400 O -0.96339000 -1.70689900 -4.09402000 O -2.09496100 -0.11335900 -5.64889000 S -2.77282400 -0.75817900 -1.01782800 O -1.29949300 -0.83681100 -1.19074700 O -3.32967000 -1.71816600 -0.05602300 O -3.29516600 0.62042500 -0.96053700 K -0.31768000 -3.24115800 -1.98956100 K -2.61071900 2.31034700 -3.03762100 0-3.43242000-1.41781300-2.45325700 0-3.14145100-0.48121800-3.53164900 C 5.83442000 0.78609900 -3.08366000 N 4.70764500 1.52576600 -3.66618200 H 6.69807700 0.89082500 -3.73569600 C 6.14611300 1.24393100 -1.65897200 C 4.87927400 2.70726700 -4.35395300 C 3.39591400 1.09374600 -3.36567900 H 5.28298200 1.08746500 -1.01198600 H 7.00390400 0.68300100 -1.28541200 0 6.53508300 2.63154800 -1.62273800 C 3.69589300 3.43102100 -4.77925100 C 6.15853700 3.23615000 -4.63845100 C 2.30578800 1.88324900 -3.80661800 N 3.30213200 -0.04196700 -2.69737600 C 5.56249500 3.53832400 -1.36531800 C 3.89092300 4.63805400 -5.45751500 N 2.42096300 3.01649900 -4.53352400 C 6.32212900 4.43447900 -5.31067800 H 7.04382500 2.71619400 -4.30255800 C 0.97361900 1.42349600 -3.43094900 C 2.04195800 -0.52452000 -2.37673300 0 4.40414900 3.23084100 -1.15967300 C 6.09250000 4.94262600 -1.41794700 C 5.15955500 5.15537500 -5.73267700 H 3.00390200 5.18052700 -5.76501100 C 7.69878900 4.97315600 -5.58315000 O -0.07392600 2.01753100 -3.70649100 N 0.94539100 0.24414400 -2.70235500 0 1.90775400 -1.61524100 -1.80665200 H 6.11811100 5.26011700 -2.46561100 H 5.42504600 5.60436900 -0.86676400 H 7.10807600 4.99739200 -1.02344000 C 5.29924800 6.45775600 -6.45710900 H 8.46577900 4.30405700 -5.18883100 H 7.87238400 5.09583600 -6.65811700 H 7.83734700 5.95858100 -5.12444700 H 0.02721200 -0.11929000 -2.43444100 H 5.84437200 7.18597500 -5.84481800 H 5.88077000 6.33147100 -7.37787900 H 4.32628500 6.87845100 -6.71422300 H 5.55634900 -0.26530400 -3.04972700 O -1.31550400 4.12515100 -1.55446600 C -0.21283500 4.28699100 -0.99384500 N 0.24252400 3.31759800 -0.15741000

C 5.95677800 4.32100500 -5.45287000
H 6.68414900 2.52392900 -4.57277200
C 0.81179800 1.79637500 -2.58976300
C 1.88477100 -0.23714700 -1.67851100
0 4.84674800 3.15111400 -0.80942300
C 6.54574600 4.68229400 -1.59687000
C 4.83622900 5.16209000 -5.64955200
H 2.73684700 5.40673600 -5.24668900
C 7.31162000 4.70119000 -5.99298100
0 -0.23899400 2.46648900 -2.69748100
N 0.79971300 0.61599300 -1.86833200
0 1.71319400 -1.28583200 -1.01812500
H 6.36433200 4.95562900 -2.64177000
H 6.08889400 5.42697400 -0.94558000
H 7.62586900 4.64664400 -1.44276700
C 4.96939100 6.45641400 -6.41182000
H 8.06097000 3.94485000 -5.74680400
H 7.29466600 4.81560900 -7.08374400
H 7.65454600 5.65965000 -5.58457200
H -0.11116900 0.29052300 -1.54400900
H 5.69611000 7.12854900 -5.94011400
H 5.32045600 6.28625700 -7.43663700
H 4.01196500 6.98025900 -6.46617200
H 5.14994600 -0.35585800 -3.11575600

MSX-1

MSX (T ₁)/S	o (E = -4260.04	4863529 a.ι	ı.)
S	-3.503613	-2.164740	-1.883975
0	-4.702348	-2.916057	-2.285555
0	-2.999836	-2.489400	-0.531766
0	-2.471323	-1.962057	-2.914119
S	-4.606331	0.816891	0.307742
0	-3.481823	0.216266	1.075295
0	-5.862060	0.928147	1.059812
0	-4.216712	1.972651	-0.519837
К	-4.115921	-2.335740	1.892365
К	-2.282209	1.646245	-2.438642
0	-5.085853	-0.388079	-0.810382
0	-4.025175	-0.514631	-1.803437
С	3.369324	-3.196634	1.736088
Ν	2.716026	-2.578460	0.577618
Н	4.321551	-3.609873	1.400860
С	3.559072	-2.296331	2.954783
С	3.436448	-1.888241	-0.436280
С	1.369710	-2.307151	0.608321
Н	2.605880	-1.887631	3.283952
Н	4.012734	-2.885786	3.753276
0	4.486145	-1.213180	2.712237
С	2.760577	-1.555563	-1.669656
С	4.792314	-1.602848	-0.329800
С	0.866298	-1.766159	-0.638063
Ν	0.663258	-2.356837	1.701332
С	3.959172	-0.033146	2.318445
С	3.481324	-0.889789	-2.689811
Ν	1.498287	-2.085584	-1.862546
С	5.483836	-0.931405	-1.347467
Н	5.335127	-1.869873	0.566272
С	-0.122376	-0.702420	-0.503164

c	0 600156	1 761425	1 662614
	-0.000150	-1.761425	1.002014
0	2.767489	0.143514	2.151/18
C	5.022303	1.000451	2.0/455/
С	4.812503	-0.555868	-2.549123
Н	2.941255	-0.642233	-3.597343
С	6.937673	-0.608937	-1.157591
0	-0.418530	0.109285	-1.378790
Ν	-0.831994	-0.796471	0.687152
0	-1.448253	-2.003907	2.518149
Н	5.203683	1.050958	0.996476
Н	4.660255	1.977549	2.397359
Н	5.955332	0.749067	2.578257
С	5.542300	0.178604	-3.640314
н	7.299290	-0.963547	-0.191079
Н	7.549006	-1.065468	-1.944246
н	7.110125	0.471968	-1.215656
н	-1.746420	-0.330862	0.717590
н	5.923833	1.140125	-3.279078
н	6 404754	-0 391354	-4 001613
н	4 881841	0.331554	-4 487298
н	2 7/2691	-4 034573	2 050659
0	-0.624267	2 275501	-1 278110
C C	0.024207	2 2278/18	-0.422526
N	0.274017	2 066992	0.423330
C C	1 757217	2.000002	0.074443
C C	1.757217	5.267597	-0.0/0/15
C	-1.535911	3.144697	1.152927
C	0.788838	2.824087	2.031566
C	2.5/3/94	4.336003	-0.092693
C	2.393837	1.883/15	-0.795924
С	1.773375	3.707293	-2.361744
С	-1.818398	3.198568	2.649424
С	0.224966	1.717483	2.928302
Н	1.769099	2.512404	1.692905
Н	0.910688	3.755370	2.599224
Н	2.763295	4.058564	0.943737
Н	3.546161	4.466323	-0.577633
Н	2.066588	5.306372	-0.095949
Н	3.422466	1.926909	-1.168887
Н	2.421347	1.464694	0.210271
Н	1.836476	1.191794	-1.429640
Н	1.339468	4.700562	-2.503585
Н	2.809535	3.728123	-2.713659
Н	1.211058	3.001898	-2.976573
С	-1.237213	1.974231	3.366228
Н	-1.405081	4.121761	3.072623
н	-2.902891	3.249452	2.789714
Н	0.889793	1.623527	3.791815
н	0.304041	0.778924	2.379535
Н	-1.300751	2.115690	4.450063
н	-1.849793	1.099978	3.122538
Н	-1.935381	4.025807	0.643853
н	-2.036369	2.277886	0.716332

(2.E.m)-[K₂S₂O₈]–(1a'), triplet, (T)–1

S -1.50451100 -1.06447400 -4.83061000 O -2.48311500 -1.84530900 -5.60347800 O -0.61987200 -1.87438800 -3.96784500 O -0.85794600 0.05734100 -5.53060600

C 2.15420600 1.90648800 0.74667700 H 1.98935900 4.05883500 0.60715400 H 1.17521100 3.38142800 2.00750600 H 1.03698400 6.00815400 0.92167300 H 1.09828600 7.27383700 -0.31169100 H -0.46643700 6.70839500 0.30028500 H 2.22918600 5.57789400 -2.41332000 H 2.68606100 5.11221000 -0.78891300 H 2.00074100 3.91665500 -1.87253300 H -1.24404900 6.25923000 -2.07807000 H 0.33091200 6.85407600 -2.65060900 H -0.26107700 5.25584200 -3.15300100 C 1.31420800 0.68021800 1.18171700 H -0.20907000 1.45907100 2.51279400 H -0.79757500 0.19116100 1.44366900 H 3.09152600 1.96636500 1.30767500 H 2.43348400 1.83480300 -0.30718000 H 1.74643600 0.21508800 2.07416600 H 1.32521400 -0.07267100 0.39109700 H -1.60750900 1.98467600 -0.01229200 H 1.53136000 3.68792700 -4.56337100 (2.F.m)-[K₂S₂O₈]-(1.A), singlet, (S)-1 S -1.45083900 -1.07829900 -4.80801700 O -2.44883400 -1.86417500 -5.54930600 0-0.61900500-1.86582000-3.87605300 O -0.74429000 -0.02862700 -5.56063700 S -2.96935900 -0.32171200 -1.35239900 O -1.57133800 -0.73007900 -1.05580400 O -4.00825400 -1.11217400 -0.68453400 0 -3.14841400 1.14847700 -1.34200700 K -0.28013500 -3.03634900 -1.52528000 K -2.59174500 2.74271700 -3.50040000 O -3.26776000 -0.79627600 -2.95803500 O -2.38901200 -0.01032100 -3.81662600 C 5.59469800 0.62523300 -3.58524900 N 4.42492900 1.42726600 -3.93201100 H 6.36620900 0.78477400 -4.33904500 C 6.13662100 0.88407600 -2.17995600 C 4.57804200 2.73673600 -4.48030900 C 3.20144200 1.06967800 -3.36574000 H 5.35930000 0.69720100 -1.44108400 H 6.99901900 0.24046200 -1.99245700 O 6.62380800 2.23848400 -2.03557000 C 3.42655100 3.51114800 -4.74681600 C 5.82368400 3.29293800 -4.77497100

C 2.09122400 1.87150900 -3.62155100

N 3.16871600 -0.03498900 -2.59984000

C 5.78942600 3.14932700 -1.49142800

C 3.56845400 4.80582400 -5.24535400

N 2.16470500 2.94365600 -4.54635600

C 5.96771800 4.58670800 -5.29981700

H 6.72550300 2.73851500 -4.55554400

C 0.90069500 1.62455500 -2.92535600

C 1.99754200 -0.38769500 -2.02102300

O 4.69199700 2.88294600 -1.03927400

C 6.37823100 4.53254900 -1.55003100

C 4.82117100 5.36166400 -5.53173600

S -2.88769200 -0.54723000 -1.27011400 0 -1.41841300 -0.67263400 -1.10175800 O -3.68330700 -1.56622500 -0.57306900 O -3.38023800 0.84349000 -1.18281500 K -0.26331100 -3.05094700 -1.61805300 K -2.64140200 2.66021900 -3.07031700 0 -3.20868500 -1.02233900 -2.87786900 O -2.46779700 -0.11387200 -3.74867900 C 5.73544500 0.75983200 -3.44956100 N 4.57818400 1.56675000 -3.85471200 H 6.52746300 0.88353300 -4.18484300 C 6.21166100 1.11272200 -2.04295900 C 4.74243800 2.79390900 -4.52458500 C 3.33407000 1.16910800 -3.39942200 H 5.41982400 0.92835300 -1.31769100 H 7.09433900 0.52060100 -1.79592600 O 6.62472100 2.49371600 -1.96902500 C 3.60529700 3.58850400 -4.81477300 C 5.99339100 3.28841100 -4.91530500 C 2.22793200 1.99008900 -3.69636000 N 3.23414500 0.04151600 -2.70624000 C 5.70898800 3.39261800 -1.53505000 C 3.74151000 4.81797800 -5.47107300 N 2.37024100 3.13549300 -4.41554500 C 6.13340700 4.51320000 -5.56728300 H 6.89089400 2.73544100 -4.67971900 C 0.92929700 1.66175800 -3.17077700 C 2.00940600 -0.34237400 -2.24200000 O 4.59292900 3.09086700 -1.16000000 C 6.24353700 4.79522800 -1.62425700 C 4.98679600 5.29615000 -5.85389300 H 2.84674800 5.40003800 -5.66982800 C 7.50499700 5.00196000 -5.94995200 O -0.05847300 2.39309900 -3.34941900 N 0.90473200 0.49966400 -2.44208800 0 1.83818700 -1.40494300 -1.62262200 H 6.11262400 5.14587600 -2.65349100 H 5.67977400 5.44527300 -0.95563300 H 7.30873300 4.82851400 -1.39037900 C 5.11374000 6.62428500 -6.55041700 H 8.27602200 4.28678700 -5.65652200 H 7.58184900 5.16218900 -7.03131900 H 7.73070900 5.96193700 -5.47193400 H 0.00841200 0.18901800 -2.05551400 H 5.74461800 7.31346100 -5.97799100 H 5.58031400 6.51258500 -7.53559000 H 4.13672700 7.09209700 -6.68780800 H 5.42414000 -0.28423200 -3.45345600 O -1.53630900 4.02842400 -1.06721500 C -0.36600000 4.14135000 -0.65374100 N 0.11258000 3.18318800 0.21953400 C 0.49725000 5.34291700 -1.11127600 C -0.67457000 2.07913800 0.51587200 C 1.39533100 3.22167500 0.94554200 C 0.54413100 6.39109400 0.02405200 C 1.93208200 4.95828200 -1.56196700 C -0.22177800 5.96798600 -2.32370600 C -0.15424300 1.07321400 1.48036600

H 2.66868900 5.38953600 -5.42492800
C 7.34612000 5.13199800 -5.58117900
O -0.11767700 2.37841100 -2.94719600
N 0.90913800 0.47847600 -2.13893300
O 1.84831400 -1.44093700 -1.35247000
H 6.11639000 4.96653300 -2.52073900
H 5.94866400 5.14840800 -0.75971100
H 7.46611200 4.50672400 -1.47249500
C 4.92474100 6.76553100 -6.07189800
H 8.11735500 4.39625400 -5.33929900
H 7.46639700 5.40966800 -6.63539400
H 7.55097900 6.03594700 -4.99452900
H 0.00721500 0.13660300 -1.80728000
H 5.52032400 7.40752700 -5.41178900
H 5.41544800 6.78545200 -7.05245400
H 3 93715200 7 22069100 -6 18113000
H 5 30184500 -0 42479500 -3 62528300
$\Omega = 1.49587000 4.26225400 = 1.04095400$
C -0 30839700 4 28218800 -0 83340000
N 0 20115600 3 23398900 0 09823600
C 0 65240100 5 31464200 -1 42251000
C -0 43259200 2 09782500 0 12169600
C 1 3/109000 3 /0528100 1 03596700
C 0 67784500 6 53256000 -0 46244500
C = 0.07784500 0.0002000 - 0.40244500 C = 0.40245000 C = 0.4024500 C = 0.402500 C = 0.4025000 C = 0.402500 C = 0.4025000 C = 0.4025000000000000 C = 0.40250000
C 0 02847300 5 75844400 -2 76298300
C = 0.02847500 5.75844400 -2.70258500
C 2 25118400 2 17964200 0 93486200
H 1 85868800 / 32/91200 0.33480200
H 0 00072300 3 50832000 2 03664300
H 1 08461100 6 28620100 0 52147000
Π 1.31442100 7.30575500 -0.90491500
H = 0.52549800 0.54505800 - 0.52797900
H 2.33363100 3.37440700 -2.47400600
$\Pi 2.73808000 4.80141100 -0.81387500$
H 2.08120000 3.74370000 -2.00200200
H -0.97471200 6.16434600 -2.62184600
H 0.00095700 0.52858700 -3.21071300
H -0.03573000 4.90767400 -3.44449700
C 1.48516200 0.88988800 1.27740100
H -0.50404400 1.36948500 2.03398600
H -0.53410800 0.11488/00 0.79934000
H 3.09/19300 2.32616100 1.61022400
H 2.65994000 2.13921300 -0.07606100
H 1.66250400 0.59875800 2.31488900
H 1.82119100 0.07006400 0.63992900
н -1.27908000 1.97837800 -0.54917100
H 1.39942800 3.59825200 -4.44289900

MSX-2

MSX (T)-1	/S ₀ (E = -4260.0	09988392 a	.u.)
S	-3.440243	-2.529157	-1.760539
0	-4.565622	-3.252686	-2.372140
0	-3.233890	-2.816719	-0.326570
0	-2.215750	-2.411485	-2.568632
S	-4.897781	0.500650	0.087166
0	-3.840705	-0.038648	0.978904
0	-6.247067	0.533591	0.663923

0	-4.471686	1.705454	-0.658152
К	-3.965764	-2.426381	2.186491
К	-2.632404	1.546451	-2.660527
0	-5.156168	-0.689169	-1.106934
0	-3.906848	-0.859300	-1.840435
C	3.337024	-2.742865	1.776735
N	2.876492	-2.007677	0.597826
н	4 178774	-3 372157	1 492939
C	3 694831	-1 818511	2 938225
C C	3 788377	-1 572111	-0.39283/
C C	1 55221	-1.572111	0.552054
с ц	2 820661	-1.333727	2 250821
	2.020001 1 001100	-1.246001	2 772511
	4.001122	-2.405500	5.775544 2 FC4710
0	4.754000	-0.910574	2.564710
	3.313451	-0.804783	-1.486002
C	5.154/35	-1.862373	-0.346810
C	1.118412	-0.821967	-0.51/950
N	0.754993	-1.958311	1.575692
С	4.396386	0.321804	2.133505
С	4.204933	-0.354879	-2.465217
Ν	1.971019	-0.510828	-1.555528
С	6.046329	-1.422448	-1.330666
Н	5.560455	-2.411245	0.490580
С	-0.219620	-0.337543	-0.551330
С	-0.547215	-1.566831	1.556215
0	3.252712	0.733191	2.131842
С	5.588385	1.084896	1.627435
С	5.564705	-0.650107	-2.408562
Н	3.812448	0.240151	-3.284542
С	7.508617	-1.767550	-1.222194
0	-0.659396	0.388102	-1.470115
N	-0.985979	-0.721094	0.530814
0	-1.363952	-1.913866	2.433790
н	5.806429	0.742593	0.610502
н	5.359081	2.149650	1.604446
Н	6.469458	0.892268	2.241397
C	6 497590	-0 144615	-3 476953
н	7 706762	-2 366274	-0 330555
н	7 852001	-2 336260	-2 094315
н	8 131060	-0.866702	-1 171151
н	-1 975350	-0.467158	0 527643
н	7 286/03	0.46736	-3 051857
н Ц	6 000/05	-0.071221	-3 002576
		-0.971331	4 222210
	2.929297	0.445762	-4.225517
н	2.522008	-3.389605	2.101206
0	-1.301217	3.327247	-1.085654
C	-0.346142	3.277453	-0.311374
N	-0.618126	2.891337	1.028039
С	1.077771	3.627020	-0.784683
C	-1.847871	2.421733	1.325223
С	0.311243	3.013806	2.174015
С	1.413150	5.068957	-0.335335
С	2.164490	2.628754	-0.306572
С	1.041205	3.590066	-2.325997
С	-2.208197	2.144558	2.733034
С	0.304025	1.714257	2.980903
н	1.304309	3.238381	1.812967
Н	-0.028135	3.857406	2.785237

Н	1.440762	5.173684	0.751975
Н	2.397353	5.348412	-0.724031
Н	0.678787	5.778217	-0.727816
Н	2.918074	2.511691	-1.090160
Н	2.692460	2.956779	0.589202
Н	1.753996	1.642079	-0.097746
Н	0.297250	4.279937	-2.726924
Н	2.025681	3.868022	-2.712237
Н	0.797226	2.583630	-2.676766
С	-1.104774	1.370421	3.503880
Н	-2.378457	3.110553	3.238945
Н	-3.155675	1.605940	2.751224
Н	1.018466	1.817852	3.801469
Н	0.687891	0.921012	2.336903
Н	-1.194139	1.612738	4.566832
Н	-1.286522	0.299527	3.393623
Н	-2.545674	2.316507	0.508464
Н	1.606033	0.096829	-2.277883

(2.F.m)-[K₂S₂O₈]_1min, singlet, (S)-2

S 0.70859200 -1.38917000 -4.78163700 0 0.27261700 -2.35334700 -5.80296700 0 1.44212600 -1.98182200 -3.64768200 O 1.23909800 -0.10258500 -5.28294400 S-1.71427700-0.92455600-1.76857400 O -0.42751100 -1.01699200 -1.03923200 O -2.77346500 -1.81904600 -1.27886100 O -2.11548000 0.45575800 -2.10616600 K 1.32274200 -3.04648000 -1.25030800 K -0.38605100 1.97637200 -3.83769800 O -1.44903100 -1.68227700 -3.29616500 0 -0.73756300 -0.72550200 -4.12752200 C 5.77264600 0.63839900 -4.35628900 N 4.66384000 1.55011400 -4.10064500 H 6.08827500 0.74799800 -5.39441900 C 6.95264700 0.81717200 -3.40394000 C 4.59481500 2.82400200 -4.72891900 C 3.80609600 1.26255400 -3.03927000 H 6.62264200 0.69085000 -2.37397300 H 7.73562700 0.09323800 -3.64116500 0 7.56475600 2.11774500 -3.55873500 C 3.50006100 3.67510600 -4.46112600 C 5.57520300 3.27893300 -5.61524600 C 2.75354300 2.13200000 -2.77315400 N 4.04076200 0.13180800 -2.35131900 C 7.17871000 3.09700100 -2.71095600 C 3.44254300 4.92991900 -5.06520200 N 2.45595900 3.24120500 -3.62160500 C 5.51187600 4.53690200 -6.23190700 H 6.44660200 2.66865500 -5.80847600 C 1.84937700 1.82457300 -1.74129200 C 3.17760100 -0.22416500 -1.37168500 0 6.41717700 2.93129800 -1.77801900 C 7.79442200 4.41455800 -3.10051600 C 4.42770800 5.38264400 -5.94982700 H 2.59257800 5.56929500 -4.83742800 C 6.61205000 4.96878600 -7.16974900 O 0.82388800 2.50648100 -1.46023400

N 2.14301300 0.65348100 -1.04973300 O 3.25955900 -1.30383600 -0.73657800 H 7.20010200 4.83780100 -3.91710900 H 7.77279100 5.09758500 -2.25151200 H 8.81563600 4.28108600 -3.46187800 C 4.32055600 6.74974400 -6.57664000 H 7.37602100 4.19297400 -7.26459700 H 6.22733100 5.18536100 -8.17377300 H 7,10545400 5,88382900 -6,82014700 H 1.41261900 0.30217600 -0.44165800 H 5.18178100 7.37881200 -6.32101500 H 4.29145300 6.69059800 -7.67133400 H 3.41703800 7.26702000 -6.24407600 H 5.40425600 -0.37985500 -4.22385300 H 2.01096100 3.99246400 -3.10345600 (2.F.m)-[K₂S₂O₈]_1min, triplet, (S)-2 (t) S -1.03893400 -1.58330500 -4.39262600

O -1.81078500 -2.63327000 -5.07422100 0 0.21126700 -2.04352500 -3.76013400 O -0.95987800 -0.27720600 -5.08119200 S -1.64597800 -1.24921800 -0.59634200 O -0.16613000 -1.18764200 -0.68371800 O -2.16979600 -2.23346200 0.35991900 O -2.29634100 0.07612700 -0.61605500 K 1.13121100 -3.37085000 -1.67207500 K -1.79917100 1.68980400 -2.84684900 0 -2.16650300 -2.01670500 -2.04704800 O -2.05538700 -1.03287100 -3.11103300 C 6.40840400 0.84628000 -4.37197800 N 5.17794900 1.63569700 -4.38020200 H 6.97567600 1.05036200 -5.27842100 C 7.24847000 1.11012900 -3.12433500 C 5.13322900 2.88818300 -4.97299500 C 4.11313600 1.14454700 -3.62714900 H 6.67686600 0.86898700 -2.22849600 H 8.16476600 0.51701700 -3.15818900 O 7.66615800 2.48905300 -3.07907800 C 3.93018000 3.68054200 -4.85695500 C 6.20069200 3.46718500 -5.70060800 C 2.92553000 1.95011700 -3.52990500 N 4.19215000 -0.09672500 -3.06743000 C 6.89134400 3.35060900 -2.37408700 C 3.85084900 4.94194600 -5.45806600 N 2.87227700 3.16457600 -4.13612500 C 6.11509700 4.72094300 -6.28486100 H 7.14144800 2.93825900 -5.77911900 C 1.81652700 1.49823000 -2.77146700 C 3.16380300 -0.55389000 -2.35415200 O 5.97804100 3.00681700 -1.64786800 C 7.31936300 4.77052700 -2.62499300 C 4.90543500 5.48949500 -6.17573600 H 2.92534800 5.50349300 -5.34637300 C 7.29672900 5.28011200 -7.03485500 0 0.74040800 2.14850700 -2.64103800 N 2.01193100 0.27298300 -2.15793200 0 3.12535100 -1.69014600 -1.80289600

H 7.00486500 5.05170600 -3.63626800

H 6.85124800 5.43278000 -1.89729600 H 8.40711800 4.86137000 -2.57846100 C 4.79271000 6.85302300 -6.80353900 H 8.13989200 4.58458500 -7.01993000 H 7.04983500 5.48706300 -8.08407300 H 7.63710700 6.23050500 -6.60497900 H 1.20844000 -0.15687800 -1.70669700 H 5.54229400 7.55316100 -6.41042600 H 4.94168200 6.82289400 -7.89118800 H 3.80643300 7.28746800 -6.61748100 H 6.12413600 -0.20625100 -4.36826700 H 2.01528300 3.69353000 -4.01692500

(2.A.m)-[KSO₄_KHOSO₃]_1min, singl, (S)-3 S 0.79040800 -0.14383300 -5.48741200 O 1.28892800 -0.68484800 -6.79388200 0 1.74241700 -0.52184400 -4.35831100 0 0.64354400 1.36142300 -5.54249800 S -1.50377000 -0.39589900 -0.49535300 O -1.17770400 1.15474400 -0.13195700 O -2.57707500 -0.76816400 0.43629900 0 -1.88697900 -0.41244500 -1.93922800 K 0.10921800 -2.17637600 -2.96121100 K -1.42627900 1.53213700 -3.82115200 O -0.21629400 -1.14104100 -0.28370800 O -0.57574600 -0.74117900 -5.14290600 C 6.10849800 0.52438500 -4.17531400 N 4.88045700 1.32669500 -4.05202900 H 6.52069700 0.66127900 -5.17164300 C 7.11811800 0.88631100 -3.09132700 C 4.72770800 2.52844200 -4.73341600 C 3.93683200 0.90096300 -3.15360100 H 6.69417800 0.71033400 -2.10320800 H 8.02236900 0.29057000 -3.22418700 O 7.52932200 2.26406000 -3.20694100 C 3.56149700 3.30091500 -4.47565700 C 5.67746800 3.02787000 -5.63985900 C 2.77428400 1.75137000 -2.99256800 N 4.15001600 -0.21796400 -2.49432000 C 6.86062900 3.17809100 -2.46164800 C 3.38807500 4.53577100 -5.13619600 N 2.60379800 2.89132900 -3.59550200 C 5.48892700 4.24598300 -6.28232900 H 6.59304300 2.48743500 -5.83202000 C 1.73900700 1.27813500 -2.05164300 C 3.17619500 -0.68287100 -1.65877100 0 5.96679300 2.89503200 -1.68853100 C 7.34886100 4.56918300 -2.75858500 C 4.31909800 5.02229900 -6.03177800 H 2.48565100 5.09396000 -4.90895300 C 6.53466500 4.74849700 -7.23977400 0 0.66408700 1.88306200 -1.87525700 N 2.05571200 0.14199500 -1.38466500 O 3.21297800 -1.78690800 -1.11770600 H 6.90950300 4.89378800 -3.70760000 H 7.02923600 5.24707400 -1.96789500 H 8.43457900 4.58821800 -2.86846500 C 4.11227500 6.34341700 -6.72312000

H 7.36891000 4.04935900 -7.32088000 H 6.11196200 4.89777400 -8.23960400 H 6.92868800 5.71845800 -6.91654700 H 1.32102100 -0.28540600 -0.80221800 H 4.92261100 7.04425900 -6.49335400 H 4.09481800 6.22467700 -7.81221500 H 3.16969900 6.80082200 -6.41562500 H 5.82662500 -0.52059000 -4.05362400 H -0.44400100 1.46107300 -0.74285900

[K₂SO₄]

S 0.91129800 1.02441100 -2.92941400 O 2.25782500 0.32963700 -2.85716800 O 0.20460500 0.92835000 -1.59049700 O 1.10117800 2.49117200 -3.26718700 K 1.86317900 -1.46929600 -4.77790800 K -0.05154700 3.53475000 -1.10768500 O 0.08008900 0.34887800 -4.00380400

$CuBF_4$

Cu 0.33323200 1.23640300 -4.27284500 B -1.35375900 1.16291400 -2.18718400 F -2.62346200 1.68166900 -2.23302700 F -0.38601600 2.18894700 -2.53212700 F -1.03069200 0.60025400 -0.97807100 F -1.17735400 0.18924300 -3.25036900

(LH)- CuBF4

N -1.41176200 1.43913400 0.39947200 C -0.50534400 1.81399000 -0.71681700 C -0.57992900 3.31496900 -1.01029000 C -2.03966300 3.78014000 -0.98710400 C -2.64707200 3.58381800 0.42213700 C -1.83802000 2.56732400 1.23974800 H 0.51308000 1.49291700 -0.46914100 H 0.01276400 3.88646000 -0.28763600 H -2.11796800 4.82580700 -1.29672200 H -2.65225800 4.52511900 0.98073900 H -2.39912900 2.21365000 2.09468300 H -3.68620100 3.24983900 0.34407400 H -0.92770100 3.03142100 1.63206900 H -2.60415400 3.19051500 -1.71872200 H -0.12695000 3.48678500 -1.99097700 H -0.82101900 1.24593700 -1.59330700 C -1.69042900 0.14211200 0.55427500 O -1.15946500 -0.66050200 -0.28104500 Cu 0.02979300 -2.04849700 0.17018000 B 1.30860700 -3.68091000 2.05056500 F 0.87390800 -4.96455200 2.28240300 F 2.58812100 -3.44624600 2.49508100 F 1.29456600 -3.46012300 0.57830400 F 0.39957900 -2.72572800 2.55393400 C -2.64107000 -0.40472800 1.64280700 C -2.01758600 -0.22111000 3.04655000 H -1.85359000 0.82084100 3.32401600 H -2.68935800 -0.66066500 3.79000200 H -1.06085500 -0.74733700 3.10417100 C -2.83623300 -1.91964400 1.42653400

```
H -3.58309700 -2.27811800 2.14036200
H -3.18652200 -2.14390600 0.41688600
H -1.91512100 -2.47805800 1.61474400
C -4.03931300 0.24735000 1.52899600
H -4.05231100 1.31624100 1.73785900
H -4.45159900 0.09508700 0.52695800
H -4.71057800 -0.23327700 2.24605700
```

(Na₂S₂O₄)- CuBF₄

Cu 0.71627900 2.20603500 -3.60792300 B 0.82203700 2.78723200 -6.35935300 F 0.79545400 3.94031700 -7.08833100 F 0.41124300 1.66666200 -7.09514400 F 2.04745800 2.55581900 -5.72873900 F-0.16416800 2.90130100 -5.24738900 S 0.83999900 -0.08619900 -1.81495400 O -0.14270900 -0.06186600 -3.22685000 0 1.43255900 1.29239400 -2.05668100 O -0.07307000 -0.15309200 -0.67494200 0 1.81720300 -1.16643200 -1.95942200 O -1.09876100 -1.16593200 -3.19083900 Na -1.54781300 0.94527600 -6.06771200 S-0.85423400-2.14692000-4.58948800 O -2.04013400 -2.99853100 -4.42555600 0 -0.90489300 -1.19002900 -5.72427500 0 0.45355900 -2.79982000 -4.42315800 Na 2.74651300 -0.67144500 -5.31849900

[(LH)-(NaSO₄)]-[NaSO₄-CuBF₄], trip

Cu 1.56805400 1.88684300 -4.03361100 B -0.75175900 1.62220900 -2.44245600 F -1.91794500 2.32075600 -2.15707800 F 0.39502300 2.46610000 -2.32523300 F-0.61397000 0.47797500 -1.67975700 F-0.79171800 1.24241800 -3.83587600 S 2.67922500 -0.45099900 -4.39463900 0 2.60066300 0.78768600 -5.34662500 O 4.06609100 -0.84438700 -4.11993100 0 1.99672600 0.21933700 -3.14027400 0 1.79194400 -1.54653800 -4.86135200 0 -2.21904000 -1.27760900 -4.52571700 Na -3.15007800 1.70963400 -4.11608600 S -2.45850100 -0.87705500 -5.93427400 O -3.30818500 -1.90510700 -6.68517000 O -3.02156500 0.49309600 -6.04755000 O -1.21420100 -1.05393800 -6.80598600 Na -0.14655900 -1.17649800 -3.48283200 O 1.21940600 3.51453000 -4.95948100 C 0.12066200 4.01058000 -5.38317600 C -0.31743700 5.34929200 -4.74653600 C 0.73828500 5.74542400 -3.69372500 H 0.81977400 4.98595500 -2.91418600 H 1.72307000 5.88470100 -4.14456600 H 0.43193300 6.68793200 -3.23149700 C -1.66210700 5.19349900 -3.99635600 H -2.50479400 4.93146500 -4.63684400 H -1.58152400 4.43055500 -3.21948800 H -1.90056900 6.14513500 -3.51234500

C -0.36854700 6.47464300 -5.80502400 H -0.54251300 7.42642000 -5.29512300 H 0.58530800 6.54688600 -6.33616400 H -1.15887500 6.35152000 -6.54542900 N -0.55947500 3.39189700 -6.34778900 C -0.05074600 2.14975700 -6.97079900 C -1.81445300 3.83821800 -6.98352200 C 0.21828800 2.37389000 -8.46154700 H -0.81756100 1.38548500 -6.83134200 H 0.85410000 1.82758700 -6.46884800 C -1.59069500 4.11947000 -8.47233200 H -2.53467900 3.02206800 -6.86490300 C -1.03374000 2.88184300 -9.18290200 H 0.56148700 1.42759600 -8.89216900 H 1.03553700 3.09747800 -8.56975300 H -2.54471500 4.42889400 -8.91106300 H -0.89393500 4.95984300 -8.57594200 H -0.80871200 3.11023500 -10.22936400 H -1.79650600 2.09215900 -9.18225700 H -2.21039600 4.70704100 -6.47606800

[(LH)–(NaSO₄)]–[NaSO₄–CuBF₄], sing Cu -0.59056000 2.04520600 -2.02829500 B 2.49659100 2.45591300 -2.46560600 F 3.19257000 3.56783500 -2.03045400 F 3.29934100 1.64069500 -3.29872200 F 1.98159900 1.71365400 -1.39674300 F 1.38265800 2.87121400 -3.29136700 S -1.16277100 -0.27047300 -3.89583200 0 0.26280500 0.20171400 -4.72337800 O -0.71358200 0.18793500 -2.52872900 0 -2.24121400 0.52806500 -4.48343100 O -1.25688000 -1.72456000 -3.99792000 O 0.15846500 -0.27881800 -6.10025800 Na 1.98782500 1.90235600 -5.26115100 S 1.63039700 -1.12209600 -6.44312300 0 1.35310300 -1.42464700 -7.85309400 O 2.66941700 -0.08788400 -6.19799900 O 1.68903400 -2.26532500 -5.51899800 Na 2.26297400 -1.52110700 -2.39852500 O -0.80878800 3.79419200 -1.30232100 C -0.13342000 4.82912500 -1.59829500 C -0.55093400 5.64043900 -2.85032700 C -1.61539700 4.82516600 -3.61274500 H -1.19958000 3.88651600 -3.99134000 H -2.47373900 4.58978000 -2.98150500 H -1.96096500 5.41182600 -4.46856000 C 0.61376600 5.89289200 -3.83799700 H 0.19153200 6.23860700 -4.78625900 H 1.32024100 6.65497500 -3.50992100 H 1.16459700 4.96983000 -4.01957800 C -1.20586300 6.96701300 -2.39832500 H -2.05916500 6.77241600 -1.74145100 H -0.51670900 7.62778800 -1.86926400 H -1.57140100 7.50360900 -3.27893200 N 0.85866500 5.19800000 -0.78044700 C 1.22131600 4.35155700 0.37447600

C 1.68669000 6.40891500 -0.85848900

```
C 1.03629700 5.12234700 1.68206500
H 2.26897700 4.06727700 0.23514400
H 0.61559600 3.45190900 0.34482800
C 1.54350800 7.24017500 0.42172100
H 2.72314700 6.08030900 -0.99717400
H 1.41015300 7.00132600 -1.71988100
C 1.86283400 6.41315900 1.67132600
H 1.32990300 4.47728500 2.51692600
H -0.02770400 5.35769800 1.80998400
H 2.20568100 8.10892600 0.34661700
H 0.51509500 7.61816400 0.47883700
H 1.67460300 7.00102200 2.57550100
H 2.93057000 6.15648600 1.67191400
```

TS(H-transf), trip

Cu 1.41768100 1.62681600 -3.93997500 B -0.62969000 1.65544800 -1.58385200 F-1.75075400 2.44930000 -1.87655300 F 0.52357700 2.27373800 -2.23400600 F -0.38905900 1.54198100 -0.24595000 F -0.82571000 0.39466900 -2.20038700 S 2.65621500 -0.61332700 -4.49368800 0 2.44087000 0.68484100 -5.34734100 O 4.08000200 -0.90047500 -4.28614900 O 1.96036100 -0.08365800 -3.17756200 0 1.84751400 -1.74136600 -5.01671600 O -1.70512100 -0.61117800 -4.82234700 Na -2.79071100 1.14116700 -3.52355300 S-2.42467100-0.24937400-6.09060400 0-3.16820500-1.38426300-6.68727200 O -3.23977400 0.98036900 -5.85320700 O -1.34473400 0.07252000 -7.21295900 Na -0.07614100 -1.49513400 -3.48314300 O 0.96135800 3.29269600 -4.84532100 C 0.01674700 3.90562100 -5.40594300 C -0.42197300 5.25288800 -4.78061900 C 0.57332000 5.59052100 -3.64706600 H 0.57956000 4.81694300 -2.87776600 H 1.59134000 5.70663700 -4.02822800 H 0.26892700 6.53597800 -3.18939800 C -1.82492200 5.11474700 -4.13016000 H -2.62720600 4.90695100 -4.83984100 H -1.81923800 4.32324000 -3.37622900 H -2.06503100 6.05822400 -3.63031800 C -0.36327400 6.41189700 -5.80670700 H -0.56138800 7.34929200 -5.27881100 H 0.63326100 6.48420200 -6.25308800 H -1.09042700 6.33788700 -6.61543900 N -0.51713600 3.39943300 -6.55885800 C 0.08674400 2.25728100 -7.18191200 C -1.77624400 3.85092500 -7.20973600 C 0.23780500 2.36806400 -8.70109300 H -0.63796300 1.29682800 -7.03360300 H 1.00994100 1.97715300 -6.68261100 C -1.57965200 4.09602600 -8.70805500 H -2.50552100 3.05045200 -7.04363300 C -1.03972600 2.83987700 -9.39785200 H 0.56527800 1.39520500 -9.07912000

H 1.05702000 3.07750900 -8.88913300 H -2.54603700 4.39051900 -9.12977000 H -0.89122100 4.93719300 -8.85433000 H -0.83959900 3.03577900 -10.45590100 H -1.79237400 2.04359100 -9.35314100 H -2.14394500 4.74028600 -6.71604100

[L-OSO₃Na]-[NaHSO₄-CuBF₄], singlet

Cu 1.45386500 1.78398500 -4.29552300 B -1.29284700 1.80989600 -2.13612300 F -2.66943000 2.06298500 -2.25657600 F-0.61543700 2.83687000 -1.52273700 F -1.07480700 0.57268000 -1.50094900 F-0.81018500 1.66077700 -3.49883200 S 2.80591500 -0.77457000 -3.74333100 O 3.69988400 -0.17265000 -4.74486300 O 3.39994200 -1.61579500 -2.70458300 O 1.86032100 0.27597500 -3.13895400 0 1.77196300 -1.76781500 -4.53281200 O -1.51046300 -0.65265800 -5.17912400 Na -2.81848800 1.34117800 -4.58762500 S -0.84103000 -0.26040700 -6.45171200 O -1.33036900 -0.94753400 -7.65092800 O -1.32601000 1.32440300 -6.55277400 0 0.65044300 -0.19952100 -6.34230700 Na -0.29391700 -0.84829400 -3.14304100 O 1.12250700 3.23541300 -5.49117600 C 0.08520800 3.92142000 -5.68820800 C -0.14580500 5.16774800 -4.80790500 C 0.91657700 5.16310400 -3.68885100 H 0.77927000 4.30931400 -3.02093100 H 1.92964400 5.13733500 -4.09332000 H 0.80091100 6.07598400 -3.09795800 C -1.52682100 5.15046600 -4.11092900 H -2.37330600 5.27857100 -4.78292400 H -1.66452900 4.22289000 -3.55301000 H -1.55462000 5.97591900 -3.39377600 C 0.06579000 6.44726000 -5.65274900 H -0.03729000 7.31932600 -5.00094500 H 1.07287000 6.45948300 -6.07994900 H -0.64665800 6.55968400 -6.47143800 N -0.74427600 3.55770300 -6.70294700 C -0.49437000 2.26194400 -7.31909800 C -2.01643300 4.22374200 -7.06394700 C -0.82455200 2.20439100 -8.80158000 H 0.54155400 1.99643800 -7.14059400 C -2.25646100 4.21719400 -8.57197400 H -2.84151500 3.71171800 -6.55820800 C -2.19357000 2.79582600 -9.12742700 H -0.74363300 1.16148800 -9.11760200 H -0.04193000 2.76682700 -9.32428400 H -3.23335600 4.67515400 -8.75429800 H -1.50242400 4.84456900 -9.06225100 H -2.35735600 2.79046100 -10.20861500 H -2.98265500 2.18280100 -8.67526700 H -1.99059700 5.24402800 -6.70508600 H 1.39588200 -1.26221800 -5.31031400

[(LOH)-CuBF₄]-[NaHSO₄]₂, singlet Cu 0.91141300 1.31715900 -4.50014300 B-1.91163000 1.58561100 -1.92620300 F -3.23166900 1.87584400 -2.31381200 F -1.30905000 2.65150100 -1.29888500 F -1.86744900 0.41889400 -1.14289600 F -1.19578300 1.27914100 -3.15425100 S 2.48810100 -1.08332800 -3.96937300 O 2.88266000 -0.52383900 -5.27807200 0 3.57555200 -1.46579800 -3.06335500 O 1.46200000 -0.16404100 -3.29234500 O 1.66871900 -2.45792700 -4.23043100 O -2.83768400 -0.51795200 -5.21549400 Na -2.98265500 1.67419200 -4.64634600 S -1.57326000 -1.15090400 -5.67023100 O -1.68472700 -1.92898600 -6.90939300 O -0.52686500 0.07647700 -5.96271400 0-0.87864600-1.87499600-4.55232700 Na -0.56111200 -0.95157400 -2.45262100 0 0.88683200 2.90953200 -5.60133900 C 0.00630000 3.79815200 -5.74244000 C -0.07419200 4.93991600 -4.70474800 C 1.09327700 4.76518900 -3.71283600 H 1.02150600 3.81726600 -3.17423000 H 2.06070100 4.80130800 -4.21870100 H 1.05302000 5.57627100 -2.98038800 C -1.37865700 4.89981000 -3.87448300 H -2.29257500 4.88317400 -4.46907800 H -1.38029100 4.02909700 -3.21842400 H -1.41331300 5.79076700 -3.24015800 C 0.11629800 6.30242100 -5.41339200 H 0.21101800 7.08185200 -4.65220000 H 1.03209500 6.30170800 -6.01206200 H -0.71182500 6.58108400 -6.06518900 N -0.75703600 3.77797300 -6.86442700 C -0.44663200 2.78966100 -7.89519800 C -1.99585000 4.54504100 -7.10779400 C -0.45250900 3.41596700 -9.28724200 H 0.53404300 2.37955700 -7.66617400 C -1.97337200 5.22548000 -8.47520300 H -2.82907600 3.83533300 -7.05545800 C -1.73483200 4.19713600 -9.58290200 H -0.27786700 2.62395000 -10.02390500 H 0.41331700 4.08586000 -9.33560400 H -2.92622000 5.74407800 -8.61857000 H -1.18020700 5.98282600 -8.48886400 H -1.65540100 4.68516100 -10.55835500 H -2.58869900 3.51118700 -9.63620800 H -2.13533000 5.27074700 -6.31842100 H 0.73755300 -2.24128600 -4.52365500 O -1.43184200 1.73677200 -7.77267300 H -1.54626400 1.30500000 -8.63227400 H -0.89398900 0.65898600 -6.69775000

[(LNHCO)–CuBF₄]–[NaHSO₄]₂, singlet

Cu 0.79563400 1.46916000 -4.51065500 B -1.49587000 0.48813000 -1.23160300 F -2.83600800 0.86651900 -1.44588000 F-0.95606200 1.11834900 -0.13534100 F -1.39189100 -0.91540300 -1.13496600 F-0.77057300 0.86416700 -2.42638300 S 2.17451500 -0.90822500 -5.54809000 O 1.96137000 0.02830900 -6.67264700 O 3.52912900 -1.44418700 -5.39204400 O 1.63231900 -0.30227300 -4.24706100 0 1.24151100 -2.20926900 -5.79111300 O -3.25998600 -0.33528300 -4.58269700 Na -2.68938800 1.80843000 -3.56497000 S-2.00621000-0.47369200-5.35390300 O -2.35952900 -0.82663800 -6.86852500 O -1.24303600 0.81797500 -5.38664000 0 -1.17057200 -1.62576600 -4.87832500 Na 0.07139700 -1.38515500 -2.85899600 O 0.46425000 3.36546600 -4.44368300 C -0.26561300 4.13849800 -5.12314200 C -0.39361900 5.59370400 -4.64124500 C 0.61864700 5.82266500 -3.50373800 H 0.45369200 5.13016600 -2.67653500 H 1.64577100 5.69439000 -3.85553400 H 0.50691200 6.84493500 -3.13153500 C -1.82073000 5.76873400 -4.06808700 H -2.59928300 5.64455700 -4.82356700 H -2.00406000 5.04430400 -3.26793400 H -1.91846200 6.77356200 -3.64694200 C -0.10871300 6.63301500 -5.74527400 H -0.07092800 7.62481000 -5.28576700 H 0.85986600 6.44852200 -6.21967100 H -0.87279300 6.66632100 -6.52073800 N -0.95944300 3.64030100 -6.15891400 C -0.47267700 1.29522500 -8.35299600 C -1.77868300 4.29132500 -7.18555400 C 0.22358600 2.46237700 -8.96932800 H 0.17157900 0.51462300 -7.92036400 C -0.99504800 4.70012000 -8.44620700 H -2.56702900 3.58083800 -7.44620300 C -0.68388800 3.59462400 -9.46581500 H 0.81672600 2.03341300 -9.79171900 H 0.97767900 2.80714900 -8.24770500 H -1.58845300 5.46664900 -8.95779600 H -0.06209300 5.18421800 -8.13947100 H-0.19814100 4.06907500 -10.32362100 H -1.61837600 3.16087200 -9.83689400 H -2.26901800 5.16312100 -6.75733300 H 0.29175100 -1.97320000 -5.58864100 O -1.69909400 1.18650300 -8.30654500 H -0.93673900 2.62528800 -6.19581600 H -2.15504900 -0.02105100 -7.46561300

LNHCO

O -0.40862400 6.47387600 -6.50172600 C -0.90856100 5.35570700 -6.33939000 C -0.98632900 4.72595700 -4.93380300 C 0.46656900 4.44847300 -4.49276300 H 0.92915800 3.69318300 -5.13446900 H 1.06016400 5.36510000 -4.54130300 H 0.47877400 4.07970900 -3.46171200

C -0.12473100 5.41544400 -9.43765500 H -2.10660100 4.54239100 -9.32316500 C 0.65453400 4.15186800 -9.82673400 H 2.11532400 2.75339400 -9.06713100 H 1.75416000 4.03779700 -7.92372100 H -0.33679300 5.98068000 -10.35336600 H 0.49875800 6.05815300 -8.80935900 H 1.45179200 4.45201100 -10.51427900 H 0.00546700 3.47407900 -10.39878700 H -1.97789700 6.17745200 -8.66203100 H -0.46732400 2.03355100 -8.57244500 H -1.90879800 3.79838100 -7.19822700

C -1.80216400 3.42461300 -4.87420800 H -2.83665000 3.57900000 -5.20119400 H-1.34808100 2.63033400 -5.47334900 H -1.83984900 3.06938500 -3.83972400 C -1.62164800 5.77372000 -4.00039800 H -1.61202100 5.40856700 -2.96862500 H -1.06840700 6.71384100 -4.04658400 H -2.66172200 5.97266400 -4.28080500 N -1.37668600 4.63191600 -7.39144000 C 0.38910300 2.40153100 -7.96593000 C -1.47045200 5.20857000 -8.73369200 C 1.29959100 3.37545300 -8.66792300 0 0.57604100 1.96641700 -6.84392900 [(NaHSO₄)₂-CuBF₄] Cu 2.27429600 0.98275300 -3.78130100 B 0.98186700 1.82372100 -1.39640100 F 1.13831200 2.43666600 -0.18972900 F 2.13449500 2.14780800 -2.25080700 F 0.96644500 0.41883600 -1.28543800 F-0.16069200 2.26000000 -2.08159100 S 0.81917100 -0.74203300 -5.69786900 O -0.16441300 0.58448900 -5.68391300 0 0.84536100 -1.27398300 -7.05413300 0 2.17108400 -0.22391100 -5.25642600 O 0.18435700 -1.59178800 -4.65996200 O -1.96076800 -0.61545400 -2.47650100 Na -1.47862200 1.41674300 -3.72671600 S -3.01970200 -1.06402300 -3.44768000 O -4.24048700 -1.58207100 -2.82101800 0-3.21803000-0.01417700-4.48651600 O -2.39371000 -2.36723400 -4.21164900 Na 0.14459200 -1.43931300 -2.28681700 H -1.50937400 -2.11396100 -4.56936600

H 0.09422000 1.18832400 -6.40265200

Table S20. Cartesian coordinates of the optimized geometries for the autocyclization process. The cartesian coordinates of optimized geometries are given below in the standard XYZ format, and units are in Å.

====	===========	============	======
Cu ⁱ (⊦	120)2		
====	============		======
 ())		-0 01590/	
0	1 016052	0.01000	0.000001
	-1.910055	-0.041990	0.043140
н	-2.466433	-0.497143	-0.607432
н	-2.459021	0.619412	0.496257
0	1.916053	-0.041999	-0.045135
н	2.459003	0.619319	-0.496388
н	2.466446	-0.497008	0.607532
====	===========	============	======
H ₂ O			
====	===========	============	======
0	0 00000	0 00000	0 110237
U Ц	0.000000	0.000000	0.119237
	0.000000	0.759522	-0.470819
н	0.000000	-0.759322	-0.476819
====	=========	==========	======
H₃O⁺			
====	=========	===========	======
0	-0.000003	0.000000	-0.070534
Н	-0.479665	-0.817077	0.187333
н	-0.467790	0.823925	0.187333
н	0 947428	-0.006848	0 187344
	0.347420	0.000040	0.107544
0			
====	==========		=====
С	0.000000	0.000000	-0.650254
0	0.000000	0.000000	0.487690
====	===========		======
11			
====	===========	============	======
C	-0 6/13701	2 688618	0 315671
c	1 721004	1 906927	0.313071
	-1.751084	1.000057	-0.110960
н	-3.916441	-1.014316	0.481151
N	1.556332	1.664027	-0.133181
С	0.638462	2.718980	-0.543607
С	2.561999	-1.604793	-0.978134
С	2.227635	-0.696826	0.230147
С	1.274533	0.377327	-0.255007
С	3.518959	-0.104202	0.818534
C	1.477039	-1.511548	1.313316
0	0 167627	0.062695	-0.839786
U Ц	0.107027	2 611425	1 207524
п 	-0.429958	2.011425	1.567554
н	-1.126373	3.68/038	0.198105
н	-1.942/1/	1./29989	-1.1/9628
н	-2.576872	1.676123	0.562794
Н	0.391375	2.599735	-1.602309
Н	1.151854	3.671224	-0.413376
Н	3.092530	-1.053594	-1.759043
H	3.207509	-2.418326	-0.639712
н	1.659031	-2.039289	-1.412205
	4 172877	-0 0105205	1 12/022
	7.1/20//	0.313320	1.134303
н	4.081257	0.4/0324	0.079128
H	3.330995	0.510282	1.706290
Н	2.143154	-2.284849	1./03191
н	0.599575	-2.016477	0.897537

н	1.175808	-0.882576	2.158696		
0	-3.174503	-0.569526	0.922679		
Cu	-1.455840	-0.366317	-0.046435		
0	-1.520679	-2.324635	-0.822258		
Н	-1.869974	-3.162916	-0.487339		
Н	-0.963454	-2.535235	-1.585888		
н	2.446529	1.920672	0.280592		
н	-3.227755	-0.781899	1.868409		
====	=======================================		======		
11-TS'					
====		===================	- 420457		
C	2.211283	-0.831218	0.428157		
C	2.350518	0.487886	0.004497		
н	0.483978	3.976199	0.408292		
N	0.165381	-2.077492	-0.115260		
С	1.557296	-1.877891	-0.486647		
С	-3.071010	-1.284074	-1.187728		
С	-2.226441	-1.464650	0.096619		
С	-0.785180	-1.150368	-0.276482		
С	-2.401565	-2.891425	0.642945		
С	-2.666525	-0.438515	1.165127		
0	-0.468801	-0.034211	-0.788835		
Н	2.049384	-0.987997	1.498865		
Н	3.479207	-1.116543	0.335396		
Н	2.433203	0.707005	-1.059764		
н	2.655517	1.269926	0.697336		
н	1.618033	-1.552656	-1.529320		
н	2.065544	-2.838362	-0.395598		
н	-2.785254	-2.006155	-1.957733		
н	-4.124074	-1.447259	-0.946401		
н	-2.958704	-0.278007	-1.596854		
н	-3.455133	-3.056338	0.878352		
н	-2 125222	-3 653774	-0.093724		
н	-1 843383	-3 056633	1 571780		
н	-3 706482	-0 629786	1 439742		
н	-2 600/19	0.580318	0 777023		
н	-2.061853	-0 518516	2 075225		
0	1 120621	3 33/33/	0.08/380		
	0 156281	1 637844	-0 19601/		
Cu O	1 527462	2 071904	-0.190014		
ц	1 062246	2.371004	1 267020		
	2 220951	2.072005	1.307039		
	-2.230851	3.214381	-0.113828		
	-0.110200	-2.9/4250	0.204988		
Н	1.002124	3.//8281	-0.000528		
0	4.663016	-1.846890	0.280270		
H	5.124345	-2.0024/1	1.120927		
Н	5.329462	-1.60/226	-0.384639		
====	===========	============	=====		
12					

С	-1.281993	1.785136	0.681301
С	-2.608470	1.753735	0.328333
Н	-2.697062	-2.320667	-0.704102
Ν	1.091111	1.602308	-0.057207
С	-0.192546	2.283750	-0.248026
С	3.049685	-0.989119	-1.370055
С	2.708777	-0.278654	-0.038647
С	1.282794	0.277317	-0.175507
С	3.758999	0.807004	0.260289
С	2.684429	-1.308049	1.117832
----	-----------	-----------	-----------
0	0.333945	-0.515367	-0.400809
Н	-0.998648	1.666544	1.725898
Н	-2.942685	2.053520	-0.659692
Н	-3.376164	1.600921	1.077290
Н	-0.515543	2.198858	-1.294582
Н	-0.009041	3.340843	-0.044024
Н	3.085139	-0.274344	-2.207931
Н	4.031290	-1.459453	-1.291861
Н	2.303496	-1.759739	-1.601166
Н	4.745522	0.341879	0.350133
Н	3.833256	1.545950	-0.548629
Н	3.567821	1.329513	1.209077
Н	3.679515	-1.745482	1.237775
Н	1.990796	-2.130379	0.897641
Н	2.403710	-0.845626	2.071282
0	-2.874882	-1.455946	-1.118237
Cu	-1.697373	-0.151969	-0.025519
0	-1.354717	-2.087545	1.090559
Н	-1.476459	-2.278975	2.029229
Н	-0.401951	-2.121285	0.913105
Н	1.902608	2.177832	0.095796
Н	-2.766378	-1.572837	-2.073976

С	1.910454	-0.721244	1.343505
0	-0.550683	-1.130651	-0.070758
Н	-2.553213	-0.087610	1.505671
Н	-3.773768	-0.109228	0.229696
Н	-2.195542	-1.296473	-1.303844
Н	-2.256336	-2.190931	0.235797
Н	-2.459824	1.407246	-1.180832
Н	-2.413313	2.104756	0.447351
Н	1.817945	-0.298938	-2.131681
Н	3.161715	-0.847335	-1.120476
Н	1.675862	-1.806979	-1.201352
Н	3.221071	1.351808	0.098354
Н	1.915941	1.967583	-0.899500
Н	1.800939	2.015757	0.887990
Н	2.998829	-0.775047	1.419421
Н	1.513509	-1.737597	1.360130
Н	1.536293	-0.180712	2.217915
Н	-0.120983	2.009325	-0.147260

olefin

====	:============	===========	
С	2.946537	0.009109	-0.502506
С	4.116289	0.584329	-0.222507
Ν	0.707200	0.103518	0.479392
С	2.008584	-0.550683	0.535695
С	-2.789904	-0.414465	0.861194
С	-1.726189	0.271425	-0.024536
С	-0.429307	-0.557392	0.097167
С	-1.575630	1.744428	0.389585
С	-2.160057	0.190793	-1.509472
0	-0.432459	-1.763622	-0.143479
Н	2.607965	-0.074213	-1.538700
Н	4.470387	0.682687	0.807213
Н	4.768835	0.970782	-1.002447
Н	1.805193	-1.616405	0.350055
Н	2.441413	-0.449790	1.540356
Н	-2.518134	-0.342799	1.922135
Н	-3.761933	0.063827	0.724903
Н	-2.868396	-1.471832	0.597862
Н	-2.543039	2.254677	0.297297
Н	-1.255499	1.842338	1.434312
Н	-0.866034	2.281561	-0.249299
Н	-3.122197	0.687055	-1.648305
Н	-2.252153	-0.857133	-1.815722
Н	-1.424548	0.674692	-2.163712
Н	0.679484	1.103636	0.602416

=====	=======	 =======
10m		

	-2.699482	-0.055645	0.421723
С	-2.008492	-1.238029	-0.228435
Ν	-0.655543	1.149285	-0.138839
С	-2.129494	1.237346	-0.151444
С	2.072951	-0.790560	-1.188204
С	1.543031	0.006776	0.027662
С	0.032262	0.034120	-0.067526
С	2.134264	1.425327	0.027381

Vibrational Frequencies of the Optimized Geometries

Table S21. Vibrational Frequencies (in cm⁻¹) of the Optimized Geometries for the autocyclization reaction.

------CO

2208.63

11

18.13 29.01 55.98

65.3871.43101.43116.88147.15163.26174.39202.14209.89226.45256.30259.21264.10295.26303.91317.65324.01329.69352.86367.67377.43388.66402.64437.66476.54522.46535.21579.93630.16686.56717.96745.76790.16793.10853.82907.26940.62951.46975.18978.01999.071041.181047.371068.371112.311157.491203.711222.351236.561248.521297.611333.981380.281383.681409.761411.191414.431451.521480.151490.111493.111493.661498.511515.591523.78152.911542.641614.651647.591652.462897.293044.023047.553069.333090.213101.653113.243116.473118.063144.473148.343148.973156.413173.353228.903589.293752.803785.313844.543882.39

11-TS'

-385.93 19.72 26.83

48.44 58.52 66.12 75.67 86.56 100.66 116.18 117.63 124.22 155.24 183.79 207.77 219.26 241.19 250.99 276.97 286.93 298.89 317.04 325.03 329.88 336.14 373.59 382.70 398.99 417.99 426.88 438.53 444.48 456.86 508.94 535.22 557.06 585.71 647.52 651.80 689.97 726.93 784.28 794.71 867.42 909.04 944.17 948.76 954.09 978.67 1000.67 1028.99 1047.90 1056.79 1069.55 1124.49 1150.66 1228.43 1241.22 1258.20 1284.30 1301.74 1333.50 1391.03 1394.63 1410.16 1414.96 1444.13 1450.81 1487.41 1493.01 1500.36 1502.15 1515.77 1525.31 1537.83 1573.46 1593.19 1611.88 1640.01 1651.03 1657.67 3042.81 3054.25 3067.40 3089.78 3112.47 3115.47 3131.14 3134.33 3143.47 3146.19 3151.94 3157.25 3159.92 3241.20 3616.55 3735.20 3738.19 3775.42 3846 29 3847 08 3869 92

------12

 42.43
 50.49
 62.40
 77.49
 82.56
 98.25

 115.27
 154.10
 159.29
 204.27
 233.34
 245.74

 267.06
 274.49
 290.77
 301.04
 311.06
 320.50

```
331.48 338.27 348.67 363.04 370.95 385.27
401.00 408.53 470.12 519.46 532.62 541.43
544.73 609.00 642.61 670.00 776.79 800.04
861.50 899.74 943.80 947.61 953.87 985.23
1000.31 1022.36 1044.21 1051.13 1078.33 1149.13
1231.76 1242.58 1257.77 1282.81 1292.96 1322.66
1363.15 1411.70 1418.33 1448.79 1450.75 1487.18
1495.02 1503.59 1508.93 1517.94 1527.19 1540.45
1576.54 1600.22 1612.37 1641.13 1664.75 3011.05
3016.04 3031.40 3042.44 3080.77 3088.81 3100.37
3117.58 3121.89 3129.08 3148.04 3172.07 3177.46
3273.95 3680.40 3709.25 3765.64 3845.85 3893.26
```

_____ olefin

47.26 65.69 71.56 140.68 222.72 231.00 266.03 282.90 301.80 311.65 337.97 366.71 371.12 392.10 443.49 510.83 520.93 579.90 689.28 771.00 792.14 871.36 934.72 938.41 951.82 964.24 973.17 1014.14 1044.65 1049.53 1050.62 1084.69 1167.89 1215.66 1233.08 1260.38 1278.60 1305.71 1323.90 1378.48 1400.77 1406.54 1438.62 1468.14 1490.65 1500.43 1509.40 1510.63 1513.89 1524.40 1542.62 1547.12 1727.08 1747.89 3015.95 3022.68 3036.66 3040.68 3063.36 3087.88 3099.57 3106.90 3108.41 3117.10 3124.06 3139.57 3150.67 3206.54 3658.62

10m

_____ 31.59 103.02 168.25

210.50 216.41 263.41 269.85 311.59 313.90 332.52 339.11 387.92 468.20 503.70 516.07 603.90 700.19 755.17 793.35 841.03 878.75 899.97 920.17 942.21 956.11 974.55 979.70 1047.43 1050.63 1074.49 1093.94 1145.74 1224.14 1227.35 1238.21 1250.33 1263.27 1306.28 1326.15 1358.07 1401.90 1410.84 1415.09 1419.19 1454.40 1492.08 1493.12 1499.23 1502.44 1505.32 1516.05 1522 11 1524 91 1538 94 1570 20 1680 90 3041 73 3063.01 3065.20 3080.64 3085.79 3100.84 3111.28 3138.80 3140.50 3141.46 3146.29 3148.03 3158.76 3162.39 3182.76 3609.13

7. References

- (1) Xie, W.; Zhao, M.; Cui, C. Cesium Carbonate-Catalyzed Reduction of Amides with Hydrosilanes. *Organometallics* **2013**, *32* (24), 7440–7444. https://doi.org/10.1021/om400951n.
- (2) Topczewski, J. J.; Cabrera, P. J.; Saper, N. I.; Sanford, M. S. Palladium-Catalysed Transannular C–H Functionalization of Alicyclic Amines. *Nature* **2016**, *531* (7593), 220–224. https://doi.org/10.1038/nature16957.
- (3) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Deconstructive Diversification of Cyclic Amines. *Nature* **2018**, *564* (7735), 244–248. https://doi.org/10.1038/s41586-018-0700-3.
- (4) Seebach, D.; Lohmann, J.-J.; Syfrig, M. A.; Yoshifuji, M. Alkylation of the Isoquinoline Skeleton in the 1-Position: Lithiated 2-Pivaloyl- and 2-Bis(Dimethylamino)-Phosphinoyl-1,2,3,4-Tetrahydroisoquinolines. *Tetrahedron* **1983**, *39* (12), 1963–1974. https://doi.org/10.1016/S0040-4020(01)91914-3.
- (5) Rao, Y.; Li, X.; Danishefsky, S. J. Thio FCMA Intermediates as Strong Acyl Donors: A General Solution to the Formation of Complex Amide Bonds. J. Am. Chem. Soc. 2009, 131 (36), 12924–12926. https://doi.org/10.1021/ja906005j.
- (6) Metternich, J. B.; Sagebiel, S.; Lückener, A.; Lamping, S.; Ravoo, B. J.; Gilmour, R. Covalent Immobilization of (–)-Riboflavin on Polymer Functionalized Silica Particles: Application in the Photocatalytic E→Z Isomerization of Polarized Alkenes. *Chem. Eur. J.* **2018**, *24* (17), 4228–4233. https://doi.org/10.1002/chem.201800231.
- (7) Vasilopoulos, A.; Krska, S. W.; Stahl, S. S. C(Sp3)–H Methylation Enabled by Peroxide Photosensitization and Ni-Mediated Radical Coupling. *Science* 2021, 372 (6540), 398–403. https://doi.org/10.1126/science.abh2623.
- Kochi, J. K. Mechanisms of Organic Oxidation and Reduction by Metal Complexes. Science 1967, 155 (3761), 415–424. https://doi.org/10.1126/science.155.3761.415.
- (9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, 2016.
- (10) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to J. Phys. 1985, 82 (1), 270-283. Hg. Chem. https://doi.org/10.1063/1.448799.
- (11) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82 (1), 299–310. https://doi.org/10.1063/1.448975.
- (12) Wadt, W. R.; Hay, P. J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. *J. Chem. Phys.* **1985**, *82* (1), 284–298. https://doi.org/10.1063/1.448800.
- (13) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38* (6), 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098.
- (14) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37* (2), 785–789. https://doi.org/10.1103/PhysRevB.37.785.
- (15) Becke, A. D. A New Mixing of Hartree–Fock and Local Density-functional Theories. J. Chem. Phys. **1993**, 98 (2), 1372–1377. https://doi.org/10.1063/1.464304.
- (16) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.
- (17) Becke, A. D.; Johnson, E. R. A Density-Functional Model of the Dispersion Interaction. J. Chem. Phys. 2005,

123 (15), 154101. https://doi.org/10.1063/1.2065267.

- (18) Becke, A. D.; Johnson, E. R. Exchange-Hole Dipole Moment and the Dispersion Interaction. *J. Chem. Phys.* **2005**, *122* (15), 154104. https://doi.org/10.1063/1.1884601.
- (19) Johnson, E. R.; Becke, A. D. A Post-Hartree-Fock Model of Intermolecular Interactions: Inclusion of Higher-Order Corrections. J. Chem. Phys. **2006**, 124 (17), 174104. https://doi.org/10.1063/1.2190220.
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102 (11), 1995–2001. https://doi.org/10.1021/jp9716997.
- (21) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. *J. Comput. Chem.* **2003**, *24* (6), 669–681. https://doi.org/10.1002/jcc.10189.
- (22) Burke, K.; Werschnik, J.; Gross, E. K. U. Time-Dependent Density Functional Theory: Past, Present, and Future. J. Chem. Phys. **2005**, 123 (6), 062206. https://doi.org/10.1063/1.1904586.
- (23) Haines, B. E.; Musaev, D. G. Hydrogen-Bonding as a Factor to Determine the Regioselectivity for Pd-Mediated C-H Activation of Pyridine. *ChemCatChem* **2021**, *13* (4), 1201–1206. https://doi.org/10.1002/cctc.202001658.
- (24) McLarney, B. D.; Hanna, S.; Musaev, D. G.; France, S. Predictive Model for the [Rh2(Esp)2]-Catalyzed Intermolecular C(Sp3)–H Bond Insertion of β-Carbonyl Ester Carbenes: Interplay between Theory and Experiment. ACS Catal. 2019, 9 (5), 4526–4538. https://doi.org/10.1021/acscatal.9b00889.
- (25) Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights. *Chem. Rev.* 2015, 115 (17), 9532–9586. https://doi.org/10.1021/acs.chemrev.5b00163.
- (26) Ahn, S.; Hong, M.; Sundararajan, M.; Ess, D. H.; Baik, M.-H. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. *Chem. Rev.* 2019, *119* (11), 6509–6560. https://doi.org/10.1021/acs.chemrev.9b00073.
- (27) Parr, R. G.; Weitao, Y. Density-Functional Theory of Atoms and Molecules; International Series of Monographs on Chemistry; Oxford University Press: New York, 1995. https://doi.org/10.1093/oso/9780195092769.001.0001.
- (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austinm A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannesberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, 2013.
- (29) Slater, J. C. Quantum Theory of Molecules and Solids. Vol. 4. Vol. 4.; McGraw-Hill: New York, NY, 1974.
- (30) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. *Can. J. Phys.* **1980**, *58* (8), 1200–1211. https://doi.org/10.1139/p80-159.
- Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. https://doi.org/10.1063/1.464913.
- (32) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32* (7), 1456–1465. https://doi.org/10.1002/jcc.21759.
- (33) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1971**, *54* (2), 724–728. https://doi.org/10.1063/1.1674902.
- (34) Hehre, W. J.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XIII. An Extended Gaussian-Type Basis for Boron. *J. Chem. Phys.* **1972**, *56* (8), 4233–4234. https://doi.org/10.1063/1.1677844.
- (35) Binkley, J. S.; Pople, J. A. Self-consistent Molecular Orbital Methods. XIX. Split-valence Gaussian-type

Basis Sets for Beryllium. J. Chem. Phys. 1977, 66 (2), 879-880. https://doi.org/10.1063/1.433929.

- (36) Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theor. Chim. Acta* **1973**, *28* (3), 213–222. https://doi.org/10.1007/BF00533485.
- (37) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1972**, *56* (5), 2257–2261. https://doi.org/10.1063/1.1677527.
- (38) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Selfconsistent Molecular Orbital Methods. XXIII. A Polarization-type Basis Set for Second-row Elements. J. Chem. Phys. 1982, 77 (7), 3654–3665. https://doi.org/10.1063/1.444267.
- (39) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li–F. J. Comput. Chem. 1983, 4 (3), 294–301. https://doi.org/10.1002/jcc.540040303.
- (40) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80 (7), 3265–3269. https://doi.org/10.1063/1.447079.
- Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72 (1), 650–654. https://doi.org/10.1063/1.438955.
- (42) McLean, A. D.; Chandler, G. S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z=11–18. *J. Chem. Phys.* **1980**, *72* (10), 5639–5648. https://doi.org/10.1063/1.438980.
- (43) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted Pseudopotentials for the Actinides. Parameter Sets and Test Calculations for Thorium and Thorium Monoxide. J. Chem. Phys. 1994, 100 (10), 7535–7542. https://doi.org/10.1063/1.466847.
- (44) Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107 (8), 3032–3041. https://doi.org/10.1063/1.474659.